温度传感器工作原理

合集下载

cmos温度传感器工作原理

cmos温度传感器工作原理

cmos温度传感器工作原理CMOS温度传感器工作原理(CMOS Temperature Sensors Working Principle)CMOS温度传感器是利用互补金属氧化物半导体(CMOS)技术制造的温度传感器。

它由微型电流发生器组成,通过测量运算放大电路输出的电压或电流来获取温度信息。

CMOS温度传感器的工作原理可以分为以下几个步骤:1. 温度依赖电流源(Temperature-dependent current sources):2. 线性传感器(Linear sensor):温度依赖电流经过一个线性传感器转换为一定范围内的电压或电流,该传感器通常是一个差动放大器电路。

通过调整线性传感器的增益和偏置,可以使得传感器的输出与温度成线性关系。

3. 参考电压发生器(Reference voltage generator):为了在测量过程中提供一个对比准确的参考值,CMOS温度传感器使用一个参考电压发生器生成一个固定的参考电压,用于与线性传感器的输出进行比较。

4. ADC和数字处理(ADC and digital processing):将线性传感器的输出与参考电压进行比较后,得到一个模拟电压或电流值。

通常情况下,CMOS温度传感器将使用一个模数转换器(ADC)将模拟信号转换为数字信号。

然后,经过一系列的数字处理,可以将数字信号转换为温度值。

总的来说,CMOS温度传感器利用了CMOS技术的优势,通过温度依赖电流源、线性传感器、参考电压发生器、ADC和数字处理等步骤,实现了对温度的测量和转换。

这种传感器的优点包括体积小、功耗低、精度高等,因此在许多应用领域中得到了广泛的应用。

温度传感器工作原理

温度传感器工作原理

温度传感器工作原理一种常见的温度传感器是热敏电阻传感器。

热敏电阻传感器是利用温度对电阻值的影响来间接测量温度的。

热敏电阻材料是一种特殊的材料,其电阻值随温度的变化而变化。

热敏电阻传感器的主要元件是热敏电阻元件,它通常由金属或半导体材料制成。

当热敏电阻元件被加热时,其温度升高,导致其电阻值发生变化。

这是因为在金属中,热激发会增加电子的能量,并使其能够跳离原子核。

这种跳离现象会增加电阻。

而在半导体材料中,热激发会增加载流子的能量,并使其能够在材料中散射。

这种散射现象会减少载流子的迁移率,导致电阻值增加。

当温度升高时,热敏电阻的电阻值增加。

这是因为电阻值与载流子迁移率呈反比关系。

由于载流子受到散射的限制,它们在材料中的传输速度减慢,从而导致电阻增加。

这种电阻与温度之间的关系可以用以下公式表示:R = R0 * exp(B*(1/T - 1/T0))其中,R是电阻值,R0是参考温度下的电阻值,T是当前温度,T0是参考温度,B是材料常数。

