现代控制理论复习题库
现代控制理论考试题及答案

答案及评分标准一,填空(3分每空,共15分)1.输出变量 2.变量的个数最少 3.⎥⎦⎤⎢⎣⎡2001 4. 其状态空间最小实现为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100001100010 ; u x y 2102121+⎥⎦⎤⎢⎣⎡= 5. 0,021==x x二,选择题(3分每题,共12分) 1.B 2.D 3.B 4.C三,判断题(3分每题,共12分)1.2. √3.4. √四,简答题(共23分)1.(5分) 解 判定系统11221223x x x x x x =-+⎧⎨=--⎩在原点的稳定性。
解 2114523I A λλλλλ+--==+++,两个特征根均具有负实部,(3分) 系统大范围一致渐近稳定。
(2分) 无大范围扣一分,无一致渐近扣一分。
2. (5分)11b ab b -⎛⎫⎪--⎝⎭能控性矩阵为 (2分)1 rank 211det 1b ab b b ab b -⎛⎫= ⎪--⎝⎭-⎛⎫⇔ ⎪--⎝⎭210b ab =-+-≠ (5分)3.(8分)在零初始条件下进行拉式变换得:)()(2)()()(2)(3)(223S U S SU S U S S Y S SY S Y S S Y S ++=+++12312)()()(232+++++==∴S S S S S S U S Y S G (4分)[]XY U X X 121100321100010.=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∴ (8分)4.(5分)解:[]B CS G A SI --=1)( (2分)2342+--=S S S (5分) 五,计算题1. 1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦能控性矩阵满秩,所以系统能化成能控标准型。
(2分)[][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦(10分) 能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010..(12分) 2. 解:11][)(---==A SI L e t At φ (2分)⎥⎦⎤⎢⎣⎡+-+---=-==----------t t tt t t tt Ate e ee e e e e A SI L e t 3232323211326623][)(φ (8分) ∴系统零初态响应为 X(t)=0,34121)(32320)(≥⎥⎦⎤⎢⎣⎡-+-+-=-----⎰t e e e e d Bu et t t t t t A τττ (12分) 3. 解:因为能观性矩阵满秩,所以系统可观,可以设计状态观测器。
现代控制理论考试试题

现代控制理论考试试题现代控制理论考试试题一、简答题1. 什么是反馈控制系统?请简要解释其原理和作用。
反馈控制系统是一种通过测量输出信号并与期望信号进行比较,然后根据比较结果对输入信号进行调整的控制系统。
其原理是通过不断调整输入信号以使输出信号接近期望信号,从而实现对系统的控制。
反馈控制系统的作用是使系统能够自动调整,以适应外部环境的变化和内部扰动,从而提高系统的稳定性和性能。
2. 请简述PID控制器的工作原理和常见应用。
PID控制器是一种基于比例、积分和微分三个控制量的控制器。
其工作原理是根据当前的误差(偏差)信号,分别计算比例项、积分项和微分项,并将它们相加得到最终的控制量。
比例项用于根据当前误差的大小进行调整,积分项用于对累积误差进行调整,微分项用于对误差变化率进行调整。
PID控制器常见应用于工业过程控制、机器人控制、飞行器控制等领域。
3. 请解释什么是系统稳定性?如何判断一个控制系统的稳定性?系统稳定性是指系统在一定的工作条件下,输出信号始终趋于有限的范围内,不会出现无限增长或震荡的现象。
判断一个控制系统的稳定性可以通过判断系统的极点位置。
如果系统的所有极点的实部都小于零,则系统是稳定的;如果存在至少一个极点的实部大于零,则系统是不稳定的。
二、计算题1. 对于一个开环传递函数为G(s)=1/(s^2+2s+1)的系统,请计算其闭环传递函数和稳定裕度。
闭环传递函数可以通过将开环传递函数除以1加上开环传递函数得到,即H(s)=G(s)/(1+G(s))。
代入G(s)的表达式可得H(s)=1/(s^2+3s+2)。
稳定裕度是指系统的相角裕度和增益裕度。
相角裕度可以通过计算闭环传递函数在频率为零时的相位角来得到,即相角裕度=180°+arctan(0)=180°。
增益裕度可以通过计算闭环传递函数在频率为无穷大时的幅值来得到,即增益裕度=1。
2. 对于一个控制系统的状态空间表达式为dx/dt=Ax+Bu,y=Cx+Du,其中A、B、C、D分别为系统的矩阵参数,请计算该系统的传递函数。
现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。
现代控制理论考试试题

