2009年全国高中数学联合竞赛加试试题(A卷)

合集下载

2009年全国高中数学联赛吉林省预赛试题及答案

2009年全国高中数学联赛吉林省预赛试题及答案

2009年全国高中数学联赛吉林省预赛2009年全国高中数学联赛(吉林赛区)预赛暨吉林省高中数学竞赛于2008年5月17日在吉林省各地区举行,有将近10000名来自全省各地区的选手参加了本次竞赛活动.本次吉林省高中数学竞赛试题所涉及的知识范围不超出现行的《全日制普通高级中学数学教学大纲》和《高中数学竞赛大纲(2006年修订试用稿)》中所规定的教学内容和基本要求,贴近高考但又高于高考,高考和竞赛兼顾,在内容和方法的要求上有所提高. 主要考查学生对基本知识和基本技能的掌握情况,以及综合、灵活运用基础知识的解决实际问题的能力. 试卷包括6道选择题,6道填空题和5道解答题. 全卷满分160分.竞赛活动时间是2009年5月17日(星期日)上午8:30—11:00,从竞赛成绩上,还是比较理想,全省最高分是145分,通过这次预赛,选出2000名选手参加决赛.试 题一、选择题(每小题5分,共30分)1.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( ).(A) 10项 (B) 11项 (C) 12项 (D) 13项2.若函数1(),4,()2(1),4,xx f x f x x ⎧≥⎪=⎨⎪+<⎩ 则2(log 3)f =( ).(A) 238-(B) 111 (C) 119 (D) 1243.称横坐标为整数的点为“次整点”,过曲线y =倾斜角大于30的直线条数为( ).(A) 12 (B) 13 (C) 14 (D) 154.现有一个正四面体与一个正四棱锥,它们的所有棱长都相等,将它们重叠一个侧面后,所得的几何体是( ).(A) 四面体 (B) 五面体 (C) 六面体 (D) 七面体5.已知I 是ABC ∆的内心,2,3,4AC BC AB ===,若AI xAB yAC =+,则x y +的值为( ).(A) 13 (B) 23 (C) 49 (D) 596.数列{}n a 满足11a =11n a +=,记21nn i i S a ==∑,若2130n n t S S +-≤对任意的*n N ∈恒成立,则正整数t 的最小值为( ).(A) 10 (B) 9 (C) 8 (D) 7 二、填空题(每小题5分,共30分)7.设1≥,则22x y += .8.等式243x px x p +>+-对于一切04p ≤≤均成立,则实数x 的取值范围是 . 9.将3个相同的白球、4个相同的红球、5个相同的黄球放入3个不同盒子中,允许有的盒子中球的颜色不全的不同放法共有 种(要求用数字做答).10.若01x <≤,2sin ()x a x =,sin x b x =,22sin x c x=,则,,a b c 的大小关系为 .11.2010的小数点后一位数字是 .12.对空间中有6个点两两连线,用红、黄两种颜色对这些边染色,则同色三角形至少有 个.三、解答题(每题20分,共100分)13.若,,(0,)a b c ∈+∞,求证:222222b c c a a b a b ca b c b c c a a b+++++≥+++++.14.定义在集合A上的函数()f x 满足:对任意的12,x x A ∈都有12121()[()()]22x x f f x f x +≤+,则称函数()f x 是A 上的凹函数. (1)试判断2()3f x x x =+是否是R 上的凹函数?(2)若函数2()f x mx x =+是R 上的凹函数,求实数m 的取值范围. 15.已知数列}{n a 中,01>a ,且231nn a a +=+. (1)试求1a 的取值范围,使得n n a a >+1对任何正整数n 都成立;(2)若41=a ,设)3,2,1(||1 =-=+n a a b n n n ,并以n S 表示数列}{n b 的前n 项的和,证明:25<n S . 16.如图所示,在ABC ∆中,AB AC =,有一个圆内切于ABC ∆的外接圆,且与AB 、AC分别相切于P 、Q ,求证:线段PQ 的中点O 是ABC ∆的内心.(第16题)17.一个由空间中的点组成的集合S 满足性质:S 中任意两点之间的距离互不相同.假设S 中的点的坐标(,,)x y z 都是整数,并且1,,x y z n ≤≤,证明:集合S 的元素个数小于}6,3)2min{(n nn +.解 答1. C 2. D 3. C 4.B5.B 提示:在ABC ∆中,I 为内心,连AI 并延长交BC 于D 点,则D 分BC 的比42.2AB AC λ=== 故12.33AD AB AC =+ 又3BC =,故2,1.B D D C ==又在ABD ∆中,I 分AD 的比 42,2AB BD λ'===即224,399AI AD AB AC ==+所以2.3x y +=6.A 提示:由已知221114n na a +-=,可求得21.43n a n =- 令21()n n g n S S +=-,得 22212223(1)()1110,418589n n n g n g n a a a n n n ++++-=--=-->+++ 即()g n 为减函数,得2114(1)4530n n t S S g +-≤=≤,所以283t ≥,则t 的最小值为10. 7. 1 提示:三角代换即可。

2009年全国高中数学联赛试题及答案

2009年全国高中数学联赛试题及答案

全国高中数学联赛全国高中数学联赛一试命题范围不超出教育部《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容, 但在方法的要求上有所提高。

