四川省中江城北中学高2008级高三数学12月月考试卷(文理合卷)
师范实中2008届高三级第二次月考数学试卷

师范实中2008届高三级第一学期第二次月考数学(文科)试卷(本试卷分满分150分,考试时间120分钟)班级 姓名 座号一、选择题(每小题5分,共50分,把答案填在答题卷的相应位置上)1、设集合{1,2,3,4,5}U =,{1,3,5}A =,{2,3,5}B =,则()U A B ð等于( )A 、{1,2,4}B 、{4}C 、{3,5}D 、∅2、在下列四组函数中,表示同一函数的是 ( )A、1y x y =-=与 B、y y ==C 、2100xy lg x y lg =-=与 D 、242y lg x y lg x ==与3、已知函数()f x =cos (0)(1)1(0)xx f x x <⎧⎨-+≥⎩π,则13f ⎛⎫= ⎪⎝⎭( )A 、23-B 、23 C 、21-D 、21 4、已知342p :|x |->,021:2>--x x q ,则p q ⌝⌝是的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件5、已知函数)(x f 是R 上的偶函数,且在),0(+∞上是增函数,若0)1(=-f ,那么0)(<x xf 的解集是 ( )A 、),1()0,1(+∞-B 、)1,0()1,( --∞C 、),1()1,(+∞--∞D 、)1,0()0,1( -6、设函数1()lg 1f x f x x ⎛⎫=⋅+⎪⎝⎭,则(10)f 的值为 ( ) A 、1B 、2C 、1-D 、2-7、=++-ii i 1)21)(1( ( )A 、i --2B 、i +-2C 、i -2D 、i +28、等差数列{}n a 中,已知前15项的和1590S =,则8a 等于 ( )A 、245 B 、6 C 、445D 、12 9、圆8)2()1(22=+++y x 上与直线01=++y x 的距离等于2的点共有 ( )A 、1个B 、2个C 、3 个D 、4个10、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4a b b c c d d +++,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 ( ) A 、4,6,1,7 B 、7,6,1,4 C 、1,6,4,7 D 、6,4,1,7二、填空题(每小题5分,共20分,把答案填在答题卷的相应位置上)11、函数)2(log 221x x y -=的定义域是 ,单调递减区间是 。
全国各地2008年数学高考真题及答案-(全国Ⅰ.文)含详解

2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题1.函数y = ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c = ,AC b = .若点D 满足2BD DC = ,则AD=( )A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B C D .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120 ,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.CDE AB21.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.12 16三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =, ∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.AC CD CG AD ==,DG =,EG ==,CE =则222cos 2CG GE CE CGE CG GE +-∠==πarccos CGE ∴∠=-⎝⎭.19.解:(1)122n n n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+ .20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。
重庆市江北中学高2008级高三(下)模拟考试数学及答案(文科)

重庆市江北中学高2008级高三(下)模拟考试(4月月考)数学试题(文科)一、选择题:本大题共12小题,每小题5分,共计60分。
在每小题列出的4个选项中,只有一项符合题目要求。
1.若集合P M x y y P x y y M 那么},1|{},1|{2-===== ( )A .),0(+∞B .[)+∞,0C .),1(+∞D .[)+∞,1 2.已知向量在则),0,3(),1,2(-=-=方向上的投影为 ( )A .5-B .5C .—2D .2 3.函数x x x x f 2cos cos sin 3)(+=的单调增区间为( )A .Z k k k ∈+-],6,3[ππππ B .Z k k k ∈+-],62,32[ππππC .Z k k k ∈+-],12,125[ππππ D .Z k k k ∈+-],12,1252[ππππ 4.已知)2,1(),1,2(-N M ,在下列方程的曲线上,存在点P 满足|MP|=|NP|的曲线方程是( )A .013=+-y xB .03422=+-+x y xC .1222=+y xD .1222=-y x 5.若两个平面βα与相交但不垂直,直线m 在平面βα则在平面内,内 ( )A .一定存在与直线m 平行的直线B .一定不存在与直线m 平行的直线C .一定存在与直线m 垂直的直线D .一定不存在与直线m 垂直的直线6.已知)tan(,cos )sin(),2(,53sin βααβαπβπβ+=+<<=则且= ( )A .1B .2C .—2D .2587.已知圆xx g x x f y x y x C 2)(,log )()0,0(4:222==≥≥=+与函数的图象分别交于 22212211),,(),,(x x y x B y x A +则等于 ( )A .16B .8C .4D .28.已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为( ) A .18 B .17 C .16 D .15 9.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( ) A .288个 B .240个 C .144个 D .126个 10.已知双曲线的中心在原点,两个焦点F 1,F 2分别为)0,5()0,5(和-,点P 在双曲线上,PF 1⊥PF 2,且△PF 1F 2的面积为1,则双曲线的方程为( )A .13222=-y xB .12322=-y xC .1422=-y x D .1422=-y x 11.设椭圆0),0,(,21)0,0(122222=-+=>>=+c bx ax c F e b a by a x 方程右焦点的离心率的两个根分别为),(,2121x x P x x 则点在( )A .圆222=+y x 内B .圆222=+y x 上C .圆222=+y x 外D .以上三种情况都有可能12.已知二次函数x f x f c bx ax x f 对于任意实数的导数为,0)0(),()(2>''++=,有0)(≥x f ,则)0()1(f f '-的最小值为 ( )A .3B .25C .2D .0二、填空题:本大题共4小题,每小题4分,共16分。
2008年第二学期高三三月月考数学试卷(文答)

2008学年度七宝中学高三三月考试数学试题参考答案(文)一、填空题:1.2log 3x =;2.56π;4.3;5.2m <-;6.sin(2)4y x π=+;7.1122x y y x -等;8.()()0?f a f m ⋅<或()()0?f b f m ⋅>;9.5; 10.31411.①③④; 12.7 二、 选择题:13.C ; 14.C ; 15.A ; 16.C三、解答题:17.(1)在同一球面上,理由:取线段BD 的中点Q ,易证BAD ∆和BPD ∆都是直角三角形,∴QA QB QP QD ===,所以A B D P 、、、在同一球面上;(2)依题意,AP AD ==1V π=⨯=圆柱.18.(1)由222222222cos sin ()0(sin )(sin )(sin )(sin )a c xbc x a b c f x b c x b c x b c x b c x -+-+-===++++, 得2220a b c +-=;(2)当0a b c ==≠时,11sin 21sin cos ()2y x x x f x =-=++ ∵[0 ]2x π∈,,∴sin cos [1x x +∈, ∴函数11sin 2()2y x f x =-的值域为[21]. 19.解:(1)设函数)(x f y =的图象上任意一点),(00y x Q 关于原点的对称点为),(y x P ,则⎪⎪⎩⎪⎪⎨⎧=+=+020200y y x x ,即⎩⎨⎧-=-=y y x x 00 ∵点()00,Q x y 在函数()y f x =的图象上, ∴,22x x y -=-即x x y 22+-=,故x x x g 2)(2+-=(2)由()()|1|g x f x x +<-,可得4|1|x x <-,当1x ≥时,41x x <-,此时不等式无解当1x <时,410x x +-<,解得15x < 因此,原不等式的解集为1( )5-∞,. (3)()()()21211h x x x λλ=-++-+①当1λ=-时,()41h x x =+在 1-∞(,]上是增函数 1λ∴=- ②当1λ≠-时,对称轴方程为11x λλ-=+,要使函数()()()21211h x x x λλ=-++-+在 1-∞(,]上是增函数,必须且只需(1)0111λλλ-+<⎧⎪-⎨≥⎪+⎩,解得01≤<-λ综上所述,10λ-≤≤.20.