这个公式描述了电阻值与温度之间的指数关系,即随着温度的升高,电阻值指数性地增加。

为了测量温度,热敏电阻通常被连接到一个电路中,该电路能够测量电阻值并将其转换为温度值。

这可以通过测量电路中的电压或电流来实现。

通常,将电阻与电桥电路相连,通过测量电桥的平衡点来确定电阻值。

当电桥平衡时,可以根据测量电桥电流或电压的方法来计算电阻值,进而确定温度。

除了热敏电阻传感器,还有其他种类的温度传感器,如热电偶、热电阻和半导体温度传感器等。

这些传感器利用不同的物理原理测量温度,并且具有不同的特性和应用。

总结起来,温度传感器的工作原理主要是通过测量温度对电阻、电压、电流等物理量的影响来间接测量温度。

各种类型的温度传感器都有不同的原理,但它们都基于温度与物理量之间的关系来实现温度测量。

这些传感器在工业、农业、医疗和家庭等领域都有广泛应用。

温度传感器原理

温度传感器原理

温度传感器原理摘要:本文将介绍温度传感器的原理和工作原理。

温度传感器是一种用于测量环境中温度变化的设备,在很多领域中都有广泛的应用。

了解温度传感器的原理对于了解其工作原理以及正确使用和维护温度传感器都非常重要。

第一部分:概述温度传感器是一种用于测量温度的电子设备,它可以将环境中的温度变化转化为电信号,并且可以通过一定的方式输出这些信号。

温度传感器的原理和工作原理基于物质的热传导性质以及电阻、压力、电磁等效应。

温度传感器广泛应用于气象、工业自动化、医疗、物流等各个领域。

第二部分:常见的温度传感器原理1. 热敏电阻(RTD)原理热敏电阻是一种利用材料在温度变化下电阻值发生变化的原理来测量温度的传感器。

热敏电阻的电阻值与温度成正比,温度越高,电阻值越大。

热敏电阻常用的材料有铂、镍、铜等。

2. 热电偶原理热电偶是由两种不同金属材料组成的,当两种金属接触处存在温度差异时会产生电动势。

热电偶传感器利用这种电动势来测量温度。

常见的热电偶材料有铜-铜镍、铁-铜镍等。

3. 热敏电容原理热敏电容传感器是一种利用材料热导率变化引起的电容变化来测量温度的传感器。

当温度升高时,材料的热导率降低,电容值也会随之改变。

4. 热电阻原理热电阻是由金属或半导体材料制成的,在温度变化下电阻值会发生变化。

热电阻传感器利用材料电阻与温度成正比的特性来测量温度。

第三部分:温度传感器工作原理温度传感器的工作原理基于传感器材料与温度之间的关系。

传感器材料的特性会随着温度的变化而改变,从而导致电信号的改变。

具体的工作原理根据不同的传感器原理而有所不同。

以热敏电阻为例,当温度升高时,热敏电阻材料的电阻值也会升高,这是因为材料的导电性随温度的升高而降低。

电路通过测量电阻值的变化来计算温度值。

热电偶传感器则是根据两种金属间的温度差异产生电动势的原理来工作的。

热电偶会生成一个微弱的电流信号,使用电压测量方法来计算温度。

热敏电容传感器利用材料的热导率变化引起的电容值变化来测量温度。

cmos温度传感器工作原理

cmos温度传感器工作原理

cmos温度传感器工作原理CMOS温度传感器是一种常见的温度测量设备,广泛应用于电子设备中。

它基于CMOS技术,利用晶体管的温度特性来实现温度测量。

下面将从工作原理、特点和应用等方面详细介绍CMOS温度传感器。

我们来了解一下CMOS温度传感器的工作原理。

CMOS温度传感器利用CMOS晶体管的温度特性来进行温度测量。

在CMOS晶体管中,晶体管的阈值电压与温度成反比。

利用这个特性,可以通过测量晶体管的阈值电压来得到温度值。

具体来说,CMOS温度传感器由一串串联的CMOS晶体管组成,这些晶体管的宽度和长度相同,且都是相同类型的晶体管。

通过在不同的晶体管上加上不同的电流,可以使得每个晶体管的阈值电压与温度呈线性关系。

通过测量这些晶体管的阈值电压,可以得到温度的近似值。

CMOS温度传感器的工作过程如下:首先,将一定电流通过CMOS晶体管,使其产生一定的电压。

然后,通过比较电路将晶体管的阈值电压与参考电压进行比较,得到一个比较结果。

最后,将这个比较结果转换成温度值。

CMOS温度传感器有许多优点。

首先,它具有较高的测量精度和稳定性,能够提供准确的温度测量结果。

其次,CMOS温度传感器具有较低的功耗和较小的尺寸,适用于电子设备中的集成电路。