主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。

全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当 增加一些竞赛教学大纲的内容。

全卷包括 4 道大题,其中一道平面几何题 .一 试一、填空(每小题 7 分,共 56 分)1. 若函数 f x x x 2 且 f( n ) x f f f f x ,则 f 99 1 .1 n2. 已知直线 L : x y9 0 和圆M : 2 x 2 2 y 2 8x 8y 1 0 ,点 A 在直线 L 上, B ,C 为 圆 M 上 两 点 , 在 ABC 中 , BAC 45 , AB 过 圆 心 M , 则 点 A 横 坐 标 范 围为 .y≥ 0. 在坐标平面上有两个区域 M 和 N , M 为 y ≤ x , N 是随 t 变化的区域,它由3y≤ 2 x不等式 t ≤ x ≤ t 1 所确定, t 的取值范围是 0 ≤ t ≤ 1 ,则 M 和 N 的公共面积是函数f t .4. 使不等式 1 1 1 a 2007 1 对一切正整数 n 都成立的最小正整数n 1 n 2 2n 1 3a 的值为 .2 25. 椭圆 x y 1 a b 0 上任意两点 P ,Q ,若 OP OQ ,则乘积 OP OQ 的最a 2 b2小值为 .6. 若方程 lg kx 2lg x 1 仅有一个实根,那么 k 的取值范围是 .第一行是前 则最后一行的 数是 (可以用指数表示) 8. 某车站每天 8∶00 ~ 9∶00 , 9∶00 ~ 10∶00 都恰有一辆客车到站,但到站的时刻是随 机的,且两者到站的时间是相互独立的,其规律为 到站时刻 8∶10 8∶30 8∶50 9∶10 9∶30 9∶50 概率 1 1 1 6 2 3 一旅客 8∶20 到车站,则它候车时间的数学期望为 (精确到分). 二、解答题 1. ( 14 分)设直线 l : y kx m (其中 k , m 为整数)与椭圆 x 2 y 2 16 1交于不同两 x 2 y 2 12 点 A , B ,与双曲线 1 交于不同两点 C , D ,问是否存在直线 l ,使得向量 4 12AC BD 0 ,若存在,指出这样的直线有多少条?若不存在,请说明理由. 162.( 15 分)已知 p ,q q 0 是实数,方程 x2 px q 0 有两个实根,,数列 an 满足 a1 p , a2 p 2 q , an pan 1 qan 2 n 3,4 ,(Ⅰ )求数列a n的通项公式(用,表示);(Ⅱ )若 p 1 , q 1 ,求 a n的前 n 项和.43.( 15 分)求函数y x 27 13 x x 的最大和最小值.加试一、填空(共 4 小题,每小题50 分,共 200 分)9.如图, M , N 分别为锐角三角形 ABC (AB )的外接圆中点.过点 C 作 PC ∥ MN 交圆于 P 点, I 为ABC 的内心,连接PI⑴求证: MP MT NP NT ;⑵在弧 AB (不含点 C )上任取一点Q ( Q ≠ A ,T , B ),记上弧BC 、AC 的并延长交圆于 T .AQC ,△QCB 的内心分别为 I1, I 2,P CN MI BAT Q1610.求证不等式:nk ln n ≤1,n1 ,2,⋯12k 1 k 1 211.设 k , l 是给定的两个正整数.证明:有无穷多个正整数m≥ k ,使得 C k m与 l 互素.16\-16。

2009年全国高中数学联赛一、二试及详细答案和评分标准(A卷)

2009年全国高中数学联赛一、二试及详细答案和评分标准(A卷)

2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x ()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】 110【解析】 ()()()1f x f x ==, ()()()2f x f f x ==⎡⎤⎣⎦……()()99f x =故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知 ()f t S =阴影部分面积A OB OCD BS S S ∆∆∆=-- ()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .【答案】 2009【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .【答案】 22222a ba b+【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a b OP OQ+=+.于是当OP OQ ==OP OQ 达到最小值22222a b a b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 【答案】 0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩当且仅当0kx > ① 10x +>② ()2210x k x +-+=③对③由求根公式得1x,2122x k ⎡=-⎣ ④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯……()121212n n a n --=+-⨯ ()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站一旅客820∶到车站,则它候车时间的数学期望为 (精确到分)【答案】 27 【解析】 旅客候车的分布列为候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ① ………………………………………………4分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k+=- ()()()2222243120km k m ∆=-+-+> ② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k .因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列.数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以211n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--.于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-.……………………………………………………………………………15分方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分 ②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数y=【解析】函数的定义域为[]013,.因为y=当0x =时等号成立.故y的最小值为.……………………………………………5分 又由柯西不等式得 22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分 由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11.…………………………………………………………………………………15分2009年全国高中数学联合竞赛加试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次. 一、填空(共4小题,每小题50分,共200分)9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T . ⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.【解析】 ⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆,故PCMN 是等腰梯形.因此NP MC =,PM NC =.ABCMNPTI连AM ,CI ,则AM 与CI 交于I ,因为MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理NC NI =.于是NP MI =,PM NI =.故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高). 又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式1sin 2PMT S PM MT PMT =⋅∠△1s i n 2PNT S PN NT PNT ==⋅∠△1s i n 2P N N T P MT =⋅∠ 于是PM MT PN NT ⋅=⋅.⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠,B所以1NC NI =,同理2MC MI =.由MP MT NP NT ⋅=⋅得NT MTMP NP=. 由⑴所证MP NC =,NP MC =,故 12NT MTNI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽.故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠.因此Q ,1I ,2I ,T 四点共圆. 10. 求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,… 【解析】 证明:首先证明一个不等式: ⑴ln(1)1x x x x<+<+,0x >. 事实上,令()ln(1)h x x x =-+,()ln(1)1xg x x x=+-+. 则对0x >,1()101h x x '=->+,2211()01(1)(1)x g x x x x '=-=>+++. 于是()(0)0h x h >=,()(0)0g x g >=.在⑴中取1x n=得⑵111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 令21ln 1nn k k x n k ==-+∑,则112x =,121ln 111n n n x x n n -⎛⎫-=-+ ⎪+-⎝⎭ 211n n n<-+210(1)n n=-<+因此1112n n x x x -<<<=.又因为111ln (ln ln(1))(ln(1)ln(2))(ln 2ln1)ln1ln 1n k n n n n n k -=⎛⎫=--+---++-+=+ ⎪⎝⎭∑.从而12111ln 11nn n k k k x k k -==⎛⎫=-+ ⎪+⎝⎭∑∑12211ln 111n k k n k k n -=⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭∑12111n k kk k -=⎛⎫>- ⎪+⎝⎭∑1211(1)n k k k -==-+∑111(1)n k k k -=-+∑≥111n=-+>-.11. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素.【解析】 证法一:对任意正整数t ,令(!)m k t l k =+⋅⋅.我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ.若!p k Œ,则由 1!C ()kkmi k m k i ==-+∏1[((!)]k i i t l k =≡+∏ 1ki i =≡∏()1!m o d k p α+≡.及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.证法二:对任意正整数t ,令2(!)m k t l k =+⋅⋅,我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ.若!p k Œ,则由1!C ()kkmi k m k i ==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()!m o dk p ≡. 即p 不整除上式,故C k m p Œ.若|!p k ,设1α≥使|!p k α,但1!p k α+Œ.12|(!)p k α+.故由 11!C ()k kmi k m k i -==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()1!mod k p α+≡及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.12. 在非负数构成的39⨯数表111213141516171212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x⎛⎫ ⎪= ⎪ ⎪⎝⎭ 中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫ ⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使得⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列. (ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭ 仍然具有性质()O .【解析】 (ⅰ)假设最小值{}123min i i i i u x x x =,,,1i =,2,3不是取自数表S 的不同列.则存在一列不含任何i u .不妨设2i i u x ≠,1i =,2,3.由于数表P 中同一行中的任何两个元素都不等,于是2i i u x <,1i =,2,3.另一方面,由于数表S 具有性质()O ,在⑶中取2k =,则存在某个{}0123i ∈,,使得002i i x u ≤.矛盾.(ⅱ)由抽届原理知{}1112min x x ,,{}2122min x x ,,{}3132min x x , 中至少有两个值取在同一列.不妨设 {}212222min x x x =,,{}313232min x x x =,.由前面的结论知数表S 的第一列一定含有某个i u ,所以只能是111x u =.同样,第二列中也必含某个i u ,1i =,2.不妨设222x u =.于是333u x =,即i u 是数表S 中的对角线上数字.111213212223313233x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭记{}129M =,,,,令集合 {}{}12|min 13ik i i I k M x x x i =∈>=,,,.显然{}111332|k k I k M x x x x =∈>>,且1,23I ∉.因为18x ,38111x x >≥,32x ,所以8I ∈. 故I ∅≠.于是存在*k I ∈使得{}*22max |k k x x k I =∈.显然,*1k ≠,2,3. 下面证明33⨯数表 ***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭具有性质()O .从上面的选法可知{}{}*1212:min min i i i i i ik u x x x x x '==,,,,(13)i =,.这说明 {}*111211min k x x x u >,≥,{}*313233min k x x x u >,≥.又由S 满足性质()O .在⑶中取*k k =,推得*22k x u ≤,于是{}**2212222min k k u x x x x '==,,.下证对任意的k M ∈,存在某个1i =,2,3使得i ik u x '≥.假若不然,则{}12min ik i i x x x >,,1i =,3且*22k k x x >.这与*2k x 的最大性矛盾.因此,数表S '满足性质()O .下证唯一性.设有k M ∈使得数表 111212122231323k k k x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭具有性质()O ,不失一般性,我们假定 {}111121311m i n u x x x x ==,, ⑷{}221222322min u x x x x ==,,{}331323333m i n u x x xx ==,,3231x x <.由于3231x x <,2221x x <及(ⅰ),有{}11112111min k u x x x x ==,,.又由(ⅰ)知:或者()a {}3313233min k k u x x x x ==,,,或者{}2212222()min k k b u x x x x ==,,.如果()a 成立,由数表S 具有性质()O ,则 {}11112111m i n ku x x x x ==,,, ⑸{}22122222min k u x x x x ==,,, {}3313233m i n k k u x x x x ==,,.由数表S 满足性质()O ,则对于3M ∈至少存在一个{}123i ∈,,使得*i ik u x ≥.由*k I ∈及⑷和⑹式知,*1111k x x u >=,*3323k x x u >=.于是只能有*222k k x u x =≤.类似地,由S '满足性质()O 及k M ∈可推得*222k k x u x '=≤.从而*k k =.。