(1)证明:设P 点坐标为1()2P y ,,由已知可得,1()2OP OM ON =+ 则12121()21()2P x x y y y =++,,,∴121x x +=12123331212123log log log 1()x x y y x x x x +=+=-++ 123123log 111x x x x ==-+ (2)由(1)知当121x x +=时,1212()() 1.y y f x f x +=+= 121()()(),n n S f f f n n n-=++ ① 121()()(),n n S f f f n n n -=+++ ② ①+②得21n S n =-,故12n n S -= (3)当2n ≥时,111.1212422n a n n n n ==-++++⨯⨯ 又当1n =时,1111623a ==-,所以11(*)12n a n N n n =-∈++ 故111111()()()2334122(2)n n T n n n =-+-++-=+++ ∵1(1)n n T m S +<+对一切*n N ∈都成立.∴21141(2)4n n T n m S n n n+>==++++,而448n n ++≥(当且仅当2n =时等号成立) ∴18m >,即m 的取值范围是1()8+∞, 21.解:(1)设双曲线2C 的方程为22221x y a b-=, 则2413a =-=,再由222a b c +=得21b =,故2C 的方程为2213x y -= (2)将y kx =2213x y -=得22(13)90k x ---= 由直线l 与双曲线2C 交于不同的两点得:2222130)36(13)36(1)0k k k ∆⎧-≠⎪⎨=+-=->⎪⎩213k ∴≠且21k < 1122()()A x y B x y ,,,,则12122291313x x x x k k ,-+==--12121212(x x y y x x kx kx ∴+=+++221212237(1)()231k k x x x x k +=++++=-又9OA OB ⋅=,得12129x x y y +=,2237931k k +∴=-,解得:3k =±满足条件.故k =. (3)参考问题1:若x 轴上存在点( 0)P m ,,使APB ∆是以AB 为底边的等腰三角形,求m 的取值范围.解:显然,当0k =时,P 点坐标为(0 0),,即0m =;当0k ≠时,设线段AB 的中点00()M x y ,, 由(2)知212002222131313x x x y k k k ,+===+=--- 于是,线段AB的中垂线方程为221()133y x k k k -=---,令0y =,得 21133m k k k ==--,由①知,333(1 ( 0)(0 )( 1)k ,,,,∈--∴13k R k-∈,∴m R ∈,且0m ≠ 综上所述,m R ∈.参考问题2:若x 轴上存在点(0)P m ,,使APB ∆为等边三角形,求m 的值. 同问题1,当0k =时,P 点坐标为(0 0),,即0m =,此时 1212||||6y y AB x x ===-=,点P 到AB的距离d =,显然不合题意; 当0k ≠时,线段AB 的中垂线方程为221()1313yx k k k-=----,令0y =,得 213m k=-,由①知,21k <且213k ≠ 由(2)知:||AB ==点P 到AB的距离|k d -==,且||d AB =,=9k =±, 满足21k <且213k ≠,故m=. 参考问题3:若x 轴上存在点( 0)P m ,,使APB ∆是以AB 为底边的等腰直角三角形,求m 的值.同问题1,当0k =时,此时1212||||6y y AB x x ==-=,d =P 点坐标为(0 0),,显然不合题意;当0k ≠时,线段AB 的中垂线方程为1(y x k =-,令0y =,得213m k =-,由①知,21k <且213k ≠, 由问题2知,||AB ==点P 到AB的距离|0k d ==,则1||2d AB =,即12=3k =±,满足21k <且213k ≠,故k =.此时m =参考问题4:对x 轴上点( 0)P m ,,若APB ∆是以P 为直角顶点的直角三角形,求m 的取值范围.依题意,0PA PB ⋅=,即21212121212()()()0x m x m y y x x m x x m y y --+=-+++=于是22237031k m k +-+=-,即222(33)70(*)m k m ++-+=在333(1 ( 0)(0 )( 1)3333k ,,,,∈---上有解, 令222()(33)7f k m k m =++-+∵(1)011(1)0ff ->⎧⎪⎪-<<⎨⎪>⎪⎩恒成立,由222)4(33)(7)0m m∆=-+-> 解得m >,或m <若(0)0f =,则m =,此时方程(*)的另一个解不是3±若(03f =,则3m =-<,直线l 与曲线2C只有唯一交点;若(0f =,则m =>,直线l 与曲线2C只有唯一交点; 综上所述,m ,或m <,且m≠±.3。
2008年高考理科数学试题及参考答案(北京卷)

2008年高考北京数学理科试卷含详细解答一、选择题(本大题共8小题,共0分)1.(2008北京理1)已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合)(A B C U ⋂等于( ) A.{}|24x x -<≤B.{}|34x x x 或≤≥ C.{}|21x x -<-≤ D.{}|13x x -≤≤【答案】D【解题关键点】 C U B=[-1, 4],)(A B C U ⋂={}|13x x -≤≤ 【结束】2.(2008北京理2)若0.52a =,πlog 3b =,22πlog sin 5c =,则( ) A.a b c >> B.b a c >>C.c a b >>D.b c a >>【答案】A【解题关键点】利用估值法知a 大于1,b 在0与1之间,c 小于0. 【结束】3.(2008北京理3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解题关键点】函数()()f x x ∈R 存在反函数,至少还有可能函数()f x 在R 上为减函数,充分条件不成立;而必有条件显然成立。
【结束】4.(2008北京理4)若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A.圆B.椭圆C.双曲线D.抛物线【答案】 D【解题关键点】把P 到直线1x =-向左平移一个单位,两个距离就相等了,它就是抛物线的定义 【结束】5.(2008北京理5)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x y z +=的最小值是( )A.0B.1D.9【答案】 B【解题关键点】 解出可行域的顶点,带入验证。
2008届高三数学文科测试试题卷07-117

广东北江中学2008届高三数学(文科)测试试题卷(07-11-17)一.选择题: (本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.)1.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( )A .{2|-<x x }B .{3|>x x }C .{32|<<x x }D . {21|<<-x x }2.命题“,11a b a b >->-若则”的否命题...是( ) A.,11a b a b >-≤-若则 B.,11a b a b >-<-若则 C.,11a b a b ≤-≤-若则 D. ,11a b a b <-<-若则 3. 下列函数为奇函数...的是( ) A .3x y = B .00x y x <=≥))C .xy 2= D .x y 2log = 4.函数()3sin 12xf x π=+的最小正周期为( )A .1B .2C .3D .45.已知函数2log ,(0)()3,(0)>⎧=⎨≤⎩x x x f x x ,则[(1)]=f f ( )A .0B .1C .3D .136.函数f (x ) = x 3-3x + 1在闭区间[-3,0]上的最大值、最小值分别是( ) A .1,-1 B .1,-17 C .3,-17 D .9,-197. 在△ABC 的三边长分别为AB=2,BC=3,CA=4,则cos C 的值为 ( )A .1116B .14-C .78D .-788. 将函数sin(2)3y x π=-的图象先向左平移6π,然后将所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为( ) A .cos y x =- B .sin 4y x = C .sin()6y x π=-D .sin y x =9.已知()f x 是定义在R 上减函数...,且(1)(3)f m f m -<-,则m 的取值范围是 ( )A .2m <B .01m <<C .02m <<D .12m <<10.为了稳定市场,确保农民增收,某农产品的市场收购价格a 与其前三个月的市场收购价格有关,且使a 与其前三个月的市场收购价格之差的平方和最小.若下表列出的是该产品前6个月的市场收购价格:则7月份该产品的市场收购价格应为 ( )A .69元B .70元C .71元D .72元二.填空题: (本大题共5小题,其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.每小题5分,满分20分.) 11.函数()()lg 43x f x x -=-的定义域为_____12.0tan 6730'tan 2230'+的值等于____________________.13.若实数x y 、满足条件012-2+10x y x y≥⎧⎪≤⎨⎪≤⎩,则目标函数2z x y =+的最大值为_____ .选做题:14.如图,平行四边形ABCD 中,2:1:=EB AE ,若AEF ∆的面积等于1cm 2,则CDF ∆的面积等于 cm 2.15、曲线1C :⎩⎨⎧=+=)y x 为参数θθθ(sin cos 1上的点到曲线2C :12(112x t t y t⎧=-⎪⎪⎨⎪=-⎪⎩为参数)上的点的最短距离为 .A FE D CB三、解答题:(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16.(本小题满分12分)在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,且222b c a bc +=+. (1)求角A 的大小;(2)若1a b ==,求角B 的大小.17.(本小题共12分)记关于x 的不等式01x ax -<+的解集为P ,不等式220x x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数..a 的取值范围. 