全维、降维观测器

合集下载

江苏大学线性系统理论(现代控制理论)考试必备--第6章.答案

江苏大学线性系统理论(现代控制理论)考试必备--第6章.答案

=
C R
P1
CP1
RP
1
I qq 0
0 I ( n q )( n q )
再来讨论(n-q)维状态观测器的构建,用线性变换 x = Px,
将方程(1)变换成
x = PAP-1x + PBu y = CP-1x = CP-1x = Iqq 0 x
记 : A=PAP-1 B=PB
C CP1
以足够快的速度趋近于零,也就是说,不管状态观测器的
初始状态如何,状态观测器所重构的状态变量 xˆ 终将逐渐
趋近于实际状态 x ,所以,这样的状态观测器也称之为渐 进状态观测器。该性质也使其在实际使用中毋需设置初始 状态。
第6章 状态观测器
江苏大学电气学院
值得一提的是,虽然 (A-MC) 特征值的负实部离虚
i (A C M ) i , i =1,2, , n
求出M后,即可构成闭环状态观测器:
xˆ = (A - MC)xˆ + My + Bu
(8)
第6章 状态观测器
江苏大学电气学院
全维状态观测器的另一种设计方法是,先对被观测系
统进行非奇异变换 z=T,x 再从形式上列出类似于式(8)
的观测器方程。
B
x
x C
y
A
xˆ 0
B

xˆ C

A
第6章 状态观测器
江苏大学电气学院
这样的观测器称为开环状态观测器,从开环状态观测
器中取出 xˆ 可作为 x 的估计值近似替代,当然希望 xˆ 与x 是相等的。用 x 来表示 x 和 xˆ 的偏差,即 x x xˆ , 下面来简单分析估计偏差 x的特性。式(1)和式(2)相减得

《自动控制原理》线性定常系统的状态观测器

《自动控制原理》线性定常系统的状态观测器

A
BK − HC
x
x −

+
B0 v
(9-243a)
y = C
0x
x −

(9-243b)
由于线性变换后系统传递函数矩阵具有不变性,由式(9-282)可导
出系统传递函数矩阵
G(s) = C
0sI

(
A− 0
BK
)
− BK −1 B
sI − ( A − HC)
0
(9-244)
利用分块矩阵求逆公式
(9-247)
的传递函数矩阵。这说明复合系统与状态反馈子系统具有相同的传
递特性,与观测器部分无关,可用估值状态 xˆ 代替真实状态 x 作为
反馈。2n维复合系统导出了(n n) 传递矩阵,这是由于 (x − xˆ) 的不
可控造成的。
由于线性变换后特征值具有不变性,由式(9-243)易导出其特征值 满足关系式
x1
尽快逼
近 x1 。用降维状态观测器实现状态反馈的原理结构图如图9—35所
示。由图可得降维状态观测器动态方程
x1 = A11 x1 + v − H (zˆ − z), zˆ = A21 x1
(9—342)
式中H为(n − q) q 矩阵。
图9—35 用降维观测器实现状态反馈原理结构图 分离定理同样适用于降维状态观测器(证明略)。
9-7 线性定常系统的状态观测器
一、引言 ➢被控系统可控时可以利用状态反馈任意配置闭环极点 ➢实现状态反馈的条件之一:状态变量可以用传感器测量
➢问题:不能用传感器测量时 怎么办?
➢ 实现状态反馈的条件之二:所有状态变量可以由 u, y 观测
➢ 状态观测器:用已知的输入和可测量的输出观测或构造状态 又称状态估计器,状态重构器