2009年全国高中数学联合竞赛加加试题

2009年全国高中数学联合竞赛加加试题

2009年全国高中数学联合竞赛加试试题(A 卷)注意事项:1.本试卷共四大题,全卷满分200分; 2.用圆珠笔或钢笔作答; 3.解题书写不要超出装订线; 4.不能使用计算器。

一、如图,M 、N 分别为锐角三角形△ABC (∠A <∠B =的外接圆Γ上弧BC 、AC 的中点,过点C 作PC//MN 交圆Γ于P 点,I 为△ABC 的内心,连接PI 并延长交圆Γ于T 。

(I )求证:MP ·MT=NP ·NT ;(II )在弧AB (不含点C )上任取一点Q (Q ≠A ,T ,B ),记△AQC 、△QCB 的内心分别为I 1,I 2,求证:Q 1,I 1,I 2,T 四点共舞。

二、求证不等: ∑==≤-+<-nk n n k k 12,2,1,21ln 11三、设k ,l 是给定的两个正整数,求证:有无穷多个正整数k m ≥,使得l C km 与互素。

⌒ ⌒⌒四、在非负数构成3×9数表⎪⎪⎪⎭⎫⎝⎛=393837363534333231292827262524232221191817161514131211x x x x x x x x x x x x x x x x x x x x x x x x x x x P 中每行的数互不相同,前6列中每列的三数之和为1,.0292817===x x x 291938183727,,,,,x x x x x x 均大于1,如果P 的前三列构成的数表⎪⎪⎪⎭⎫⎝⎛=333231232221131211x x x x x x x x x S 满足下面的性质(O ):对于数表P 中的任意一列)9,,2,1(321 =⎪⎪⎪⎭⎫⎝⎛k x x x k k k 均存在某个}3,2,1{∈i 使得(3) }.,,min{3211i i i i k x r x u x =≤ 求证:(I )最小值3,2,1},,,min{321==i x x x v i i i i 一定取自然表S 的不同列。

2009年全国高中数学联合竞赛湖北省

2009年全国高中数学联合竞赛湖北省

2009年全国高中数学联合竞赛湖北省预赛试题参考答案及评分标准 说明:评阅试卷时,请依据本评分标准。

填空题只设7分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。

一、填空题(本题满分56分,每小题7分。

)1.已知复数m 满足11=+m m ,则=+200920081m m 0 . 2.设2cos sin 23cos 21)(2++=x x x x f ,]4,6[ππ-∈x ,则)(x f 的值域为3[2,2]4.3.设等差数列{}n a 的前n 项和为n S ,若0,01615<>S S ,则15152211,,,a S a S a S 中最大的是88S a . 4.已知O 是锐角△ABC 的外心,10,6==AC AB ,若AC y AB x AO +=,且5102=+y x ,则=∠BAC cos 13. 5.已知正方体1111D C B A ABCD -的棱长为1,O 为底面ABCD 的中心,M ,N 分别是棱A 1D 1和CC 1的中点.则四面体1MNB O -的体积为748. 6.设}6,5,4,3,2,1{=C B A ,且}2,1{=B A ,C B ⊆}4,3,2,1{,则符合条件的),,(C B A 共有 1600 组.(注:C B A ,,顺序不同视为不同组.)7.设x x x x x x y csc sec cot tan cos sin +++++=,则||y的最小值为1. 8.设p 是给定的正偶数,集合},3,22|{1N ∈=<<=+m m x x x A p p p 的所有元素的和是21122p p ---.二、解答题(本题满分64分,第9题14分,第10题15分,第11题15分,第12题20分。