18.(本小题满分14分)已知1tan()42πα+=-. (I )求tan α的值; (II ) 求2sin 22cos 1tan ααα-+的值.19.(本小题满分14分)设函数2()2cos sin 2()f x x x a a R =++∈. (Ⅰ)求函数()f x 的最小正周期和单调递增区间; (Ⅱ)当[0,]6x π∈时,()f x 的最大值为2,求a 的值,并求出()()y f x x R =∈的对称轴方程.20.(本小题14分)定义在D 上的函数)(x f ,如果满足:x D ∀∈,∃常数0M >,都有|()|f x ≤M 成立,则称)(x f 是D 上的有界函数,其中M 称为函数的上界.(Ⅰ)求函数33()f x x x =-在[1,3]上的最大值与最小值,并判断函数33()f x x x=-在[1,3]上是不是有界函数?请给出证明;(Ⅱ)若已知质点的运动方程为at t t S ++=11)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围.21.(本小题满分14分)设 f (x ) = px -q x -2 ln x ,且 f (e ) = qe - pe -2(e 为自然对数的底数)(I) 求 p 与 q 的关系;(II) 若 f (x ) 在其定义域内为单调函数,求 p 的取值范围; (III) 设 g (x ) = 2e x,若在 [1,e ] 上至少存在一点x 0,使得 f (x 0) > g (x 0) 成立, 求实数 p 的取值范围.广东北江中学2008届高三数学(文科)测试答题卷(07-11-17)二、填空题(每小题5分,共20分)11、__________________;12、__________________;13、__________________;14、__________________;15、__________________;三、解答题(共80分)16、(12分)姓名:____________班级:____________学号:____________广东北江中学2008届高三数学(文科)测试卷(07-11-17)参考答案一. DCADB CCDAC二.11. (-∞,3)∪(3,4)12.13. 2 14. 9 15. 116.解:(Ⅰ)由已知得:2221222b c a bc cos A bc bc +-===, ……………………… (3分) 又A ∠是△ABC 的内角,所以3A π∠=. ………………………………… (6分)(2)由正弦定理:sin sin a bA B=,1sin 1sin 2b A B a ⋅∴===………………9分又因为b a <,B A ∴<,又B ∠是△ABC 的内角,所以6B π∠=.………………12分17.解:(I )由301x x -<+,得{}13P x x =-<<.――――――――――――――4分 (II ){}{}22002Q x x x x x =-≤=≤≤.――――――――――――――――7分 由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >,――――――――――11分即a 的取值范围是(2)+∞,.――――――――――――――――――――――――12分 18. 解: (1) 112tan tan[()]31441(1)2ππαα--=+-==-+-⋅.…………………………6分(2)原式22222sin cos 2cos cos sin cos 13sin cos αααααααα--==-+ 221tan 132tan 1315αα-+===++.……………………………………………8分19、解:(1)2()2cos sin 21cos 2sin 2)14f x x x a x x a x a π=++=+++=+++ … 2分则()f x 的最小正周期2T ππω==, ―――――――――――――――――――4分 且当222()242k x k k Z πππππ-≤+≤+∈时()f x 单调递增.即3[,]()88x k k k Z ππππ∈-+∈为()f x 的单调递增区间(写成开区间不扣分).――7分(2)当[0,]6x π∈时724412x πππ⇒≤+≤,当242x ππ+=,即8x π=时sin(2)14x π+=.所以max ()121f x a a +=⇒=.―――――――――――――――――11分2()4228k x k x k Z πππππ+=+⇒=+∈为()f x 的对称轴.――――――――――14分20.解:(Ⅰ)∵2233)(x x x f +=',当]3,1[∈x 时,0)(>'x f .∴)(x f 在[1,3]上是增函数.---------------------------------3分 ∴当]3,1[∈x 时,)1(f ≤)(x f ≤)3(f ,即 -2≤)(x f ≤26.所以当1x =时,min ()(1)1;f x f ==-当3x =时,max ()(3)26;f x f ==----4分 ∴存在常数M=26,使得]3,1[∈∀x ,都有|()|f x ≤M 成立. 故函数33()f x x x=-是[1,3]上的有界函数.---------------------------6分 (Ⅱ)∵a t t S ++-='2)1(1)(. 由|)(|t S '≤1,得|)1(1|2a t ++-≤1----------------8分 ∴⎪⎪⎩⎪⎪⎨⎧-≥++-≤++-1)1(11)1(122a t a t ⎪⎪⎩⎪⎪⎨⎧-+≥++≤⇒1)1(11)1(122t a t a ------------------------10分令1)1(1)(2++=t t g ,显然)(t g 在),0[+∞上单调递减,则当t →+∞时,)(t g →1. ∴1≤a 令1)1(1)(2-+=t t h ,显然)(t h 在),0[+∞上单调递减, 则当0=t 时,0)0()(max ==h t h ∴0≥a∴0≤a ≤1;故所求a 的取值范围为0≤a ≤1. -------------14分21.解:(I) 由题意得 f (e ) = pe -q e -2ln e = qe - pe -2 ………… 1分⇒ (p -q ) (e + 1e ) = 0 ………… 2分而 e + 1e ≠0∴ p = q………… 3分(II) 由 (I) 知 f (x ) = px -px-2ln xf ’(x ) = p + p x 2 -2x = px 2-2x + p x 2………… 4分令 h (x ) = px 2-2x + p ,要使 f (x ) 在其定义域 (0,+) 内为单调函数,只需 h (x ) 在 (0,+)内满足:h (x )≥0 或 h (x )≤0 恒成立. ………… 5分① 当 p = 0时, h (x ) = -2x ,∵ x > 0,∴ h (x ) < 0,∴ f ’(x ) = -2xx 2 < 0,∴ f (x ) 在 (0,+) 内为单调递减,故 p = 0适合题意.………… 6分② 当 p > 0时,h (x ) = px 2-2x + p ,其图象为开口向上的抛物线,对称轴为 x = 1p ∈(0,+),∴ h (x )min = p -1p只需 p -1p ≥1,即 p ≥1 时 h (x )≥0,f ’(x )≥0∴ f (x ) 在 (0,+) 内为单调递增, 故 p ≥1适合题意. ………… 7分③ 当 p < 0时,h (x ) = px 2-2x + p ,其图象为开口向下的抛物线,对称轴为 x = 1p ∉ (0,+)只需 h (0)≤0,即 p ≤0时 h (x )≤0在 (0,+) 恒成立. 故 p < 0适合题意. ………… 8分 综上可得,p ≥1或 p ≤0 ………… 9分 另解:(II) 由 (I) 知 f (x ) = px -px -2ln xf ’(x ) = p +p x 2 -2x = p (1 + 1x 2 )-2x………… 4分要使 f (x ) 在其定义域 (0,+) 内为单调函数,只需 f ’(x ) 在 (0,+) 内满足:f ’(x )≥0 或f ’(x )≤0 恒成立. ………… 5分 由 f ’(x )≥0 ⇔ p (1 +1x 2 )-2x ≥0 ⇔ p ≥2x + 1x ⇔ p ≥(2x +1x)max,x > 0 ∵2x + 1x≤22x · 1x = 1,且 x = 1 时等号成立,故 (2x + 1x )max = 1∴ p ≥1 ………… 7分由 f ’(x )≤0 ⇔ p (1 +1x 2 )-2x ≤0 ⇔ p ≤ 2x x 2+ 1 ⇔ p ≤(2xx 2 + 1 )min,x > 0而2x x 2+ 1 > 0 且 x → 0 时,2xx 2 + 1→ 0,故 p ≤0 ………… 8分 综上可得,p ≥1或 p ≤0 ………… 9分 (III) ∵ g (x ) =2ex在 [1,e ] 上是减函数 ∴ x = e 时,g (x )min = 2,x = 1 时,g (x )max = 2e 即 g (x ) ∈ [2,2e ] ………… 10分① p ≤0 时,由 (II) 知 f (x ) 在 [1,e ] 递减 ⇒ f (x )max = f (1) = 0 < 2,不合题意。
2008年数学(理科)试卷(江西卷)(word版+详细解析)
绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343VR π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kk n k n n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为 A .0 B .2 C .3 D .63.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 A .1[,3]2 B .10[2,]3 C .510[,]23 D .10[3,]34.1x →=A .12B .0C .12- D .不存在 5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 A .(0,1) B .1(0,]2 C.(0,2 D.28.610(1(1展开式中的常数项为 A .1 B .46 C .4245 D .42469若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是 A .1122a b a b + B .1212a a b b + C .1221a b a b + D .1210.连结球面上两点的线段称为球的弦。