此外,CMOS温度传感器还具有较快的响应速度和较宽的工作温度范围,能够满足不同应用场景的需求。

CMOS温度传感器广泛应用于各种电子设备中。

例如,它可以用于智能手机、平板电脑和笔记本电脑等移动设备中,用于监测设备的温度,以避免过热引发故障。

此外,CMOS温度传感器还可以应用于工业自动化领域,用于监测设备和系统的温度,以确保其正常运行。

总结起来,CMOS温度传感器是一种利用CMOS晶体管的温度特性来进行温度测量的设备。

它具有测量精度高、功耗低、尺寸小等优点,并广泛应用于各种电子设备中。

CMOS温度传感器的工作原理相对简单,但要实现高精度的温度测量仍需要一定的技术和算法支持。

随着科技的发展,CMOS温度传感器将会在更多领域得到应用,并不断提升其性能和功能。

温度传感器的工作原理

温度传感器的工作原理

温度传感器的工作原理
温度传感器是一种用来测量和监控温度的装置,它通常采用电子或机械的方式来读取温度值。

温度传感器常用于控制和监测各种低温和高温环境,如家用电器、汽车发动机和化学过程等,其工作原理也各不相同。

电子温度传感器通常采用电阻温度检测(RTD)或热电偶(TC)原理,它们都是利用电阻变化来测量温度。

RTD是通过测量电阻变化来测量温度,而热电偶是利用电流流动的方式来测量温度。

还有一种类型的电子温度传感器,即热敏电阻(NTC)传感器,它采用了热敏电阻原理,在温度改变时,电阻也会随之变化。

NTC传感器主要用于计算机、电器和电子设备的温度检测。

还有一种机械式的温度传感器,即液体晶体温度检测器,它是利用液体晶体材料的温度变化来测量温度。

该传感器具有良好的精度和可靠性,可以用于医学、石油和化工等行业的温度检测。

温度传感器的工作原理是根据温度的变化来测量和监控温度的,它可以采用电子或机械的方式来测量温度,如RTD、TC和NTC传感器,以及液体晶体温度检测器等。

温度传感器在家用电器、汽车发动机和化学过程中都有着广泛的应用,它能够提供精确的温度信息,从而确保安全性和可靠性。

车外温度传感器的工作原理

车外温度传感器的工作原理

车外温度传感器的工作原理车外温度传感器是一种用于测量汽车外部温度的传感器。

它通过感知周围环境的温度变化,将温度转化为电信号,并将其传输给车辆的控制系统。

车外温度传感器的工作原理可以简单概括为以下几个步骤。

车外温度传感器通常被安装在汽车的前部或侧部,以便能够准确地感知到外部的温度变化。

传感器通常由温度敏感元件、信号处理电路和输出接口组成。

温度敏感元件是车外温度传感器的核心部分,它能够根据温度的变化来改变其电阻或电容等物理量。

常用的温度敏感元件有热敏电阻和热敏电容。

当温度升高时,热敏电阻的电阻值会增加,而热敏电容的电容值会减小。

这样的变化能够被传感器采集到。

信号处理电路是用于处理传感器采集到的温度信号的部分。

它通常包括放大、滤波和模数转换等功能。

首先,放大电路会将传感器采集到的微弱信号放大到适合后续处理的范围内。

然后,滤波电路会滤除噪声和干扰,以保证输出信号的稳定性和准确性。

最后,模数转换电路会将模拟信号转换为数字信号,以便于后续的数字处理和显示。

输出接口是车外温度传感器与车辆控制系统之间的连接部分。

传感器会将处理后的温度信号输出给车辆控制系统,以供系统进行相应的处理和显示。

输出接口通常是以数字信号的形式进行传输,可以是串行通信接口(如CAN总线)或并行通信接口(如SPI接口)。

当车外温度传感器工作时,它会不断地感知周围环境的温度变化,并将这些变化转化为电信号。

这些电信号经过信号处理电路的处理后,最终以数字信号的形式输出给车辆控制系统。

车辆控制系统可以根据这些温度信号来进行相应的控制和调节,比如调整空调系统的工作模式、控制发动机的燃油供给等。

总结起来,车外温度传感器通过感知周围环境的温度变化,将温度转化为电信号,并通过信号处理和输出接口将其传输给车辆控制系统。

这样,车辆控制系统就能够根据外部温度的变化来进行相应的控制和调节,以提高驾驶的舒适性和安全性。

车外温度传感器在现代汽车中具有重要的作用,它不仅可以提供准确的外部温度信息,还可以为车辆控制系统提供更多的数据参考,以实现更智能化的控制和调节。

温度传感器的原理和应用实验总结

温度传感器的原理和应用实验总结1. 引言温度传感器是一种常见的用于测量环境或物体温度的设备。