)9.设数列)0}({≥n a n 满足21=a ,)(2122n m n m n m a a n m a a +=+-+-+,其中n m n m ≥∈,,N . (1)证明:对一切N ∈n ,有2212+-=++n n n a a a ;(2)证明:1111200921<+++a a a .证明 (1)在已知关系式)(2122n m n m n m a a n m a a +=+-+-+中,令n m =,可得00=a ; 令0=n ,可得 m a a m m 242-= ①令2+=n m ,可得)(212242222n n n a a a a +=-+++ ② 由①得)1(24122+-=++n a a n n ,62412=-=a a ,)2(24242+-=++n a a n n ,n a a n n 242-=, 代入②,化简得2212+-=++n n n a a a . ------------------------------------------7分(2)由2212+-=++n n n a a a ,得2)()(112+-=-+++n n n n a a a a ,故数列}{1n n a a -+是首项为201=-a a ,公差为2的等差数列,因此221+=-+n a a n n .于是∑∑==-+=+=+-=nk n k k k n n n k a a aa 1101)1(0)2()(. 因为)1(111)1(11≥+-=+=n n n n n a n ,所以 1201011)2010120091()3121()211(111200921<-=-++-+-=+++ a a a . ------------------------------------------14分10.求不定方程21533654321=+++++x x x x x x 的正整数解的组数.解 令x x x x =++321,y x x =+54,z x =6,则1,2,3≥≥≥z y x .先考虑不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解.1,2,3≥≥≥z y x ,123215≤--=∴y x z ,21≤≤∴z .----------------------------------5分当1=z 时,有163=+y x ,此方程满足2,3≥≥y x 的正整数解为)4,4(),3,7(),2,10(),(=y x . 当2=z 时,有113=+y x ,此方程满足2,3≥≥y x 的正整数解为)2,5(),(=y x .所以不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解为)2,2,5(),1,4,4(),1,3,7(),1,2,10(),,(=z y x . ------------------------------------------10分又方程)3,(321≥∈=++x N x x x x x 的正整数解的组数为21x C -,方程y x x =+54)2,(≥∈x N y的正整数解的组数为11C -y ,故由分步计数原理知,原不定方程的正整数解的组数为81693036C C C C C C C C 1124132312261129=+++=+++. ------------------------------------------15分11.已知抛物线C :221x y =与直线l :1-=kx y 没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A ,B 为切点.(1)证明:直线AB 恒过定点Q ;(2)若点P 与(1)中的定点Q 的连线交抛物线C 于M ,N 两点,证明:QN QMPN PM=.证明 (1)设11(,)A x y ,则21121x y =. 由221x y =得x y =',所以11|x y x x ='=. 于是抛物线C 在A 点处的切线方程为)(111x x x y y -=-,即11y x x y -=.设)1,(00-kx x P ,则有11001y x x kx -=-.设22(,)B x y ,同理有22001y x x kx -=-.所以AB 的方程为y x x kx -=-001,即0)1()(0=---y k x x ,所以直线AB 恒过定点)1,(k Q . ------------------------------------------7分(2)PQ 的方程为002()1kx y x k x k-=-+-,与抛物线方程221x y =联立,消去y ,得 02)22(42002002=---+---k x k x k x k x kx x . 设),(33y x M ,),(44y x N ,则kx k x k x x k x kx x x ---=--=+0024300432)22(,42 ① 要证QN QMPN PM=,只需证明kx x k x x x x --=--430403,即 02))((2043043=+++-kx x x x k x x ②由①知,②式左边=0000002242)(4)22(2kx kx kx x k k x k x k +--+---- 0)(2)42)((4)22(20000002=--+-+---=kx k x kx kx x k k x k . 故②式成立,从而结论成立. ------------------------------------------15分12.设d c b a ,,,为正实数,且4=+++d c b a .证明:22222)(4b a ad d c c b b a -+≥+++. 证明 因为4=+++d c b a ,要证原不等式成立,等价于证明dc b a b ad c b a a d d c c b b a +++-++++≥+++22222)(4 ① ----------------5分 事实上,)(2222d c b a ad d c c b b a +++-+++ )2()2()2()2(2222d a ad c d d c b c c b a b b a -++-++-++-+= 2222)(1)(1)(1)(1a d ad c d c b c b a b -+-+-+-=②----------------10分由柯西不等式知 2222()()()()[]()a b b c c d d a a b c d b c d a----++++++ 2|)||||||(|a d d c c b b a -+-+-+-≥ ③----------------15分 又由||||||||a b a d d c c b -≥-+-+-知22)(4|)||||||(|b a a d d c c b b a -≥-+-+-+- ④由②,③,④,可知①式成立,从而原不等式成立. ------------------------------------20分。

2009年全国高中数学联赛加试-试题参考答案及评分标准(A卷)

2009年全国高中数学联赛加试-试题参考答案及评分标准(A卷)