2008江苏高考数学试卷含答案(校正精确版)
2008年普通高等学校招生全国统一考试(江苏卷)一、填空题1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ . 【解析】2105T ππωω==⇒=2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯ 3.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ .【解析】因()21112i i i i ++==-,故a =0,b =1,因此1a b += 4.若集合2{|(1)37,}A x x x x R =-<+∈,则A Z I 中有 ▲ 个元素【解析】由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z =I ,共有6个元素.5.已知向量a r 和b r 的夹角为0120,||1,||3a b ==r r ,则|5|a b -=r r ▲ . 【解析】22222|5|(5)25||10||251a b a b a a b b -=-=-⋅+=⨯-r r r r r r r r 211013()3492⨯⨯⨯-+=,故|5|7a b -=r r .6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲【解析】如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此214416P ππ⨯==⨯7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统序号i 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率(i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.510 0.20 3 [6,7) 6.520 0.40 4 [7,8) 7.510 0.20 5 [8,9] 8.54 0.08 开始 S ←0 输入G i ,F ii ←1 S ← S +G i ·F ii ≥5 i ← i +1NY计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲ 【解析】由流程图1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42=8.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲【解析】'1y x =,令112x =得2x =,故切点(2,ln2),代入直线方程,得,故b =ln2-1.9.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为1111()()0x y b c p a -+-=,请你完成直线OF 的方程:( ▲ )11()0x y p a+-=. 【解析】画草图,由对称性可猜想填11c b-.事实上,由截距式可得直线AB :1x yb a+=,直线CP :1x y c p += ,两式相减得1111()()0x y b c p a -+-=,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.10.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为 ▲【解析】前n -1 行共有正整数1+2+…+(n -1)个,即22n n-个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+.11.设,,x y z 为正实数,满足230x y z -+=,则2y xz的最小值是 ▲【解析】由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xz xz xz +++≥=,当且仅当x =3z 时取“=”.12 34 5 67 8 9 1011 12 13 14 15………………12.在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a b y a x 的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过2(0)a P c,作圆M 的两条切线相互垂直,则椭圆的离心率为 ▲【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,故△OAP 是等腰直角三角形,故22a a c=,解得22c e a ==.13.若AB =2,AC =2BC ,则S △ABC 的最大值为解析 设BC =x ,则AC =2x .根据三角形的面积公式, 得S △ABC =12·AB ·BC sin B =x 1-cos 2B .①根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x .②将②代入①,得 S △ABC =x1-⎝⎛⎭⎫4-x 24x 2=128-x 2-12216.由三角形的三边关系,得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.14.f (x )=ax 3-3x +1对于x ∈[-1,1],总有f (x )≥0成立,则a =【解】若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间(0,12]上单调递增,在区间[12,1]上单调递减,因此g (x )max =g (12)=4,从而a ≥4.当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g (x )=3x 2-1x 3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.二如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别交单位圆于A ,B 两点.已知A ,B 两点的横坐标分别是210,255. ⑴.求tan(α+β)的值; ⑵.求α+2β的值.【解】⑴.由已知条件即三角函数的定义可知225cos ,cos αβ==,因α为锐角,故ABC DEF Bsin 0α>,从而sin 10α==,同理可得sin 5β==,故1tan 7,tan 2αβ==.故tan()αβ+=17tan tan 2311tan tan 172αβαβ++==---⨯g ; ⑵.132tan(2)tan[()]111(3)2αβαββ-++=++==---⨯,又0,022ππαβ<<<<,故3022παβ<+<,从而由 tan(2)1αβ+=-得,324παβ+=. 16.如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证: ⑴.直线//EF 面ACD ; ⑵.平面EFC ⊥面BCD .【标准答案】证明:⑴.因E ,F 分别是AB BD ,的中点.故EF 是△ABD的中位线,故EF ∥AD ,因EF ∥⊄面ACD ,AD ⊂面ACD ,故直线EF ∥面ACD ;⑵.因AD ⊥BD ,EF ∥AD ,故EF ⊥BD ,因CB=CD ,F 是BD的中点,故CF ⊥BD ,又EF∩CF=F ,故BD ⊥面EFC ,因BD ⊂面BCD ,故面EFC ⊥面BCD 17.如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A ,B 及CD 的中点P 处.AB =20km ,BC =10km .为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A ,B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为y km . ⑴.按下列要求建立函数关系式:(i )设BAO θ∠=(rad ),将y 表示成θ的函数; (ii )设OP x =(km ),将y 表示成x 的函数;⑵.请你选用⑴中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短. 【解】⑴.①.由条件知PQ 垂直平分AB ,若∠BAO=θ(rad),则10cos cos AQ OA θθ==, 故10cos OB θ=,又OP =1010tan θ-,故10101010tan cos cos y OA OB OP θθθ=++=++-,所求函数关系式为2010sin 10(0)cos 4y θπθθ-=+≤≤;②.若OP=x (km),则OQ =10-x,故OA OB ===数关系式为10)y x x =+≤≤.⑵.选择函数模型①,'2210cos cos (2010)(sin )10(2sin 1)cos cos sin y θθθθθθθ-⋅----==,令'y =0 得sin 12θ=,因04πθ<<,故θ=6π,当(0,)6πθ∈时,'0y <,y 是θ的减函数;当(,)64ππθ∈时,'0y >,y 是θ的增函数,故当θ=6π时,min 10y =+.这时点P 位于线段AB 的中垂线上,在矩形区域内且距离ABkm 处. 18.在平面直角坐标系xOy 中,记二次函数2()2f x x x b =++(x ∈R )与两坐标轴有三个交点.经过三个交点的圆记为C .⑴.求实数b 的取值范围; ⑵.求圆C 的方程;⑶.问圆C 是否经过定点(其坐标与b 的无关)?请证明你的结论.【解】⑴.令0x =,得抛物线与y 轴交点是(0,b );令2()20f x x x b =++=,由题意b ≠0且Δ>0,解得b <1 且b ≠0.⑵.设所求圆的一般方程为2x 20y Dx Ey F ++++=,令y =0得,20x Dx F ++=这与22x x b ++=0是同一个方程,故D =2,F =b .令x =0 得2y Ey +=0,此方程有一个根为b ,代入得出E =―b ―1.故圆C 的方程为222(1)0x y x b y b ++-++=. ⑶.