状态观测器——精选推荐

状态观测器——精选推荐

4.5 状态观测器在4.2 节中介绍控制系统设计的极点配置方法时,曾假设所有的状态变量均可有效地用于反馈。

然而在实际情况中,不是所有的状态度变量都可用于反馈。

这时需要要估计不可用的状态变量。

需特别强调,应避免将一个状态变量微分产生另一个状态变量,因为噪声通常比控制信号变化更迅速,所以信号的微分总是减小了信噪比。

有时一个单一的微分过程可使信噪比减小数倍。

有几种不用微分来来估计不能观测状态的方法。

不能观测状态变量的估计通常称为观测。

估计或者观测状态变量的装置(或计算机程序)称为状态观测器,或简称观测器。

如果状态观测器能观测到系统的所有状态变量,不管其是否能直接测量,这种状态观测器均称为全维状态观测器。

有时,只需观测不可测量的状态变量,而不是可直接测量的状太态变量。

例如,由于输出变量是能观测的,并且它们与状态变量线性相关,所以无需观测所有的状态变量,而只观测n-m 个状态变量,其中n 是状态向量的维数,m 是输出向量的维数。

估计小于n 个状态变量(n 为状态向量的维数)的观测器称为降维状态观测器,或简称为降价观测器。

如果降维状态观测器的阶数是最小的,则称该观测器为最小阶状态观测器或最小阶观测器。

本节将讨论全维状态观测器和最小阶状态观测器。

4.5.1 引言状态观测器基于输出的测量和控制变量来估计状态变量。

在3.7节讨论的能观测性概念有重要作用。

正如下面将看到的,当且仅当满足能观测性条件时,才能设计状态观测器。

在下面关于状态观测器的讨论中,我们用x ~表示被观测的状态向量。

在许多实际情况中,将被观测的状态向量用于状态反馈,以产生所期望的控制向量。

考虑如下线性定常系统Bu Ax x += (4.27) Cx y =(4.28)假设状态向量x 由如下动态方程)~(~~x C y K Bu x A x e -++=(4.29)中的状态x ~来近似,该式表示状态观测器。

注意到状态观测器的输入为y 和u ,输出为x ~。

全维状态观测器的设计

全维状态观测器的设计

实验报告课程践性系统理抡基碣实验日期2016年6月6日 专业册级学号同组人 实验名称全维狀盗现測器的投廿坪分 批阅敎斷签字一、实鲨目的1. 学习用状态观测器获取系统状态IS it li ft 方法,了解全细状态观测器的 根点对状态的估it 误差的靈响;2. 拿捋全维状态观測器的设it 方法;3. 拿捋带有狀态规測器的状态反饋系躱设廿方法。

二、实验容a ) 用状态反馈配置系説的用环根点:一2±丿・2朽,一5;b ) 设廿全细狀态规測器,规测器的极点为:一5±/2巧,一10;0研究规测器tUE 置对估计状态逼近被估it 值的影响; d )求系统的传递函数(带规测器及不帑观测器时);绘制系躱的输出阶跃响应曲线。

三. 实螫环境MATLAB6.5・01 o'oA =0 0 1,b = 0-6-1161c = p 0 0]开环系统x = Ax + bu y = ex0.实验眾理(或程序框图)及步驟利用状态反饋可以便闭环系就的根点配置在所希里的位置上,以条件是必须对全部状态变量邵能iSliH量,但在实际系统中,并不是所有狀盗变量那能测量的,这就给狀态反锁的实现it成了困难。

SUtl设法利用已*11的信息(输岀量y和输人量x),通过一个模塑車新构适系貌状态以对状态变量进fiIfiito该模塑就枕为狀态规測器。

若状态观测器的阶次与系貌的阶次是曲同的,这样的状态规汹器就祢力全维狀态观测器或全阶观測器。

设系説完全可观,剧可fiiia图4"所示的狀态规测器图4-1全维状态範測器为求岀状态焜测器的反備ke熾益,与板点配置类做,也可有两种方法:方法一:构造变换矩阵Q,便系统变成标旌能规里,然后根齬特征方程求HI ke;方法二:是可采用Ackermann公式:& =①(A)Q:[o 0・・・0 if, 其中0。