它可以将温度转换为电信号,进而提供给其他设备进行处理和控制。

本文将介绍温度传感器的工作原理,并总结一些常见的实验应用。

2. 温度传感器的工作原理温度传感器的工作原理基于热电效应、电阻变化或半导体温度特性等原理。

以下是几种常见的温度传感器工作原理:2.1 热电温度传感器热电温度传感器基于热电效应,利用不同材料之间的电动势差来测量温度。

常见的热电温度传感器包括热电偶和热电阻。

•热电偶:通过两种不同金属材料的接触,利用金属间的热电效应来生成电信号。

该电信号与温度呈线性关系,可用于测量高温环境。

•热电阻:使用金属、合金或半导体等材料的电阻变化来测量温度。

常见的热电阻包括铂电阻和铜电阻。

2.2 电阻温度传感器电阻温度传感器通过测量电阻值的变化来估计温度。

这种传感器通常使用金属或半导体材料,其电阻值与温度呈线性关系。

常见的电阻温度传感器包括铝电阻和硅电阻。

2.3 半导体温度传感器半导体温度传感器利用半导体材料在不同温度下的电阻变化来测量温度。

它们具有较高的精度和较小的尺寸,广泛应用于汽车、家电和电子设备中。

3. 温度传感器的应用实验温度传感器在各个领域都有广泛的应用。

以下是一些常见的温度传感器应用实验:3.1 温度监测利用温度传感器监测环境温度的变化。

可以将温度传感器放置在室内或室外,记录温度变化的数据,并进行分析和控制。

3.2 温度控制通过温度传感器控制设备的温度。

例如,将温度传感器与加热元件结合使用,可以实现对恒温箱、电炉等设备温度的控制。

3.3 温度报警当温度超过或低于设定阈值时,温度传感器会触发报警。

这种应用在实验室、仓库、冰箱等场所广泛使用,用于保护物品免受温度变化的影响。

3.4 温度补偿在某些应用中,温度传感器可用于补偿其他传感器测量值的温度误差。

例如,温度传感器可以补偿压力传感器在高温环境下的读数。

3.5 温度检测与追踪利用温度传感器对物体表面温度进行检测和追踪。

环境温度传感器的工作原理

环境温度传感器的工作原理环境温度传感器是一种能够测量环境温度的装置。

它通过感知周围的温度变化,将这些变化转化为电信号,然后通过电路处理和转换,最终输出温度数值。

环境温度传感器的工作原理可以分为以下几个方面。

1. 热敏效应:环境温度传感器常用的传感器之一是热敏电阻。

热敏电阻是一种温度敏感的电阻器,其电阻值随温度的变化而变化。

当环境温度升高时,热敏电阻的电阻值会增大;当环境温度降低时,热敏电阻的电阻值会减小。

通过测量热敏电阻的电阻值变化,可以间接得到环境的温度。

2. 热电效应:环境温度传感器中还常用热电偶和热电阻作为温度传感器。

热电偶是由两种不同金属材料组成的导线,当两个接触点处于不同温度时,会产生热电势差。

通过测量热电偶的热电势差,可以计算出温度值。

热电阻则是利用材料的电阻随温度的变化特性,通过测量电阻的变化来计算温度。

3. 光学原理:环境温度传感器中的另一种常见传感器是红外线温度传感器。

红外线温度传感器利用物体发射的红外辐射来测量其表面温度。

红外线温度传感器能够感知物体发射的红外辐射强度,进而计算出物体的温度。

这种传感器常用于测量无法直接接触的物体的温度,例如高温物体或移动物体。

4. 压电效应:压电温度传感器是一种通过测量压电材料的电压变化来计算温度的传感器。

压电材料具有压电效应,当受到外力或温度变化时,会产生电压信号。

通过测量压电材料的电压变化,可以间接计算出环境的温度。

总结起来,环境温度传感器的工作原理主要涉及热敏效应、热电效应、光学原理和压电效应等。

这些原理使得传感器能够感知环境温度的变化,并将其转化为电信号输出。

通过对这些电信号的处理和转换,我们可以获得准确的环境温度数值。

环境温度传感器在各个领域中都有广泛的应用,例如气象、工业控制、农业等,对于实现温度监测和控制非常重要。

ntc温度传感器的工作原理

ntc温度传感器的工作原理NTC温度传感器是一种常见的温度测量设备,其工作原理基于热敏效应。

在本文中,我们将详细介绍NTC温度传感器的工作原理。

一、什么是NTC温度传感器?NTC是Negative Temperature Coefficient(负温度系数)的缩写,意味着当温度升高时,NTC材料的电阻值会下降。