圆C 必过定点,证明如下:假设圆C 过定点0000(,)(,)x y x y b 不依赖于,将该点的坐标代入圆C 的方程,并变形为22000002(1)0x y x y b y ++-+-=(*),为使(*)式对所有满足1(0)b b <≠的b 都成立,必须有010y -=,结合(*)式得,2200020x y x y ++-=,解得000002 11x x y y ==⎧⎧⎨⎨==⎩⎩,-,或,,,经 检验知,点(0,1),(2,1)-均在圆C 上,因此圆C 过定点.19.⑴.设12,,,n a a a L 是各项均不为零的等差数列(4n ≥),且公差0d ≠,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列: ①.当4n =时,求1a d的数值;②.求n 的所有可能值; ⑵.求证:对于一个给定的正整数(4)n n ≥,存在一个各项及公差都不为零的等差数列12,,,n b b b L ,其中任意三项(按原来的顺序)都不能组成等比数列.【解】⑴.①.当4n =时, 1234,,,a a a a 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出0d =.若删去2a ,则2314a a a =⋅,即2111(2)(3)a d a a d +=⋅+化简得140a d +=,得14a d=-; 若删去3a ,则2214a a a =⋅,即2111()(3)a d a a d +=⋅+化简得10a d -=,得11a d=; 综上,得14a d =-或11ad=.②.当5n =时,12345,,,,a a a a a 中同样不可能删去1245,,,a a a a ,否则出现连续三项.若删去3a ,则1524a a a a ⋅=⋅,即1111(4)()(3)a a d a d a d +=+⋅+化简得230d =,因0≠d ,故3a 不能删去;当6n ≥时,不存在这样的等差数列.事实上,在数列12321,,,,,,n n n a a a a a a --L 中,由于不能删去首项或末项,若删去2a ,则必有132n n a a a a -⋅=⋅,这与0≠d 矛盾;同样若删去1n a -也有132n n a a a a -⋅=⋅,这与0≠d 矛盾;若删去32,,n a a -L 中任意一个,则必有121n n a a a a -⋅=⋅,这与0≠d 矛盾.(或者说:当n ≥6时,无论删去哪一项,剩余的项中必有连续的三项)综上所述,4n =.⑵假设对于某个正整数n ,存在一个公差为d 的n 项等差数列12,,...,n b b b ,其中111,,x y z b b b +++(01x y z n ≤<<≤-)为任意三项成等比数列,则2111yx z b b b +++=⋅,即2111()()()b yd b xd b zd +=+⋅+,化简得221()(2)y xz d x z y b d -=+-(*),由10b d ≠知,2y xz-与2x z y +-同时为0或同时不为0;当2y xz -与2x z y +-同时为0时,有x y z ==与题设矛盾.故2y xz -与2x z y +-同时不为0,故由(*)得212b y xz d x z y-=+-,因01x y z n ≤<<≤-,且x 、y 、z为整数,故上式右边为有理数,从而1b d 为有理数.于是,对于任意的正整数)4(≥n n ,只要1bd为无理数,相应的数列就是满足题意要求的数列.例如n 项数列1,11+……,1(n +-满足要求.20.已知函数11()3x p f x -=,22()23x p f x -=⋅(12,,x R p p ∈为常数).函数()f x 定义为:对每个给定的实数x ,112212(),()()()(),()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩若若⑴.求1()()f x f x =对所有实数x 成立的充分必要条件(用12,p p 表示);⑵.设,a b 是两个实数,满足a b <,且12,(,)p p a b ∈.若()()f a f b =,求证:函数()f x 在区间[,]a b 上的单调增区间的长度之和为2b a-(闭区间[,]m n 的长度定义为n m -) 【解】⑴.由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于12()()f x f x ≤(对所有实数x )这又等价于12||||323x p x p --≤⋅,即312log 2||||332x p x p ---≤=对所有实数x 均成立.(*)由于121212|||||()()|||()x p x p x p x p p p x R ---≤---=-∈的最大值为12||p p -,故(*)等价于12||32p p -≤,即123||log 2p p -≤,这就是所求的充分必要条件⑵.分两种情形讨论(i )当123||log 2p p -≤时,由⑴知,1()()f x f x =(对所有实数[,]x a b ∈)则由()()f a f b =及1a p b <<易知12a bp +=,再111113,()3,p x x px p f x x p --⎧<⎪=⎨≥⎪⎩的单调性可知,函数()f x 在区间[,]a b 上的单调增区间的长度为22a b b ab +--=(参见示意图1) (ii )123||log 2p p ->时,不妨设12,p p <,是当1x p ≤时,有1212()33()p xp x f x f x --=<<,从1()()f x f x =;当2x p ≥时,312122122log 212()333333(x p p p x p p p x p x p f x f --+----===>=g g 2当12p x p <<时,11()3x p f x -=,及22()23p xf x -=⋅,由方程12323x p p x --=⋅,解得12()()f x f x 与图象交点的横坐标为12031log 222p p x +=+⑴,显然10221321[()log 2]2p x p p p p <=---<,这表明0x 在1p 与2p 之间.由⑴知,101022(),()(),p x x f x f x x x p f x ≤≤⎧=⎨<≤⎩综上可知,在区间[,]a b 上,0102(),()(),a x x f x f x x x bf x ≤≤⎧=⎨<≤⎩ (参见示意图2),故由函数1()f x 及2()f x 的单调性可知,()f x 在区间[,]a b 上的单调增区间的长度之和为012()()x p b p -+-,由于()()f a f b =,即12323p a b p --=⋅,得123log 2p p a b +=++⑵,故由⑴、⑵得0121231()()[log 2]22b ax p b p b p p --+-=-+-=综合(i )(ii )可知,()f x 在区间[,]a b 上的单调增区间的长度和为2ab -.2008年普通高等学校招生全国统一考试(江苏卷)B .选修4—2 矩阵与变换在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵⎣⎡⎦⎤2 00 1对应的变换作用下得到曲线F ,求F的方程.解:设00(,)P x y 是椭圆上任意一点,点00(,)P x y 在矩阵A 对应的变换下变为点,'''00(,)P x y 则有'0'0020 01x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即'00'002x x y y ⎧=⎪⎨=⎪⎩,故'0'002x x y y ⎧=⎪⎨⎪=⎩又因为点P 在椭圆上,故220041x y +=,从而'2'200()()1x y +=,故曲线F 的方程是 221x y +=C .选修4—4 参数方程与极坐标在平面直角坐标系xOy 中,点()P x y ,是椭圆2213x y +=上的一个动点,求S x y =+的最大值. 解:因椭圆2213x y +=的参数方程为 (sin x y φφφ⎧=⎪⎨=⎪⎩为参数),故可设动点P的坐标为,sin φφ),其中02φπ≤<,故1sin 2(cos sin )2sin()223S x y πφφφφφ=+=+=+=+,故当6πφ=时,S 取最大值222.【必做题】记动点P 是棱长为1的正方体1111-ABCD A B C D 的对角线1BD 上一点,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.解:由题设可知,以DA u u u r 、DC u u ur 、1DD u u u u r 为单位正交基底,建立如图所示的空间直角坐标系D xyz -,则有(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)D ,由1(1,1,1)D B =-u u u u r,得11(,,)D P D B λλλλ==-u u u u r u u u u r ,故11(,,)(1,0,1)(1,,1)PA PD D A λλλλλλ=+=--+-=---u u u r u u u u r u u u u r11(,,)(0,1,1)(,1,1)PC PD DC λλλλλλ=+=--+-=---u u u r u u u u r u u u u r ,显然APC ∠不是平角,故APC ∠为钝角等价于cos cos ,0||||PA PCAPC PA PC PA PC ∠=<>=<⋅u u u r u u u ru u u r u u u r g u u u r u u u r ,则等价于0PA PC <u u u r u u u r g ,即2(1)()()(1)(1)(1)(31)0λλλλλλλ--+--+-=--<,得113λ<<,故λ的取值范围是1(,1)323.在等式2cos 22cos 1x x =-(x ∈R )的两边求导,得:2(cos 2)(2cos 1)x x ''=-,由求导法则,得(sin 2)24cos (sin )x x x -=-g g ,化简得等式:sin 22cos sin x x x =g .⑴.利用上题的想法(或其他方法),结合等式0122(1)C C C C n n n n n n n x x x x +=++++L (x ∈R ,正整数2n ≥),证明:112[(1)1]C nn k k n k n x k x --=+-=∑.⑵.