2009年全国高中数学联合竞赛加试 试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次. 一、填空(共4小题,每小题50分,共200分)1. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.【解析】 ⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆,故PCMN 是等腰梯形.因此NP MC =,PM NC =.ABCMNPTI连AM ,CI ,则AM 与CI 交于I ,因为 MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理 NC NI =.于是NP MI =,PM NI =.故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高). 又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式1sin 2PMT S PM MT PMT =⋅∠△1s i n 2PNT S PN NT PNT ==⋅∠△1s i n 2P N N T P MT =⋅∠ 于是PM MT PN NT ⋅=⋅.⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠,B所以1NC NI =,同理2MC MI =.由MP MT NP NT ⋅=⋅得NT MTMP NP=. 由⑴所证MP NC =,NP MC =,故 12NT MTNI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽.故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠.因此Q ,1I ,2I ,T 四点共圆. 2. 求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,… 【解析】 证明:首先证明一个不等式: ⑴ln(1)1x x x x<+<+,0x >. 事实上,令()ln(1)h x x x =-+,()ln(1)1xg x x x=+-+. 则对0x >,1()101h x x '=->+,2211()01(1)(1)x g x x x x '=-=>+++. 于是()(0)0h x h >=,()(0)0g x g >=.在⑴中取1x n=得 ⑵111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 令21ln 1nn k k x n k ==-+∑,则112x =, 121ln 111n n n x x n n -⎛⎫-=-+ ⎪+-⎝⎭ 211n n n<-+210(1)n n=-<+ 因此1112n n x x x -<<<=. 又因为111ln (ln ln(1))(ln(1)ln(2))(ln 2ln1)ln1ln 1n k n n n n n k -=⎛⎫=--+---++-+=+ ⎪⎝⎭∑.从而12111ln 11nn n k k k x k k -==⎛⎫=-+ ⎪+⎝⎭∑∑12211ln 111n k k n k k n -=⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭∑12111n k k k k -=⎛⎫>- ⎪+⎝⎭∑ 1211(1)n k k k -==-+∑111(1)n k k k -=-+∑≥111n=-+>-.3. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素.【解析】 证法一:对任意正整数t ,令(!)m k t l k =+⋅⋅.我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ. 若!p k Œ,则由 1!C ()kkmi k m k i ==-+∏1[((!)]ki i t l k =≡+∏ 1ki i =≡∏()1!m o d k p α+≡.及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.证法二:对任意正整数t ,令2(!)m k t l k =+⋅⋅,我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ. 若!p k Œ,则由 1!C ()kkmi k m k i ==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()!m o d k p ≡.即p 不整除上式,故C k m p Œ.若|!p k ,设1α≥使|!p k α,但1!p k α+Œ.12|(!)p k α+.故由11!C ()k kmi k m k i -==-+∏21[((!)]k i i t l k =≡+∏ 1ki i =≡∏()1!mod k p α+≡及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ. 4. 在非负数构成的39⨯数表111213141516171212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x⎛⎫ ⎪= ⎪ ⎪⎝⎭ 中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,, 使得⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列. (ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭仍然具有性质()O .【解析】 (ⅰ)假设最小值{}123min i i i i u x x x =,,,1i =,2,3不是取自数表S 的不同列.则存在一列不含任何i u .不妨设2i i u x ≠,1i =,2,3.由于数表P 中同一行中的任何两个元素都不等,于是2i i u x <,1i =,2,3.另一方面,由于数表S 具有性质()O ,在⑶中取2k =,则存在某个{}0123i ∈,,使得002i i x u ≤.矛盾.(ⅱ)由抽届原理知{}1112min x x ,,{}2122min x x ,,{}3132min x x , 中至少有两个值取在同一列.不妨设 {}212222min x x x =,,{}313232min x x x =,.由前面的结论知数表S 的第一列一定含有某个i u ,所以只能是111x u =.同样,第二列中也必含某个i u ,1i =,2.不妨设222x u =.于是333u x =,即i u 是数表S 中的对角线上数字.111213212223313233x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭记{}129M =,,,,令集合{}{}12|min 13ik i i I k M x x x i =∈>=,,,.显然{}111332|k k I k M x x x x =∈>>,且1,23I ∉.因为18x ,38111x x >≥,32x ,所以8I ∈.故I ∅≠.于是存在*k I ∈使得{}*22max |k k x x k I =∈.显然,*1k ≠,2,3. 下面证明33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫⎪'= ⎪ ⎪ ⎪⎝⎭具有性质()O .从上面的选法可知{}{}*1212:min min i i i i i ik u x x x x x '==,,,,(13)i =,.这说明 {}*111211min k x x x u >,≥,{}*313233min k x x x u >,≥.又由S 满足性质()O .在⑶中取*k k =,推得*22k x u ≤,于是{}**2212222min k k u x x x x '==,,.下证对任意的k M ∈,存在某个1i =,2,3使得i ik u x '≥.假若不然,则{}12min ik i i x x x >,,1i =,3且*22k k x x >.这与*2k x 的最大性矛盾.因此,数表S '满足性质()O .下证唯一性.设有k M ∈使得数表111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭具有性质()O ,不失一般性,我们假定 {}111121311m i n u x x x x ==,, ⑷{}221222322min u x x x x ==,,{}331323333m i n u x x xx ==,,3231x x <.由于3231x x <,2221x x <及(ⅰ),有{}11112111min k u x x x x ==,,.又由(ⅰ)知:或者()a {}3313233min k k u x x x x ==,,,或者{}2212222()min k k b u x x x x ==,,.如果()a 成立,由数表S 具有性质()O ,则 {}11112111m i n ku x x x x ==,,, ⑸{}22122222min k u x x x x ==,,, {}3313233m i n k k u x x x x ==,,.由数表S 满足性质()O ,则对于3M ∈至少存在一个{}123i ∈,,使得*i ik u x ≥.由*k I ∈及⑷和⑹式知,*1111k x x u >=,*3323k x x u >=.于是只能有*222k k x u x =≤.类似地,由S '满足性质()O 及k M ∈可推得*222k k x u x '=≤.从而*k k =.出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

2009年全国高中数学联合竞赛(四川初赛)