NTC温度传感器由这种特殊材料制成,并用于测量环境或物体的温度。

它们广泛应用于家电、汽车、医疗设备等领域。

二、NTC材料的特性1. 负温度系数:当温度升高时,NTC材料的电阻值会下降。

2. 热敏效应:NTC材料对温度变化非常敏感,可以快速响应并提供准确的测量结果。

3. 非线性特性:NTC材料的电阻-温度关系呈非线性曲线,需要校准和补偿来提高精确性。

三、NTC温度传感器的结构1. NTC元件:NTC元件是由特殊材料制成的小型电阻器件。

它通常是一个陶瓷圆柱体,表面覆盖有导电材料。

NTC元件的电阻值随温度变化而变化。

2. 外壳:NTC温度传感器的外壳通常由金属或塑料制成,用于保护NTC元件并提供机械支撑。

3. 连接线:连接线用于将NTC温度传感器与电路板或测量设备连接起来。

四、NTC温度传感器的工作原理NTC温度传感器利用热敏效应来测量温度。

当环境或物体的温度发生变化时,NTC材料的电阻值也会相应地发生变化。

1. 电阻-温度关系NTC材料的电阻-温度关系呈现出非线性曲线。

随着温度升高,NTC 材料的导电能力增强,导致电阻值下降。

这种关系可以通过查找或实验得到一个特定的电阻-温度曲线。

2. 电路连接在典型的应用中,NTC元件与一个电路连接在一起。

该电路通常包括一个参考电压源和一个测量设备(如微处理器)。

参考电压源为NTC 元件提供恒定的电压。

测量设备用于测量NTC元件的电阻值,并基于已知的电阻-温度曲线计算出温度值。

3. 工作原理当NTC温度传感器与待测物体接触时,NTC元件会受到待测物体的温度影响。

红外温度传感器工作原理

红外温度传感器工作原理
红外温度传感器利用红外线辐射的原理来测量物体的温度。

红外线是一种电磁辐射,其波长范围在可见光和微波之间。

热物体会发出红外线辐射,而这种辐射的强度与物体的温度成正比。

红外温度传感器通常由红外传感器、电子电路和显示装置组成。

红外传感器是关键部件,它能够接收并转换红外辐射为电信号。

红外辐射通过透明的封装材料进入传感器,然后被吸收并转化为电流。

根据辐射的强度,电流的大小也会发生变化。

电子电路部分是用来处理传感器输出的电信号。

它通常包括放大器、滤波器和模数转换器。

放大器用来放大传感器输出的微弱信号,以便后续处理。

滤波器则用来去除电磁干扰和杂散信号,提高测量精度。

模数转换器将模拟信号转换为数字信号,以便后续处理和显示。

显示装置用于显示测量结果,通常采用数字显示或者液晶显示。

数字显示将温度数值以数字形式直接显示出来,而液晶显示则可以显示更多的信息,比如温度单位、最高/最低温度等。

当红外温度传感器工作时,它会对目标物体发出红外辐射,并测量目标物体反射回来的红外辐射强度。

根据反射的强度,传感器能够计算出目标物体的表面温度。

这种工作原理使得红外温度传感器在非接触式温度测量中非常常见,它可以在远距离、高温度或不同环境条件下进行准确测量,并且具有快速响应和使用简便的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。

利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。

温度传感器这些呈现规律性变化的物理性质主要有体。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

按照温度传感器输出信号的模式,可大致划分为三大类:数字式温度传感器、逻辑输出温度传感器、模拟式温度传感器。

进入21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

智能温度传感器的总线技术也实现了标准化、可作为从机可通过专用总线接口与主机进行通信。

温度传感器- 接触式温度传感器接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。

温度计温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。

一般测量精度较高。

在一定的测温范围内,温度计也可测量物体内部的温度分布。

但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。

它们广泛应用于工业、农业、商业等部门。

在日常生活中人们也常常使用这些温度计。

随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。

低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。

利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

温度传感器- 非接触式温度传感器它的敏感元件与被测对象互不接触,又称非接触式测温仪表。

这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温温度传感器度分布。

最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。

辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。

各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。

只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。

如欲测定物体的真实温度,则必须进行材料表面发射率的修正。

而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。

在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。

在这些具体情况下,物体表面发射率的测量是相当困难的。

对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。

附加辐射的影响能提高被测表面的有效辐射和有效发射系数。

利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。

最为典型的附加反射镜是半球反射镜。

球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数:式中ε为材料表面发射率,ρ为反射镜的反射率。

至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。

通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。

在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。

非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。

对于1800℃以上的高温,主要采用非接触测温方法。

随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

温度传感器- 热电偶工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。

这种由于温度不同而产生电动势的现象称为塞贝克效应。

与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,热电偶原理图此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。

两种不同导体或半导体的组合称为热电偶。

热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。

接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。

温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。

无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。

当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。

并规定在冷端,当电流由A流向B时,称A为正极,B为负极。

实验表明,当△V很小时,△V与△T成正比关系。

定义△V对△T的微分热电势为热电势率,又称塞贝克系数。

塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。

种类目前,国际电工委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E 型、J型、K型、N型、B型、R型和S型。