对于正整数3n ≥,求证:①.1(1)C 0nkknk k =-=∑; ②.21(1)C 0nkk nk k =-=∑; ③.11121C 11n nkn k k n +=-=++∑.【解】⑴.在等式0122(1+x)=C C C C n n nn n n n x x x ++++L 两边对x 求导得112121(1)2(1)n n n n n n n nnn x C C x n Cx nC x----+=+++-+L 移项得112[(1)1]nn k k n k n x kC x --=+-=∑(*)⑵.①.在(*)式中,令1x =-,整理得,11(1)0nk knk kC -=-=∑故1(1)0nk kn k kC =-=∑ ②.由⑴知,112121(1)2(1),3n n n n n n n n n n x C C x n C x nC x n ----+=+++-+≥L 两边对x 求导,得2232(1)(1)232(1)n n n n n n n n x C C x n n C x---+=+++-g L 在上式中,令1x =-23220232(1)(1)(1)n n n nC C n n C -=+-++--g L 即22(1)(1)0nkk nk k k C-=--=∑,亦即22(1)()0nkknk k k C =--=∑(1)又由(i )知1(1)0nkknk kC =-=∑(2)由(1)+(2)得21(1)C 0nk kn k k =-=∑ ③.将等式0122(1+x)=C C C C n n nn n n n x x x ++++L 两边在[0,1]上对x 积分1101220(1)(C C C C )n n nn n n n x dx x x x dx+=++++⎰⎰L 由微积分基本定理,得11110011(1)()11nn k k n k x C x n k ++=+=++∑,故1012111n nk n k C k n +=-=++∑。
2008届高三数学(文科)测试试题卷(07-11-17)
广东北江中学2008届高三数学(文科)测试试题卷(07-11-17)一.选择题: (本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.)1.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( )A .{2|-<x x }B .{3|>x x }C .{32|<<x x }D . {21|<<-x x }2.命题“,11a b a b >->-若则”的否命题...是( ) A.,11a b a b >-≤-若则 B.,11a b a b >-<-若则 C.,11a b a b ≤-≤-若则 D. ,11a b a b <-<-若则 3. 下列函数为奇函数...的是( ) A .3x y = B .00x y x <=≥))C .xy 2= D .x y 2log = 4.函数()3sin 12xf x π=+的最小正周期为( )A .1B .2C .3D .45.已知函数2log ,(0)()3,(0)>⎧=⎨≤⎩x x x f x x ,则[(1)]=f f ( )A .0B .1C .3D .136.函数f (x ) = x 3-3x + 1在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17D .9,-197. 在△ABC 的三边长分别为AB=2,BC=3,CA=4,则cos C 的值为 ( )A .1116B .14-C .78D .-788. 将函数sin(2)3y x π=-的图象先向左平移6π,然后将所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为( ) A .cos y x =- B .sin 4y x = C .sin()6y x π=-D .sin y x =9.已知()f x 是定义在R 上减函数...,且(1)(3)f m f m -<-,则m 的取值范围是 ( ) A .2m < B .01m << C .02m << D .12m <<10.为了稳定市场,确保农民增收,某农产品的市场收购价格a 与其前三个月的市场收购价格有关,且使a 与其前三个月的市场收购价格之差的平方和最小.若下表列出的是该产品前6个月的市场收购价格:则7月份该产品的市场收购价格应为 ( )A .69元B .70元C .71元D .72元二.填空题: (本大题共5小题,其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.每小题5分,满分20分.) 11.函数()()lg 43x f x x -=-的定义域为_____12.0tan 6730'tan 2230'+的值等于____________________.13.若实数x y 、满足条件012-2+10x y x y≥⎧⎪≤⎨⎪≤⎩,则目标函数2z x y =+的最大值为_____ .选做题:14.如图,平行四边形ABCD 中,2:1:=EB AE ,若AEF ∆的面积等于1cm 2,则CDF ∆的面积等于 cm 2.15、曲线1C :⎩⎨⎧=+=)y x 为参数θθθ(sin cos 1上的点到曲线2C :12(112x t t y t⎧=-⎪⎪⎨⎪=-⎪⎩为参数)上的点的最短距离为 .A FE D CB三、解答题:(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16.(本小题满分12分)在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,且222b c a bc +=+. (1)求角A 的大小;(2)若1a b ==,求角B 的大小.17.(本小题共12分)记关于x 的不等式01x ax -<+的解集为P ,不等式220x x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数..a 的取值范围. 18.(本小题满分14分)已知1tan()42πα+=-. (I )求tan α的值; (II ) 求2sin 22cos 1tan ααα-+的值.19.(本小题满分14分)设函数2()2cos sin 2()f x x x a a R =++∈. (Ⅰ)求函数()f x 的最小正周期和单调递增区间; (Ⅱ)当[0,]6x π∈时,()f x 的最大值为2,求a 的值,并求出()()y f x x R =∈的对称轴方程.20.(本小题14分)定义在D 上的函数)(x f ,如果满足:x D ∀∈,∃常数0M >,都有|()|f x ≤M 成立,则称)(x f 是D 上的有界函数,其中M 称为函数的上界.(Ⅰ)求函数33()f x x x =-在[1,3]上的最大值与最小值,并判断函数33()f x x x=-在[1,3]上是不是有界函数?请给出证明;(Ⅱ)若已知质点的运动方程为at t t S ++=11)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围.21.(本小题满分14分)设 f (x ) = px -q x -2 ln x ,且 f (e ) = qe - pe -2(e 为自然对数的底数)(I) 求 p 与 q 的关系;(II) 若 f (x ) 在其定义域内为单调函数,求 p 的取值范围; (III) 设 g (x ) = 2e x,若在 [1,e ] 上至少存在一点x 0,使得 f (x 0) > g (x 0) 成立, 求实数 p 的取值范围.广东北江中学2008届高三数学(文科)测试答题卷(07-11-17)二、填空题(每小题5分,共20分)11、__________________;12、__________________;13、__________________;14、__________________;15、__________________;三、解答题(共80分)16、(12分)姓名:____________班级:____________学号:____________广东北江中学2008届高三数学(文科)测试卷(07-11-17)参考答案一. DCADB CCDAC二.11. (-∞,3)∪(3,4)12.13. 2 14. 9 15. 116.解:(Ⅰ)由已知得:2221222b c a bc cos A bc bc +-===, ……………………… (3分) 又A ∠是△ABC 的内角,所以3A π∠=. ………………………………… (6分)(2)由正弦定理:sin sin a b A B =,1sin 1sin 2b A B a ⋅∴===………………9分 又因为b a <,B A ∴<,又B ∠是△ABC 的内角,所以6B π∠=.………………12分 17.解:(I )由301x x -<+,得{}13P x x =-<<.――――――――――――――4分 (II ){}{}22002Q x x x x x =-≤=≤≤.――――――――――――――――7分 由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >,――――――――――11分 即a 的取值范围是(2)+∞,.――――――――――――――――――――――――12分 18. 解: (1) 112tan tan[()]31441(1)2ππαα--=+-==-+-⋅.…………………………6分 (2)原式22222sin cos 2cos cos sin cos 13sin cos αααααααα--==-+ 221tan 132tan 1315αα-+===++.……………………………………………8分 19、解:(1)2()2cos sin 21cos 2sin 2)14f x x x a x x a x a π=++=+++=+++ … 2分 则()f x 的最小正周期2T ππω==, ―――――――――――――――――――4分 且当222()242k x k k Z πππππ-≤+≤+∈时()f x 单调递增. 即3[,]()88x k k k Z ππππ∈-+∈为()f x 的单调递增区间(写成开区间不扣分).――7分(2)当[0,]6x π∈时724412x πππ⇒≤+≤,当242x ππ+=,即8x π=时sin(2)14x π+=.所以max ()121f x a a +=⇒=.―――――――――――――――――11分2()4228k x k x k Z πππππ+=+⇒=+∈为()f x 的对称轴.