力可规性矩眸。

利用对偶原理,可便设廿冋题大为简化。

首先构造对偶系貌然后可由变换沫或Ackermann公式求岀様点配置的反馈k增益,逹也可由MATLAB的place和acker函数得到;晟后求出狀态规测器的反饋增益。

实验6极点配置与全维状态观测器的设计

实验6极点配置与全维状态观测器的设计

实验6极点配置与全维状态观测器的设计实验 6 极点配置与全维状态观测器的设计⼀、实验⽬的1. 加深对状态反馈作⽤的理解。

2. 学习和掌握状态观测器的设计⽅法。

⼆、实验原理在MATLAB 中,可以使⽤acker 和place 函数来进⾏极点配置,函数的使⽤⽅法如下:K = acker(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。

K = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。

[K,PREC,MESSAGE] = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵,PREC 为特征值,MESSAGE 为配置中的出错信息。

三、实验内容1.已知系统(1)判断系统稳定性,说明原因。

(2)若不稳定,进⾏极点配置,期望极点:-1,-2,-3,求出状态反馈矩阵k。

(3)讨论状态反馈与输出反馈的关系,说明状态反馈为何能进⾏极点配置?(4)使⽤状态反馈进⾏零极点配置的前提条件是什么?1.(1)(2)代码:a=[-2 -1 1;1 0 1;-1 0 1];b=[1,1,1]';p=[-1,-2,-3]';K=acker(a,b,p)K =-1 2 4(3)讨论状态反馈与输出反馈的关系, 说明状态反馈为何能进⾏极点配置?在经典控制理论中,⼀般只考虑由系统的输出变量来构成反馈律,即输出反馈。

在现代控制理论的状态空间分析⽅法中,多考虑采⽤状态变量来构成反馈律,即状态反馈。

从状态空间模型输出⽅程可以看出,输出反馈可视为状态反馈的⼀个特例。

状态反馈可以提供更多的补偿信息,只要状态进⾏简单的计算再反馈,就可以获得优良的控制性能。

(4)使⽤状态反馈配置极点的前提是系统的状态是完全可控的。

2.已知系统设计全维状态观测器,使观测器的极点配置在12+j,12-j 。

(1)给出原系统的状态曲线。

(2)给出观测器的状态曲线并加以对⽐。

现代控制理论第五章

现代控制理论第五章

y = cx
由希望特征值确定希望特征多项式: 由希望特征值确定希望特征多项式:
* f * ( s ) = ( s − λ1 )( s − λ2 ) ⋯ ( s − λn ) = s n + a *−1 s n −1 + ⋯ + a1 s + a * n 0
设状态反馈系数矩阵 k = [k1
k2 ⋯ kn ]
5.应用举例
P204 例5-2 。
2 1 1 ɺ x= x + 2 u; − 1 1
y = [1 0]x
1 4 解:确定受控对象的能控性: U c = [b Ab ] = 确定受控对象的能控性: , rankU c = 2 2 1

方法之一: 方法之一:
ɺ x = ( A − BK ) x + Br y = Cx
ɺ x = ( A − BK ) x + Br y = (C − DK ) x + Dr
传递函数矩阵(D=0): G yr ( s ) = C [sI − ( A − BK )]−1 B 递函数矩阵( ) 可选择参数为
K r ×n
(3) 系统性能与系统结构的关系
f ( A) = a0 I + a1 A + ⋯ + an −1 An −1 + An = 0
得:
* f * ( A) = An + a *−1 An −1 + ⋯ + a1 A + a * I n 0
k = [k1
k 2 ⋯ k n ] = k Pc = [a *0 − a0
−1
a *1 −a1 ⋯ a *n −1 − an −1 ]Pc

一类非线性系统的观测器设计


KE Y WOR DS : N o n l i n e a r s y s t e m; F u l l - o r d e r o b s e ve r r ; R e d u c e d - o r d e r o b s e ve r r ; L i n e ma t r i x i n e q u a l i t y ( L MI )
第3 1 卷 第1 期
文章编号 : 1 0 0 6 — 9 3 4 8( 2 0 1 4 ) 0 1 — 0 4 0 3 — 0 4