温度传感器- 热电阻材料特性导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。

纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。

②电阻率高,热容量小,反应速度快。

③材料的复现性和工艺性好,价格低。

热敏电阻温度特性④在测温范围内化学物理特性稳定。

目前,在工业中应用最广的铂和铜,并已制作成标准测温热电阻。

铂电阻铂电阻与温度之间的关系接近于线性(如右图),在0~630.74℃范围内可用下式表示Rt =R0(1+At+Bt2)在-190~0℃范围内为Rt=R0(1+At+Bt2十Ct3) 。

式中:RO、Rt为温度0°及t°时铂电阻的电阻值,t为任意温度,A、B、C为温度系数,由实验确定,A=3.9684×10-3/℃,B=-5.847×10-7/℃2,C=-4.22×10-l2/℃3。

由公式可看出,当R0值不同时,在同样温度下,其Rt值也不同。

铜电阻在测温精度要求不高,且测温范围比较小的情况下,可采用铜电阻做成热电阻材料代替铂电阻。

在-50~150℃的温度范围内,铜电阻与温度成线性关系,其电阻与温度关系的表达式为Rt=R0(1+At)(2-3)式中,A=4.25×10-3~4.28×10-3℃为铜电阻的温度系数。

温度传感器- 模拟温度传感器传统的模拟温度传感器,如热电偶、热敏电阻和RTDS对温度的监控,在一些温度范围内线性不好,需要进行冷端补偿或引线补偿;热惯性大,响应时间慢。

集成模拟温度传感器与之相比,具有灵敏度高、线性度好、响应速度快等优点,而且它还将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,有实际尺寸小、使用方便等优点。

常见的模拟温度传感器有LM3911、LM335、LM45、AD22103电压输出型、AD590电流输出型。

这里主要介绍该类器件的几个典型。

AD590温度传感器AD590AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,输出电流223μA(-50℃)~423μA(+150℃),灵敏度为1μA/℃。

当在电路中串接采样电阻R时,R两端的电压可作为喻出电压。

注意R的阻值不能取得太大,以保证AD590两端电压不低于3V。

AD590输出电流信号传输距离可达到1km以上。

作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。

适用于多点温度测量和远距离温度测量的控制。

LM135/235/335温度传感器LM135/235/335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,工作特性类似于齐纳稳压管。

该系列器件灵敏度为10mV/K,具有小于1Ω的动态阻抗,工作电流范围从400μA到5mA,精度为1℃,LM135的温度范围为-55℃~+150℃,L M235的温度范围为-40℃~+125℃,LM335为-40℃~+100℃。

封装形式有TO-46、TO-92、SO-8。

该系列器件广泛应用于温度测量、温差测量以及温度补偿系统中。

温度传感器- 逻辑输出型温度传感器在许多应用中,我们并不需要严格测量温度值,只关心温度是否超出了一个设定范围,一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、空调、加热器或其它控制设备,此时可选用逻辑输出式温度传感器。

LM56、MAX6501-MAX6504、MAX6509/6510是其典型代表。

LM56温度开关LM56是NS公司生产的高精度低压温度开关,内置1.25V参考电压输出端。

最大只能带5 0μA的负载。

电源电压从2.7~10V,工作电流最大230μA,内置传感器的灵敏度为6.2mV/℃,传感器输出电压为6.2mV/℃×T+395mV。

MAX6501/02/03/04温度监控开关MAX6501/02/03/04是具有逻辑输出和SOT-23封装的温度监视器件6052开关,它的设计非常简单:用户选择一种接近于自己需要的控制的温度门限(由厂方预设在-45℃到+115℃,预设值间隔为10℃)。

直接将其接入电路即可使用,无需任何外部元件。

其中MAX6501/MAX6503为漏极开路低电平报警输出,MAX6502/MAX6504为推/拉式高电平报警输出,MAX6501/MAX6503提供热温度预置门限(35℃到+115℃),当温度高于预置门限时报警;MAX6502/MAX6504提供冷温度预置门限(-45℃到+15℃),当温度低于预置门限时报警。

对于需要一个简单的温度超限报警而又空间有限的应用如笔记本电脑、蜂窝移动电话等应用来说是非常理想的,该器件的典型温度误差是±0.5℃,最大±4℃,滞回温度可通过引脚选择为2℃或10℃,以避免温度接近门限值时输出不稳定。

相关文档
最新文档