二00九年高中数学联赛四川赛区初赛试题详细参考答案及评分标准说明:1、评阅试卷时,请依据评分标准.选择题和填空题只设5分和0分两档;其它各题的评阅,请严格按照评分标准规定的评分档次给分,不要再增加其它中间档次.2、如果考生的解答题方法和本解答不同,只要思路合理,步骤正确,在评阅时可参考本评分标准适当划分档次评分,5分一个档次,不要再增加其它中间档次. 一、选择题(每小题5分,共30分) 1、下列函数中,以2π为最小正周期的偶函数是( ) A 、x x y 2cos 2sin += B 、x x y 2cos 2sin = C 、x x y 2cos sin 2+= D 、x x y 2cos 2sin 22-= 解:在A 中,取4π=x ,则1=y ;取4π-=x ,则1-=y ,从而y 不是偶函数;在B 中,x y 4sin 21=,它不是偶函数; 在C 中,22cos 1xy +=,它的最小正周期为π;在D 中,x y 4cos -=,符合条件.故答案选D .2、甲、乙两人之间进行一场打完7局的比赛(每局无平局),则比赛结果出现甲比乙 为4:3的概率是A 、12835 B 、165 C 、74 D 、85 解:符合条件的概率为128352747=C .故答案选A .3、函数2x y =的图象1F 与它按向量)1,(m =平移后的函数图象2F 在1=x 处的切线互相垂直,则实数m 的值为( )A 、45-43-、B C 、43 D 、45解:因为2)1(='y ,故2F 的函数为12--=)(m x y ,其在1=x 处的切线的斜率为)(m k -=122,由1122-=-⨯)(m 知45=m .故答案选D .4、设数列}{n a 满足:21=a ,nn a a 111-=+,记数列}{n a 的前n 项之积为n P , 则2009P 的值为( ) A 、21-B 、1-C 、21D 、1解:因为1111111112--=--=-=++n nn n a a a a , 于是n n n n a a a a =---=-=++11111123,故}{n a 是以3为周期的周期数列 又21=a ,212=a ,13-=a ,从而13-=P 所以,1126692009-=-=P P )(.故答案选B .5、已知关于y x ,的方程组⎩⎨⎧=-=+ky kx k y x 22222仅有一组实数解,则符合条件的实数k 的个数是( )A 、1B 、2C 、3D 、4解:若0=k ,显然方程组仅有一组解(0,0),故0=k 符合条件; 若0≠k ,则2222k y x =+的图象是一个以)0,0(为圆心,以||2k r =为半径的圆,而k y kx 2=-表示直线.由题设条件知||21|2|2k k k =+,即222214k k k =+,解得1±=k . 综上所述,符合条件的实数k 共有3个.故答案选C .6、已知c b a ,,均为大于0的实数,设命题P :以c b a ,,为长度的线段可以构成三角形的三边 命题Q :)(2222ca bc ab c b a ++<++则P 是Q 的( )A 、充分但不必要条件B 、必要但不充分条件C 、充要条件D 、既不充分也不必要条件解:一方面,若P 成立,则a c b >+,故2)(a c b a >+,即2a ac ab >+同理:2b bc ba >+,2c cb ca >+所以,)(2222ca bc ab c b a ++<++,即Q 成立.另一方面,若Q 成立,取2,1===a c b ,这时以c b a ,,为长度的线段不能构成 三角形的三边,即P 不成立.综上所述,P 是Q 的充分但不必要条件.故选A .二、填空题(每小题5分,共30分)7、若实数x 满足θcos 1log 2+=x ,其中]02[,πθ-∈,则函数|3|2|1|)(-+-=x x x f 的最大值等于 . 解:由条件知]2,1[cos 1∈+θ,则42≤≤x , 从而|3|21)(-+-=x x x f当32≤≤x 时,x x x x f -=-+-=5|3|21)(,此时最大值为3; 当43≤≤x 时,73|3|21)(-=-+-=x x x x f ,此时最大值为5. 综上所述,)(x f 在4=x 时取到最大值5.8、设二项式01221212222)13a x a x a x a x a x n n n n n +++++=--- (记n n a a a T 220+++= ,1231-+++=n n a a a R ,则=+∞→nnn R T lim.解:取1=x ,得∑==ni i na 2022;取1-=x ,得∑=-=ni i i na 202)1(4从而24222n n n T +=,24222nn n R -=于是14242lim lim 2222-=-+=+∞→+∞→n n nn n nn n R T .故答案填1-.9、已知ABC ∆的三边长分别为3、4、5,点P 为ABC ∆内部(不含边界)一动点, 则点P 到三边距离之积的最大值等于 .解:设543===c b a ,,,则ABC ∆为直角三角形,其面积为6=∆ABC S . 记点P 到三边c b a ,,的距离分别为c b a h h h ,,, 则122==++∆ABC c b a S ch bh ah故1516604)3(133==++≤⋅⋅=c b a c b a c b a ch bh ah abc abc ch bh ah h h h 等号当且仅当⎩⎨⎧=++==12c b acb a ch bh ah ch bh ah ,即PCA PBC PAB S S S ∆∆∆==,亦即P 为ABC ∆的重心时取得.故答案填1516. 10、在长方体1111D C B A ABCD -中,棱6=AB ,21==BB BC ,点P 是线段1BC 上的一动点,则1PB AP +的最小值是 .解:如图, 将11C BB ∆沿1BC 为轴旋转至与平面1ABC 共面,得12C BB ∆, 则 1352=∠ABB ,故 21PB AP PB AP +=+25135cos 26226222=⨯⨯-+=≥ )(AB .等号当且仅当P 为2AB 与1BC 的交点时取得. 故答案填25.11、集合},21241|{R x x A x ∈≤≤=,}012|{2≤+-=tx x x B , 若A B A =⋂,则实数t 的取值范围是 .. 解:因为}12|{-≤≤-=x x A ,B A ⊆故0122≤+-tx x 在]1,2[--∈x 上恒成立.又t x x 21≥+,而]1,2[--∈x 时]2,25[1--∈+x x 所以 t 225≥-,即45-≤t .所以,实数t 的取值范围是]45,(--∞.故答案填]45,(--∞.12、直线1l 与直线2l 平行,1l 上有5个不同的点,2l 上有10个不同的点,将1l 上的点与2l 上的点连线段,若没有三条线段交于同一点,则这些线段之间的交点共有 个.(用具体的数字作答)解:经过任何一个交点的两条线段的4个端点,两个在1l 上,两个在2l 上,以它们为顶点,构成一个四边形,这个交点就是四边形对角线的交点.所以,任何一个交点与两个顶点在1l 上,两个顶点在2l 上的四边形一一对应.所以,所求的交点个数共有45021025=C C .故答案填450.三、解答题13、已知奇函数)(x f 在定义域]3,3[-内是减函数,且0)2()2(2<-+-x f x x f , 求实数x 的取值范围.解:由)(x f 的定义域知⎩⎨⎧≤-≤-≤-≤-3233232x x x解3232≤-≤-x x 得 31≤≤-x解323≤-≤-x 得51≤≤-x所以有31≤≤-x ① ……5分因为)(x f 是奇函数,得)2()2()2(2x f x f x x f -=--<- ……10分又因为)(x f 在定义域内单减,故x x x ->-222解得1-<x 或2>x ② ……15分由①、②得32≤<x ,即实数x 的取值范围为]3,2(. ……20分14、如图,已知PB PA ,是⊙O 的两条切线,PCD 是⊙O 的一条割线,E 是AB与PD 的交点. 证明:DECEPD PC =. 证法一:连结BC AD AC ,,和BD ,则PBDPBCPAD PAC S S S S PD PC ∆∆∆∆== ……5分 ∵ PAC ∆∽PDA ∆ ,PBC ∆∽PDB ∆∴22AD AC S S PAD PAC =∆∆,22BDBC S S PBD PBC =∆∆_P_ B∴BDBCAD AC = ……10分 ∴BDBCAD AC AD AC PD PC ⋅==22 ① 又∵ACE ∆∽DBE ∆ , BCE ∆∽DAE ∆∴DE AE DB AC = ②, AECEDA BC = ③ ……15分 故由①、②、③得 DECEPD PC = ……20分证法二:(同证法一前)∴BDBCAD AC AD AC PD PC ⋅==22 ① 又∵ADBACBBDE DAE BCE ACE BDE BCE DAE ACE S S S S S S S S S S DE CE ∆∆∆∆∆∆∆∆∆∆=++=== ……15分 而180=∠+∠ADB ACB ,∴ADB ACB ∠=∠sin sin∴DBDA CBAC ADB DB DA ACB CB AC DE CE ⋅⋅=∠⋅⋅∠⋅⋅=sin sin ② 由①、②知DECEPD PC =. ……20分15过右焦点F 垂直于1l (I )求证:|||(II )若,(5F 截得的弦CD 的长度.解:(I 故2254c a =①从而222251c a c b =-= ②,故21525==c ca b设θ=∠=∠BOF AOF ,则21tan =θ ……5分 故 34tan 1tan 22tan tan 2=-==∠θθθAOB 34||=OA 令)0(3||>=m m ,则m 4||=,m 5||=,满足||2||||=+, 所以, ||||||OB AB OA 、、依次成等差数列 ……10分(II )由已知52=c ,代入①,②得1,422==b a ,于是双曲线的方程为1422=-y x 设直线AB 的斜率为k ,则2cot tan tan ==∠=∠=θAFO BFX k于是直线AB 的方程为:)5(2-=x y ……15分联立⎪⎩⎪⎨⎧=--=14)5(222y x x y ,消y 得 084532152=+-x x 故弦CD 的长度341584154)532(5151||22=⨯⨯--⨯=∆⋅+=k CD ……20分16、设正实数c b a ,,,满足c b a ≤≤,且9222=++c b a .证明:a abc 31>+.证法一:由条件知222239a c b a ≥++=,故3≤a . ……5分又由0))(2222≥--a b a c (知222229a a a c b a bc -=-+≥ ……10分 只须证 132922->-a a a (1)当013<-a ,即310<<a 时,结论显然成立; (2)当013≥-a ,即3331≤≤a 时,只须证 224)13()29(-≥-a a a即证 016992246<+-+-a a a a因为599216992246246-+-<+-+-a a a a a a a)2()3)(1)(12(2222+----=a a a a ……15分又3331≤≤a 时,有02,03,01,0122222>+<-<-<-a a a a 所以,016992246<+-+-a a a a ……20分证法二:由条件知222239a c b a ≥++=,故3≤a . ……5分又由0))(2222≥--a b a c (知222229a a a c b a bc -=-+≥ ……10分 只须证 132922->-a a a (1)当013<-a ,即310<<a 时,结论显然成立; (2)当013≥-a ,即3331≤≤a 时,只须证 224)13()29(->-a a a 即须证 016992246<+-+-a a a a 记 16992)(246+-+-=a a a a a f因为 6183612)(35-+-='a a a a f )3(6)3(1223-+-=a a a当3331≤≤a 时,有03,032<-<-a a故当3331≤≤a 时0)(<'a f , 因此)(a f 在3331≤≤a 时单调递减 , ……15分 所以,0136393932)31()(246<+-+-=≤f a f ,即(*)成立 ……20分 16、设正实数c b a ,,,满足c b a ≤≤,且9222=++c b a .证明:a abc 31>+.证明:由条件知222239a c b a ≥++=,故3≤a . ……5分又由0))(2222≥--a b a c (知222229a a a c b a bc -=-+≥ ……10分 只须证 a a a 312922>+-(1)若10≤<a ,则497292>≥-a ,从而2229294a a a >- 于是2222229294)129(a a a a a >-≥+-所以,a a a 312922>+-. ……15分 (2)若31≤<a ,则只须证 132922->-a a a即证 016992246<+-+-a a a a又因为599216992246246-+-<+-+-a a a a a a a0)2()3)(1)(12(2222<+----=a a a a ,结论成立. ……20分。