仿

2 0 1 4 年1 月

类 非 线 性 系统 的观 测 器 设计
范子荣 , 滕青芳
( 1 . 山西 大同大学煤炭工程学院 , 山西 大同 0 3 7 0 0 3 ; 2 . 兰州交通大学 自动化 与电气 工程学 院, 甘肃 兰州 7 3 0 0 7 0 ) 摘要 : 针对具有线性部分 、 非线性部分满足 L i p s e h i t z 条件 的非线性 系统的状态不 可测量 , 首先设 计 了全维 观测器 , 利用 L y a —
态估计误差渐近收敛到零 , 表 明了所用方法 的有效性 和正确性 。 关键词 : 非线性 系统 ;全维观测器 ; 降维观测器 ; 线性矩阵不等式
中 图分 类 号 : T P 1 3 文献标识码 : A
Ob s e r v e r De s i g n f o r No n l i n e a r S y s t e ms
p u n o v方程给出了观测器误差系统渐进稳定 的充分条件 , 观测器增益 矩阵 的获得 完全取决 于线性矩 阵不等式 ( L MI ) 的解 的
情况 。其次设计 了降维观测器 , 并用 L M I 给 出其渐 近稳定 的条件 。最后 , 通过对实 际模型 的仿真分析可知 , 两种观测器 的状