――――――――――14分 20.解:(Ⅰ)∵2233)(x x x f +=',当]3,1[∈x 时,0)(>'x f . ∴)(x f 在[1,3]上是增函数.---------------------------------3分∴当]3,1[∈x 时,)1(f ≤)(x f ≤)3(f ,即 -2≤)(x f ≤26.所以当1x =时,min ()(1)1;f x f ==-当3x =时,max ()(3)26;f x f ==----4分 ∴存在常数M=26,使得]3,1[∈∀x ,都有|()|f x ≤M 成立.故函数33()f x x x =-是[1,3]上的有界函数.---------------------------6分 (Ⅱ)∵a t t S ++-='2)1(1)(. 由|)(|t S '≤1,得|)1(1|2a t ++-≤1----------------8分 ∴⎪⎪⎩⎪⎪⎨⎧-≥++-≤++-1)1(11)1(122a t a t ⎪⎪⎩⎪⎪⎨⎧-+≥++≤⇒1)1(11)1(122t a t a ------------------------10分 令1)1(1)(2++=t t g ,显然)(t g 在),0[+∞上单调递减, 则当t →+∞时,)(t g →1. ∴1≤a 令1)1(1)(2-+=t t h ,显然)(t h 在),0[+∞上单调递减, 则当0=t 时,0)0()(max ==h t h ∴0≥a∴0≤a ≤1;故所求a 的取值范围为0≤a ≤1. -------------14分21.解:(I) 由题意得 f (e ) = pe -q e -2ln e = qe - p e-2 ………… 1分 ⇒ (p -q ) (e + 1e) = 0 ………… 2分 而 e + 1e≠0 ∴ p = q ………… 3分(II) 由 (I) 知 f (x ) = px -p x-2ln x f ’(x ) = p + p x 2 -2x = px 2-2x + p x 2………… 4分 令 h (x ) = px 2-2x + p ,要使 f (x ) 在其定义域 (0,+∞) 内为单调函数,只需 h (x ) 在 (0,+∞) 内满足:h (x )≥0 或 h (x )≤0 恒成立. ………… 5分① 当 p = 0时, h (x ) = -2x ,∵ x > 0,∴ h (x ) < 0,∴ f ’(x ) = -2x x 2 < 0, ∴ f (x ) 在 (0,+∞) 内为单调递减,故 p = 0适合题意. ………… 6分② 当 p > 0时,h (x ) = px 2-2x + p ,其图象为开口向上的抛物线,对称轴为 x = 1p∈(0,+∞),∴ h (x )min = p -1p只需 p -1p≥1,即 p ≥1 时 h (x )≥0,f ’(x )≥0 ∴ f (x ) 在 (0,+∞) 内为单调递增,故 p ≥1适合题意. ………… 7分③ 当 p < 0时,h (x ) = px 2-2x + p ,其图象为开口向下的抛物线,对称轴为 x = 1p∉ (0,+∞) 只需 h (0)≤0,即 p ≤0时 h (x )≤0在 (0,+∞) 恒成立.故 p < 0适合题意. ………… 8分综上可得,p ≥1或 p ≤0 ………… 9分另解:(II)由 (I) 知 f (x ) = px -p x -2ln x f ’(x ) = p + p x 2 -2x = p (1 + 1x 2 )-2x ………… 4分要使 f (x ) 在其定义域 (0,+∞) 内为单调函数,只需 f ’(x ) 在 (0,+∞) 内满足:f ’(x )≥0 或 f ’(x )≤0 恒成立. ………… 5分由 f ’(x )≥0 ⇔ p (1 + 1x 2 )-2x ≥0 ⇔ p ≥2x + 1x ⇔ p ≥(2x + 1x)max,x > 0 ∵ 2x + 1x ≤ 22x · 1x= 1,且 x = 1 时等号成立,故 (2x + 1x )max = 1 ∴ p ≥1 ………… 7分 由 f ’(x )≤0 ⇔ p (1 +1x 2 )-2x ≤0 ⇔ p ≤ 2x x 2 + 1 ⇔ p ≤(2x x 2 + 1 )min ,x > 0而 2x x 2 + 1 > 0 且 x → 0 时,2x x 2 + 1→ 0,故 p ≤0 ………… 8分 综上可得,p ≥1或 p ≤0 ………… 9分 (III) ∵ g (x ) =2e x 在 [1,e ] 上是减函数 ∴ x = e 时,g (x )min = 2,x = 1 时,g (x )max = 2e即 g (x ) ∈ [2,2e ] ………… 10分① p ≤0 时,由 (II) 知 f (x ) 在 [1,e ] 递减 ⇒ f (x )max = f (1) = 0 < 2,不合题意。
2008年高考数学试卷(辽宁.理)含详解
2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分) 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A ·B)=P(A)·P(B) 球的体和只公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,,)k k n kn n P k C P p k n -=-= 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合3||0|,||3|1x M x x N x x x +==<=≤--,则集合||1|x x ≥= (A )M N ⋂ (B )M N ⋃ (C )R (M N ⋂) (D ) R (M N ⋃)(2)135(21)lim(21)x n n n →∞++++-=+(A )14 (B )12 (C )1 (D )2 (3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ()(2,2)A k ∈ ()(,2)2,)B k ∈-∞⋃+∞ ()(3,3)C k ∈- ()(,3)3,)D k ∈-∞⋃+∞(4)复数11212i i +-+-的虚部是 1()5A i 1()5B 1()5C i - 1()5D -(5)已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC - ()2A OA OB - ()2B OA OB -+ 21()33C OA OB - 12()33D OA OB -- (6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,4π],则点P 横坐标的取值范围为 1()[1,]2A -- ()[1,0]B - ()[0,1]C 1()[,1]2D(7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为奇数的概率为 1()3A 1()2B 2()3C 3()4D (8)将函数21212a y a y +=+=的图象按向量平移得到函数的图象,则()(1,1)A a =-- ()(1,1)B a =- ()(1,1)C a = ()(1,1)D a =- (9)一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有(A )24种 (B )36种 (C )48种 (D )72种(10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为(A ()3B (C 9()2D (11)在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线 ()A 不存在 (B )有且只有两条 (C )有且只有三条 (D )有无数条 (12)设f(x)是连续的偶函数,且当x >0时f(x)是单调函数,则满足f(x)=f 3()4x x ++的所有x 之和为(A )-3 (B )3 (C )-8 (D )8第Ⅰ卷(选择题共60分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数1,0,,0x x x y e x +<⎧=⎨≥⎩的反函数是__________.(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BC ,A 、C 两点的球,则球心到平面ABC 的距离为_________. (15)已知21(1)()n y x x x x+++的展开式中没有..常数项,*n N ∈,且2≤n ≤8,则n =______.(16)已知()sin()(0),()()363f x x f f πππωω=+>=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 在ABC ∆中,内角A ,B,C 对边的边长分别是a,b,c ,已知c =2,C =3π. (Ⅰ)若ABC ∆的面积等于3,求a,b ;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积.(18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.(19)(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BP=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥A D '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45°,求D E '与平面PQGH 所成角的正弦值.(20)(本小题满分12分)在直角坐标系xoy 中,点P 到两点(0,-)、(0,3)的距离之和等于4,设点P 的轨迹为l 、直线y=kx+1与C 交于A 、B 两点. (Ⅰ)写出C 的方程; (Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |. (21)(本小题满分12分)在数列|a n |,|b n |中,a 1=2, b 2=4,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列(*n N ∈)(Ⅰ)求a 2, a 3, a 4及b 2, b 3, b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++.(22)(本小题满分14分) 设函数f (x )=ln ln ln(1).1xx x x-+++ (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式f (x )≥a 的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分) 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A ·B)=P(A)·P(B) 球的体和只公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,,)k k n kn n P k C P p k n -=-= 其中R 表示球的半径一、选择题 1.已知集合{}30,31x M x N x xx ⎧+⎫=<=-⎨⎬-⎩⎭,则集合{}1x x为( )A.M NB.M NC.()RMN D.()RMN答案:C解析:本小题主要考查集合的相关运算知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用心 爱心 专心 115号编辑 城北中学高2008级12月月考数学试题