2009年全国高中数学联合竞赛一试试题解析


(2)

p = 1, q
=
1 ,求 4
{an}
的前
n
项和.
解答
(1) 由于 α + β = p, αβ = q,则 an = (α + β)an−1 − αβan−2
⇒ an − αan−1 = β(an−1 − αan−2) ⇒ {an+1 − αan} 是公比为 β 的等比数列.
且 a2 − αa1 = (α + β)2 − αβ − α(ßα +™β) = β2 ⇒ an+1 − αan = βn+1.
β
β −
α

ß an

βn+1 ™ β−α
是公比为
α
的等比数列.
α 1−
β
β n+1
此时
a1
=
α
+
β
=
β2 β
− −
α2 α

a1

β
β2 −α
=
α2 −
β−α

an
β n+1 −
β − α
=
αn+1 −
β−α

an
=
β n+1 β
− −
αn+1 α
=
αn+1 α
− −
βn+1 . β
(2)

α + β αβ =
为等腰直角三角形,且 |OB| = t, |CF | = 2 − (t + 1)
=
1
− t,于是
S△OAB
+
S△DCF

2009年全国高中数学联赛河南省预赛试题及答案

2009年全国高中数学联赛河南省预赛2009年全国高中数学联赛河南省预赛由河南省数学竞赛组织委员会主办并具体组织活动,并由河南省数学竞赛组织委员会命题。

试题所涉及的知识范围不超出现行《全日制普通高级中学数学教学大纲》中所规定的教学内容和要求,在方法的要求上有所提高,主要考查学生对基本知识和基本技能的掌握情况,以及综合、灵活运用知识的能力,适当考虑全国联赛加试对参赛学生的要求。