现代控制理论-模拟题

《现代控制理论》模拟题一.单选题1.为一个n阶系统设计一个观测器,维数与受控系统维数相同的称为全维观测器.若系统有输出矩阵秩为m,那么()个状态分量可以用降维观测器进行重构.A.nB.mC.n-mD.n=m+1[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:2.若系统的所有实现维数都相同,该系统绝对().A.能观B.能控C.稳定D.最优[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:3.主对角线上方元素均为1,最后一行可取任意值,其余全为零,满足这些条件的矩阵为().A.约旦矩阵B.对角矩阵C.友矩阵D.变换矩阵[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:4.同一个系统的不同实现的()是不同的.A.状态变量的个数B.矩阵AC.特征根D.传递函数阵[答案]:B[二级属性]:[难度]:[公开度]:5.已知系统的状态空间表达式,建立框图时积分器的数目应该等于()的个数.A.输入变量B.状态变量C.输出变量D.反馈变量[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:6.状态空间表达式是对系统的一种()的描述.A.一般B.抽象C.假设D.完全[答案]:D[一级属性]:[二级属性]:[难度]:[公开度]:7.关于系统状态的稳定性,下列说法正确的是:().A.系统状态的稳定性与控制输入无关B.当控制输入的强度很大时,系统状态就有可能不稳定C.如果系统全局稳定,则系统只有唯一一个平衡点D.非线性系统不可能有渐进稳定平衡点[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:8.根据线性系统的叠加原理,非齐次线性状态方程的解由零输入响应分量与()响应分量的和构成.A.零初始状态B.输出C.稳态D.动态[一级属性]:[二级属性]:[难度]:[公开度]:9.一个线性连续系统的能控性等价于它的()系统的能观性.A.开环B.对偶C.精确离散化D.状态反馈闭环系统[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:10.降维观测器设计时,原系统初始状态为3,反馈矩阵增益为6,要使观测误差为零,则观测器的初始状态应为().A.3B.-6C.9D.15[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:11.基于能量的稳定性理论是由()构建的.A.LyapunovB.KalmanC.RouthD.Nyquist[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:12.下列语句中,正确的是().A.系统状态空间实现中选取状态变量是唯一的,其状态变量的个数也是唯一的B.系统状态空间实现中选取状态变量不是唯一的,其状态变量的个数也不是唯一的C.系统状态空间实现中选取状态变量是唯一的,其状态变量的个数不是唯一的D.系统状态空间实现中选取状态变量不是唯一的,其状态变量的个数是唯一的[答案]:D[一级属性]:[二级属性]:[难度]:[公开度]:13.受控系统采用状态反馈能解耦的充要条件是().A.系统能控能观B.传递函数矩阵满秩C.结构分解后子系统是渐近稳定的D.mXm维矩阵E非奇异[答案]:D[一级属性]:[二级属性]:[难度]:[公开度]:14.引入各种反馈构成闭环后,系统的能控性与能观性会影响系统的性能,对单输入-单输出系统而言,状态反馈会().A.改变系统的能控性B.改变系统的能观性C.改变系统的极点D.改变系统的零点[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:15.()问题的本质上其实是极点配置问题的一种特殊情况.A.极点配置B.系统解耦C.状态反馈D.最优控制[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:16.李雅普诺夫第二法的基本方法是通过()来判断系统的稳定性.A.系统状态方程的解B.李雅普诺夫函数C.特征方程跟的分布D.系统瞬态响应的质量[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:17.李雅普诺夫第一法的基本方法是通过()来判断系统的稳定性.A.系统状态方程的解B.李雅普诺夫函数C.特征方程跟的分布D.系统瞬态响应的质量[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:18.在经典控制理论,频域中的()是判定稳定性的通用方法.A.劳斯判据B.胡维茨判据C.奈奎斯特判据D.李雅普诺夫方法[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:19.在系统矩阵为约旦标准型的情况下,系统能观的()是输出矩阵C中,对于每个约旦块开头的一列元素不全为0.A.充分不必要B.必要不充分C.充分必要D.不充分不必要[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:20.系统的能控性是取决于状态方程中的系统矩阵A和控制矩阵b,其中控制矩阵b是与()有关的.A.系统的结构B.系统的内部参数C.控制作用的施加点D.外部扰动的施加点[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:21.一个系统可以通过选取许多种状态变量,可以具有不同的状态空间表达式,所选取的状态矢量之间,实际上是一种矢量的().A.旋转变换B.线性变换C.矢量D.坐标平移[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:22.一个系统可以具有多种不同的状态空间表达式,具有()的传递函数阵.A.相同个数B.唯一C.多种D.无数[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:23.对于能控能观的线性定常连续系统,采用静态输出反馈闭环系统的状态().A.能控且能观B.能观C.能控D.ABC三种情况都有可能[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:24.对SISO线性定常连续系统,传递函数存在零极点对消,则系统状态().A.不能控且不能观B.不能观C.不能控D.ABC三种情况都有可能[答案]:D[一级属性]:[二级属性]:[难度]:[公开度]:25.动态系统从参数随时间变化性来分,可分为().A.定常系统和时变系统B.线性系统与非线性系统C.开环系统和闭环系统D.连续系统与离散系统[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:26.一个线性系统可控性反映的是控制作用能否对系统的所有()产生影响.一个线性系统可观性反映的是能否在有限的时间内通过观测输出量,识别出系统的所有().A.输出,输出B.输出,状态C.状态,状态D.状态,输出[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:27.SISO线性定常系统的状态反馈系统与原系统的零点是()的.A.相同B.不同C.视情况而定D.无法判断[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:28.一个R-L-C串联网络,一般选取()作为此系统的状态变量(uc.ul.ur表示电容.电感.电阻两端电压,i表示回路电流)A.uc和urB.uc和ulC.uc和iD.ul和i[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:29.关于lyapunov稳定性分析下列说法错误的是().A.Lyapunov稳定是工程上的临界稳定B.Lyapunov渐近稳定是与工程上的稳定是不等价的C.Lyapunov工程上的一致渐近稳定比稳定更实用D.Lyapunov不稳定等同于工程意义下的发散性不稳定[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:30.已知x'=-5x+3u,y=4x,t≥0,则该系统是().A.能控不能观的B.能控能观的C.不能控能观的D.不能控不能观的[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:二.判断题1.系统1和系统2是互为对偶的两个系统,则系统1能控能观,则系统2也能控能观.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:2.镇定问题是系统极点配置的一种特殊情况.它要求将极点严格的配置在期望的位置上. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:3.状态稳定一定输出稳定,但输出稳定不一定状态稳定[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:4.所有的微分方程或传递函数都能求得其实现[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:5.系统中含有非线性元件的系统一定是非线性系统.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:6.在反馈连接中,两个系统(前向通道和反馈通道)都是正则的,则反馈连接是正则或非奇异的. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:7.对线性连续定常系统,渐近稳定等价于大范围渐近稳定.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:8.采样是将时间上连续的信号转换成时间上离散的脉冲或数字序列的过程;保持是将离散的采样信号恢复到连续信号的过程[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:9.