2007-12-7
一、选择题:(本大题共12小题,每小题5分,共60分) 1.已知集合A={x|x-m<0},B={y|y=x2+2x,x∈N},若A∩B=Φ,则实数m的范围为( ) (A)m≤-1 (B)m<-1 (C)m≤0 (D)m<0 2.200辆汽车经过某一雷达地区,时速频率分布 直方图如图所示,则时速超过60km/h的汽车 数量为 ( ) A.65辆 B.76辆 C.88辆 D.95辆
3.函数f(x)=3x(x≤2)的反函数的定义域是( ) (A)]9,( (B)),9[ (C)]9,0( (D)),0(
4.如果数列{an}满足,...aa,...,aa,aa,a1nn23121是首项为1,公比为2的等比数列,则a100等于( ) (A)2100 (B) 299 (C)25050 (D)24950
5.10.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 ( ) (A)30种 (B)90种 (C)180种 (D)270种
6.在△ABC中,AsinCsin2AcosCcos2AcosAsin是角A、B、C成等差数列的 ( ) (A)充分非必要条件 (B)充要条件 (C)必要非充分条件 (D)既不充分也不必要条件 7.已知点A(3,2),B(-2,7),若直线y=ax-3与线段AB的交点P分有向线段AB的比为4:1,则a的值为 ( ) (A)3 (B)-3 (C)9 (D)-9 8.设偶函数f(x)对任意x∈R,都有f(x)+f(x+1)=4,当x∈[-3,-2]时,f(x)=4x+12, 则f(112.5) 的值为 ( ) (A)2 (B)3 (C)4 (D)5 9.函数f(x)=ax2+bx+6满足条件f(-1)=f(3),则f(2)的值为 ( ) (A)5 (B)6 (C)8 (D)与a,b值有关 10.函数f(x)=loga(x3–ax)(a>0且a≠1)在(2,+∞)上单调递增,则a的取值范围是 ( )
(A)a>1 (B)111.在长为10㎝的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面
积介于25cm2与49 cm2之间的概率为 ( ) (A)51 (B)52 (C)54 (D)103
12.已知等差数列{an}的前2006项的和S2006=2008,其中所有的偶数项的和是2,则a1003
的值为 ( )
(A)1 (B)2 (C) 3 (D)4 用心 爱心 专心 115号编辑
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
二.填空题:(本大题共4题,每小题4分,共16分.把答案填在题中横线上.) 13.关于函数f (x) =sin(2x-4) (x∈R) 有下列命题:① y=f(x)的周期为π;
② x =4是y = f (x)的一条对称轴;③ (8,0)是y=f(x)的一个对称中心; ④ 将y = f (x)的图象向右平移4个单位,可得到y=2sinxcosx的图象. 其中正确的命题序号是 (把你认为正确命题的序号都写上).
14.(理)设常数0a,421axx展开式中3x的系数为32,则2lim()nnaaa___ (文)则a= 15.(理)已知函数f(x)=)1x(ax)1x(1x1x2在x=1处连续,则实数a 的值为 ;
计算:2(12)1ii___________ (文)已知3261fxxaxax有极大值和极小值,则a的取值范围是 16.已知函数1x)3m(mxy2的值域是),0[,则实数m的取值范围是 三、解答题(本题17—21小题每题12分, 22小题14分,共74分) 17.已知函数2()123sincos2cosfxxxx,
(1)求函数)(xf的最小正周期;(2)求函数)(xf的单调减区间; (3)画出函数]125,127[),()(xxfxg的图象,由图象研究并写出)(xg的对称轴和对称中心.
127 125 4 12
x 0
2
-2 1
-1 12 4
125 用心 爱心 专心 115号编辑
A E y x
D C B
18.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I)任选1名下岗人员,求该人参加过培训的概率; (文)(II)任选3名下岗人员,求至少有两人参加过培训的概率;
(理)(II)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列和期望.
19.设向量),1,2(),2cos,1(ba)1,sin21(),1,sin4(dc,其中)4,0(. (I)求dcba的取值范围;(II)若函数)()(|,1|)(dcfbafxxf与比较的大小
20.如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上. (1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式; (2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置 应在哪里?如果DE是参观线路,则希望它最长,DE的位置 又应在哪里?请予证明. 用心 爱心 专心 115号编辑
21.已知函数),()(2Rbabaxxxf的图像经过坐标原点,且}{,1)1(naf数列的前).)((*NnnfSnn项和(I)求数列}{na的通项公式; (II)若数列133{}loglog,{}.nnnnbanbbn满足求数列的前项和
22. 设f(x)=cx1bxax2(a>0)为奇函数,且|f(x)|min=22,数列{an}与{bn}满足如下关系:a1=2,2a)a(fann1n,1a1abnnn. (1)求f(x)的解析表达式;(2)证明:当n∈N*时, 有bn≤n)31(. 用心 爱心 专心 115号编辑
城北中学高2008级12月月考数学试题参考答案 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B C D A B D A B D A B
13、①③ 14、(理)1 (文)1/2 15、(理)1 7122i (文)a <-3或a>6 16、【),9[]1,0(
17、解:(1)()3sin2cos22sin(2)6fxxxx 22T
(2)由3222()262kxkkZ得263kxk, 所以,减区间为2[,]()63kkkZ (3) ()gx无对称轴,对称中心为(,012) 18. 解:任选1名下岗人员,记“该人参加过财会培训”为事件A,“该人参加过计算机培训”为事件B,由题设知,事件A与B相互独立,且()0.6PA,()0.75PB. (I)解法一:任选1名下岗人员,该人没有参加过培训的概率是
1()()()0.40.250.1PPABPAPB
所以该人参加过培训的概率是21110.10.9PP. 解法二:任选1名下岗人员,该人只参加过一项培训的概率是
3()()0.60.250.40.750.45PPABPAB
该人参加过两项培训的概率是4()0.60.750.45PPAB. 所以该人参加过培训的概率是5340.450.450.9PPP. (II)因为每个人的选择是相互独立的,所以3人中参加过培训的人数服从二项分布(30.9)B,,33()0.90.1kkkPkC,0123k,,,,即的分布列是
0 1 2 3
P 0.001 0.027 0. 243 0.729
的期望是10.02720.24330.7292.7E.
(或的期望是30.92.7E) 用心 爱心 专心 115号编辑
19.解:(I)∵22cos2 2sin12cos2abcd, ∴2cos2abcd,∵04,∴022 ∴02cos22,∴(0,2)abcd的取值范围是。 (II)∵2()|2cos21||1cos2|2cosfab, 2()|2cos21||1cos2|2sinfcd
,
∴22()()2(cossin)2cos2fabfcd,
∵04,∴022,∴2cos20,∴()()fabfcd 20.解: (1)在△ADE中,y2=x2+AE2-2x·AE·cos60°y2=x2+AE2-x·AE,①
又S△ADE=21 S△ABC=23a2=21x·AE·sin60°x·AE=2.②
②代入①得y2=x2+2)x2(-2(y>0), ∴y=2x4x22(1≤x≤2). (2)如果DE是水管y=2x4x22≥2222, 当且仅当x2=2x4,即x=2时“=”成立,故DE∥BC,且DE=2. 如果DE是参观线路,记f(x)=x2+2x4,可知函数在[1,2]上递减, 在[2,2]上递增,故f(x) max=f(1)=f(2)=5. ∴y max=325. 即DE为AB中线或AC中线时,DE最长. 21.解:(I)axxxfxfy2)()(的图象过原点
由112)1(:2)(aafaxxf得 xxxf2)(
)]1()1[()2(2212nnnnnSSannSnnnn 22n
011Sa 所以,数列)(22}{*Nnnaann的通项公式为
(II)由nnbna33loglog得: )(3*2Nnnbnn nnbbbbT321
22410333323nn „„„„(1)
nnnT26423333239 „„„„(2)