试题包括10道填空题和4道解答题,全卷满分100分,考试时间为150分钟。

竞赛活动时间为2009年5月11日(星期日)上午,由各地市教研室安排考试并组织阅卷,参加河南省预赛的考生约10万(高一、高二各5万多)人,并从中选拔出2千多名学生参加于2009年10月11日举行的全国高中数学联赛.试 题一、填空题(每小题5分,共50分)1. 动点),(y x M 满足1cos sin )cos ()sin (22-+=-+-ααααy x y x (其中α是常数),那么点M 的轨迹是 .2. 单位正方体ABCD-A 1B 1C 1D 1中,用AB 1C 、BC 1D 、CD 1A 、DA 1B 、A 1BC 1、B 1CD 1、C 1DA 1、D 1AB 1这八个面去截这个单位正方体,则含正方体中心的那一部分的体积为 .3. 设10<<x ,a 、b 都为大于零的常数,则xb x a -+122的最小值为 . 4. 在正三棱锥ABC P -中,M 为△ABC 内(含边界)一动点,且点M 到三个侧面PAB 、PBC 、PCA 的距离成等差数列,则点M 的轨迹是 .5. 已知数列{}n a 的通项公式为1)1(1+++=n n n n a n (n +∈N ),其前n 项和为n S ,则在数列1S ,2S ,… ,2009S 中,有理数项共有 项.6. 已知0>a ,过)0,(a M 任作一条直线交抛物线)0(22>=p px y 于P 、Q 两点,若2211MQMP+为定值,则a = .7. 若22sin -=α,且)0(,21)cos(>=-ββα,则满足上述条件的β的最小值为 .8. 四面体A-BCD 中,AB =CD =5,AC =BD =34,AD =BC =41,则四面体A-BCD 的外接球半径为 .9. 平面直角坐标系中,点集{⎭⎬⎫⎩⎨⎧∈+=+==R y x y x M βαβαβα,,sin cos ,cos sin ),(,则点集M 所覆盖的平面图形的面积为 .10. 5个人互相传球,要求接球后马上传给别人,由甲开始作为第一次传球,则经过4次传球后又传回到甲手中的不同传球方法种数为 .二、解答题(本题50分)11. (12分)设n mx x x f ++=2)(,若不等式2)(>x f 在区间[1,5]上无解. (1)求)5()3(2)1(f f f +-的值; (2)求所有的实数对),(n m .12.(13分)已知三棱锥P-ABC 的三条侧棱P A 、PB 、PC 两两垂直,侧面P AB 、PBC 、PCA 与底面ABC 所成的二面角的平面角的大小分别为1θ、2θ、3θ,底面△ABC 的面积为34。

2009答案

2, an1 an n1 n 1,

n 1

n
2, 1 , n 1,
.所以,数列
an 成 n
公差为 1 的等差数列,其首项为
2 1 n 1 n 1 . n 于是数列 an 的通项公式为 an

2 .所以
n 1 2n 2
故 a100 101 298 . 8.
∶ 00 ~ 9 ∶ 00 , 9 ∶ 00 ~ 10 ∶ 00 都恰有一辆客车到站,但到站的时刻是随机的,且两 某车站每天 8
者到站的时间是相互独立的,其规律为 到站时刻
8 ∶ 10 9 ∶ 10 8 ∶ 30 9 ∶ 30 8 ∶ 50 9 ∶ 50
n 1 n 1,2 ,


整理得 n2 n 1 2, an 1 an , n 1,
n 1 所 以 , 数 列 an 成 公 比 为 的 等 比 数 列 , 其 首 项 为 2 2 2 n 1 2 .所以 an a1 n 1 .

2.
已知直线 L : x y 9 0 和圆 M : 2 x2 2 y 2 8x 8 y 1 0 ,点 A 在直线 L 上, B , C 为圆 M 上两点,在 ABC 中, BAC 45 , AB 过圆心 M ,则点 A 横坐标范围为 .
【解析】
3 ,6 9 a ,则圆心 M 到直线 AC 的距离 d 设 A a ,
1 2
1 3 (精确到分).
50 1 1 6 6
70 1 1 2 6
90 1 1 3 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年全国高中数学联合竞赛
加试试题(A 卷)
注意事项:
1.本试卷共四大题,全卷满分200分; 2.用圆珠笔或钢笔作答; 3.解题书写不要超出装订线; 4.不能使用计算器。

一、如图,M 、N 分别为锐角三角形△ABC (∠A <∠B =的外接圆Γ上弧BC 、AC 的中点,
过点C 作PC//MN 交圆Γ于P 点,I 为△ABC 的内心,连接PI 并延长交圆Γ于T 。

(I )求证:MP ·MT=NP ·NT ;
(II )在弧AB (不含点C )上任取一点Q (Q ≠A ,T ,B ),记△AQC 、△QCB 的内心分别为I 1,I 2,求证:Q 1,I 1,I 2,T 四点共舞。

二、求证不等: ∑==≤-+<-n
k n n k
k 1
2
,2,1,21
ln 1
1
⌒ ⌒

三、设k ,l 是给定的两个正整数,求证:有无穷多个正整数k m ≥,使得l C k
m 与互素。

四、在非负数构成3×9数表
⎪⎪⎪⎭

⎝⎛=3938
37
36
35
34
33
32
31
292827262524232221
191817161514131211x x x x x x x x x x x x x x x x x x x x x x x x x x x P 中每行的数互不相同,前6列中每列的三数之和为1,.0292817===x x x 291938183727,,,,,x x x x x x 均大于1,如果P 的前三列构成的数表
⎪⎪⎪⎭
⎫ ⎝⎛=3332
31
232221
131211
x x x x x x x x x S 满足下面的性质(O ):对于数表P 中的任意一列)9,,2,1(321 =⎪⎪⎪


⎝⎛k x x x k k k 均存在某个
}3,2,1{∈i 使得
(3) }.,,min{3211i i i i k x r x u x =≤ 求证:
(I )最小值3,2,1},,,min{321==i x x x v i i i i 一定取自然表S 的不同列。

(II )存在数表P 中唯一的一列333,2,1,321⨯≠⎪⎪⎪⎭
⎫ ⎝⎛⋅⋅⋅⋅使得k x x x k k k 数表 ⎪⎪⎪⎪⎭


⎛='⋅⋅⋅k k k x x x x x x x x x S 332
3122221
11211
仍然具有性质(O ),即对于数表P 中的任意一列)9,,2,1(321 =⎪⎪⎪


⎝⎛k x x x k k k 均存在某个
}3,2,1{∈i 使得
}.,,min{3211i i i i k x r x u x =≤。

相关文档
最新文档