在状态空间建模中,选择不同的状态变量,得到的系统特征值不同的.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:10.通过特征分解,提取的特征值表示特征的重要程度,而特征向量则表示这个特征是什么. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:11.线性变换的目的是为得到较为简洁且在一定程度上消除变量间耦合关系的形式.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:12.线性映射与线性变换的区别是前者是两个相同空间之间映射,而后者则是两个不同空间之间的映射[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:13.对线性定常系统基于观测器构成的状态反馈系统和状态直接反馈系统,它们的传递函数矩阵是相同的.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:14.某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统不存在.[一级属性]:[二级属性]:[难度]:[公开度]:15.由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:16.具有对角型状态矩阵的状态空间模型描述的系统可以看成是由多个一阶环节串联组成的系统[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:17.若线性二次型最优控制问题有解,则可以得到一个稳定化状态反馈控制器[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:18.状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:19.要使得观测器估计的状态尽可能快地逼近系统的实际状态,观测器的极点应该比系统极点快10倍以上.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:20.反馈控制可改变系统的稳定性.动态性能,但不改变系统的能控性和能观性.[一级属性]:[二级属性]:[难度]:[公开度]:21.互为对偶的状态空间模型具有相同的能控性.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:22.传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:23.输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:24.等价的状态空间模型具有相同的传递函数.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:25.相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:26.若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的;[答案]:T[二级属性]:[难度]:[公开度]:27.如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的. [答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:28.若系统状态完全能控,则对非渐近稳定系统通过引入状态反馈实现渐近稳定,称为镇定问题.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:29.系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:30.由一个状态空间模型可以确定惟一一个传递函数.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:31.系统的状态观测器存在的充分必要条件是:系统能观测,或者系统虽然不能观测,但是其不能观测的子系统的特征值具有负实部.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:32.如果系统不能控,就不能通过状态反馈使其镇定.[答案]:T[二级属性]:[难度]:[公开度]:33.经典控制理论用于研究线性系统,现代控制理论用来研究非线性系统.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:34.引入状态反馈后,系统的能控性和能观性一定会发生改变.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:35.李亚普诺夫稳定性与系统受干扰前所处得平衡位置有关.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:36.状态变量的选取是唯一的.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:37.对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H的参数能任意配置系统的闭环极点.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:38.通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测.[答案]:F[二级属性]:[难度]:[公开度]:39.用状态反馈进行系统极点配置可能会改变系统的可观测性.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:40.线性定常系统经过非奇异线性变换后,系统的可控性不变.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:41.李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性. [答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:42.李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:43.用独立变量描述的系统状态向量的维数不是唯一的.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:44.描述系统的状态方程不是唯一的.[答案]:F[一级属性]:[二级属性]:[公开度]:45.对于线性连续定常系统,状态反馈不改变系统的能观性,但不能保证系统的能控性不变. [答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:46.对线性连续定常系统,极点配置法与线性二次型最优控制采用的反馈方式是一样的,而反馈系数矩阵的构造方法不一样.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:47.对不能观测的系统状态可以设计全维观测器对其观测.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:48.线性连续定常系统的最小实现的维数是唯一的.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:49.采用理想采样保持器进行分析较实际采样保持器方便.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:50.在反馈连接中,两个系统(前向通道和反馈通道中)都是正则的,则反馈连接也是正则的. [答案]:T[一级属性]:[二级属性]:[难度]:51..对于线性系统有系统特征值和传递函数(阵)的不变性以及特征多项式的系数这一不变量. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:52.非线性系统在有些情况下也满足叠加定律.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:53.对于线性连续定常系统的输出最优调节器问题的,采用的是输出反馈方式构造控制器. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:54.对于线性连续定常系统,状态反馈的极点配置法与线性二次型最优控制采用的反馈方式是一样的,而反馈系数矩阵的构造方法不一样.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:55.动态规划方法给出的是最优控制的充分条件而非必要条件.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:56.动态规划方法保证了全过程性能指标最小,但并不能保证每一段性能指标最小.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:57.对于线性定常连续系统,就传递特征而言,带状态观测器的反馈闭环系统完全等效于同时带串联补偿和反馈补偿的输出反馈系统.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:58.基于状态观测器的反馈闭环系统与直接状态反馈闭环系统的响应在每一时刻都是相等的. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:59.对于任一线性定常连续系统,若其不可观,则用观测器构成的状态反馈系统和状态直接反馈系统是不具有相同的传递函数矩阵的.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:60.对于一个n维的线性定常连续系统,若其完全能观,则利用状态观测器实现的状态反馈闭环系统是2n维的[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:。

带全维观测器的全状态反馈系统的数字仿真(终)

实验二 带全维观测器的全状态反馈系统的数字仿真一、实验目的1.了解全维观测器的构成及应用; 2.研究不同的观测器极点对系统的影响二、实验原理设受控系统的动态方程为u x xB A += x yC = (2-1) 构造一个由计算机实现、且和原受控系统结构相同的模拟受控系统u x x B A += x y C =构造状态观测器的目的是使状态估计值x尽量接近实际系统的状态x ,由于系统初始状态等因数的影响,x 和x 之间存在差异,为减小这种差异,利用y y - 负反馈至模拟系统的x处,反馈系数矩阵为H ,按以上原理构成的状态观测器及其实现状态反馈的结构图如图2-1所示,从而得到全维状态观测器的动态方程为()A GC B Gy =-++x x u , x yC = (2-2) 由式(2-1)和(2-2)得状态向量误差方程()()A GC -=--x x x x (2-3)由式(2-3)可知,A GC -的特征值直接影响误差向量的衰减速度,若原受控系统状态完全可观测,则可以任意配置A GC -的极点,从而保证了状态观测器的存在。

图2-1 全维状态观测器及其实现状态反馈的结构图分离定理 若受控系统(A ,B ,C )可控可观测,用状态观测器估值形成状态反馈时,其系统的极点配置和观测器设计可分别独立进行。

由分离定理可以看出,由全维状态观测器提供的状态估值x代替真实状态x 来实现状态反馈,根据系统期望特征值设计的状态反馈矩阵K 不必重新设计,当观测器被引入系统以后,状态反馈部分也不会改变设计好的观测器极点配置。

求受控系统状态反馈矩阵K 和,观测器反馈系数矩阵H 的过程举例如下:假设SISO 受控系统的开环传递函数为31)(ss G =该系统可控标准形形式的状态方程和输出方程为u x x x Bu A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=100000100010321x x ,[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==321001x x x C y x 因为31000100012=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡rank CA CA C rank ,所以系统可观测。

【国家自然科学基金】_降维状态观测器_基金支持热词逐年推荐_【万方软件创新助手】_20140802

2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
科研热词 非线性系统 降维 输出反馈 观测器 自适应观测器 线性系统 未知参数 最优控制 控制时滞系统 扰动抑制 实时故障诊断 增广状态观测器 动态最优容错控制 lyapunov函数
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13
科研热词 飞控系统 非线性广义系统 非线性 降维观测器 观测器设计 线性矩阵不等式 线性变参数广义系统 状态反馈 混合悬浮 未知输入观测器(uio) 故障诊断 微分中值定理 反馈线性化
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12
科研热词 高增益观测器 降维观测器 降维状态观测器 观测器匹配条件 起重机吊重系统 状态估计 溶解氧 未知输入估计 未知输入 最优控制 增益 bsm1
推荐指数 2 2 2 2 1 1 1 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11
推荐指数 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2011年 科研热词 降维性不确定系统 随机非线性系统 降阶 运动同步 输出测量延时 输出反馈 观测器 线性矩阵不等式 离散系统 液压驱动系统 故障重构 故障检测 sylvester方程 lyapunov函数 h∞控制 推荐指数 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文通过具体的例子阐明如何在 MATLAB系统中进行全维状态观测器和降维状态观测器的设计。

MATLAB 为状态空间设计提供了很多有用的函数,方便了矩阵方程的求解,其中的MATLAB里面提供的库函数对全维状态观测器和降维状态观测器的设计也显得非常地方
便。

现通过例子说明如何用 MATLAB 设计状态观测器。

为了评价 MATLAB 所设计的状态观测器的性能,本文通过在 SIMULINK 环境下来仿真一个三阶状态观测器,来说明用 MATLAB 设计状态观测器的准确性。

1、全维观测器的设计
已知三阶系统的状态空间方程为:
首先检验系统的是否完全能观
A=[2 -1 1;0 -1 2;1 0 -2];
C=[2 1 0];
N=[C;C*A;C*A*A]
rank(N)
rank(N)
ans = 3 ,说明系统是完全能观的。

下面选择观测器需要配置的期望极点为:s1 =-12 s2,3 =-3±0.88i 由此求出观测器增益矩阵G:
A=[2 -1 1;0 -1 2;1 0 -2];
C=[2 1 0];
P =[-12;-3+0.88*i;-3-0.88*i];
G = acker(A',C',P);
求得G = [11.6527 -6.3054 1.0619]
可得全维观测器的方程为:
下面可依据上式构建simulink图,据此观察观测器的跟踪能力:
跟踪效果图如下:X1
X2
X3
从图中可以看出状态观测器的状态X1,X2,X3 能够完全估计原三阶系统的状态。

如果原三阶系统和其状态观测器的初始状态不同,状态观测器的状态
X1,X2,X3 不能同原三阶系统状态完全一致,但能很快跟踪原三阶系统状态(主要取决于状态观测器的响应速度,即状态观测器的极点配置。


2、降维观测器设计
从上面的全维观测器输出方程可以看出,此系统输出就等于第一个状态,因此该状态可以有输出求得,即变换矩阵P为单位阵,而降维观测器的阶次为2。

降维观测器的期望特征根选为-3±0.88i
据此求观测器增益
a22=[-1 1;0 -1];
a12=[-2 -2];
pe=[-3+1i*2*7^(1/2)/3;-3-1i*2*7^(1/2)/3];
lt=acker(a22',a12',pe);
l=lt'
求得
,得到
引入中间变量
得降维观测器的状态方程为
下面可依据上式构建simulink图,据此观察观测器的跟踪能力X2
X3
从降维观测器仿真的输出图形中可以看出,系统状态变量X2、X3的跟踪能力比较理想。

3、结论
本文提供了一种利用 MATLAB 软件,方便、快捷地设计全维状态观测器的方法。

通过本方法很容易设计出不同参数下性能良好的状态观测器,从而容易仿真出
状态观测器参数变化对状态跟踪性能的影响。

进一步可以对具有状态观测器的反馈控制系统进行设计和仿真,能够迅速地对系统在不同参数下进行性能仿真。

参考文献
〔1〕薛定宇.科学运算语言 MATLAB5.3 程序设计与应用〔M〕.北京:清华大学出版社,2000.
〔2〕魏克新. MATLAB 语言与自动控制系统设计[M].北京:机械工业出版社,1999.。

相关文档
最新文档