现代控制理论考试试题(正文开始)一、选择题1.控制系统的目标是()。
A. 提高系统的可靠性B. 提高系统的速度C. 提高系统的稳定性D. 提高系统的精度2.在控制系统中,遥感技术主要用于()。
A. 信号传输B. 参数估计C. 故障检测D. 软件设计3.传感器的作用是()。
A. 测量和检测B. 控制和调节C. 存储和处理D. 传输和接收4.反馈控制系统的特点是()。
A. 没有可靠性要求B. 没有精度要求C. 具有稳定性要求D. 具有高速响应要求5.频率响应函数是指()。
A. 系统的输出响应B. 系统的传输函数C. 系统的幅度特性D. 系统的无穷小响应二、简答题1.请解释什么是控制系统的稳定性,并给出判断系统稳定性的方法。
控制系统的稳定性是指系统在一定刺激下,输出保持有界或有限的范围内,不发生持续增长或不发散的性质。
判断系统稳定性的方法有两种:一种是通过系统的特征方程判断,如果特征方程的所有根的实部都小于零,则系统稳定;另一种是通过系统的频率响应函数判断,如果系统的幅频特性在一定频率范围内有界,则系统稳定。
2.什么是控制系统的鲁棒性?鲁棒性的提高可以通过哪些方法实现?控制系统的鲁棒性是指系统对于参数变化、扰动和不确定性的抵抗能力。
在实际应用中,由于系统中存在参数误差、外部扰动等因素,控制系统往往无法精确满足设计的要求,此时需要考虑鲁棒性。
提高鲁棒性的方法包括:采用更加鲁棒的控制器设计方法,如H∞控制、μ合成控制等;通过系统自适应、鲁棒估计等方法,对系统的参数变化进行实时估计和校正;对系统的扰动进行补偿等。
三、分析题考虑一个反馈控制系统,其开环传递函数为G(s),闭环传递函数为T(s),控制器的传递函数为C(s)。
1.给出控制系统的传递函数表达式。
控制系统的传递函数表达式为T(s) = G(s) / (1 + G(s)C(s))。
2.当G(s) = (s+1) / (s^2+3s+2),C(s) = K,求控制系统的闭环传递函数表达式。
现代控制理论复习资料

一卷一、选择题:1.非奇异状态变换不改变系统的:A.极点B.控制矩阵C.系统矩阵D.输出矩阵 2.两个系统()()12,W s W s 并联后,系统的传递函数为: A.()()()()1121W s W s I W s -+ B.()()12W s W s C.()()21W s W s D.()()12W s W s ± 3.()0,t t Φ为线性时变系统的状态转移矩阵,则:A.()()00,t t t t Φ=Φ-B.()()()211020,,,t t t t t t ΦΦ=ΦC.()()()211020,,t t t t t t ΦΦ=Φ-D.()()()211021,,,t t t t t t ΦΦ=Φ 4.线性系统,x Ax Bu y Cx =+=的完全能观性:A.与u 有关B.与B 有关C.与B 和u 都无关D.与B 和u 都有关5.()()1W s C sI A b -=-,一个单输入单输出系统(),,A B C 完全能控能观的充分必要条件是:A.()()1W s C sI A b -=-的分子分母不能相消B.()W s 只有稳定的零极点相消C.()W s 只有不稳定的零极点相消D.与()W s 零极点相消没关系 6.若系统x Ax =是渐近稳定的,则: A.存在()0V x >使()0V x >B.不一定存在二次型Lyapunov 函数C.一定存在二次型Lyapunov 函数()V x 使()V x 正定,()V x 负定D.存在()0V x < 使 ()0V x <7.若传递函数()W s 的分母的根都在左半复平面,则: A.()W s 的所有实现都是稳定的系统 B.最小实现可能是稳定的也可能是不稳定的系统 C.()W s 的所有实现都是不稳定的系统 D.()W s 的实现不一定是稳定的系统 8.若使系统的闭环极点能任意配置,则:A.(),,A b c 完全能控B.(),,A b c 完全能观C.(),,A b c 反馈能镇定D.(),,A b c 必须同时能控能观 9.被控系统(),,A B C 的状态反馈:A.不改变极点B.不改变零点C.极点和零点都改变D.极点和零点都不改变 10.若()1111,,A B C ∑=与()2222,,A B C ∑=互为对偶的,则:A.若1∑能观,则2∑能观B.若1∑能控,则2∑能控C.1∑与2∑的特征根相同D.1∑与2∑的传递函数矩阵相同二、计算题 1.已知系统[]001110310130102x x uy x-⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=- 判断系统是否是完全能控的,若不完全能控,将系统进行能控性结构分解,并判断这个系统是否可反馈镇定.2.已知系统[]10100111x x u y x⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭=- ① 设计状态观测器使其极点为-3,-2.② 取反馈控制律为()[]12ˆcos 11ˆxu t x ⎡⎤=-⎢⎥⎣⎦,求整个闭环系统方程.三、证明题1.对线性时不变系统,n x Ax Bu x R =+∈,若1,,...n M b Ab A b -⎡⎤=⎣⎦且rankM n =试证明系统是完全能控的.2.试证明系统 31211221x x x x x x x ⎧=-+⎨=--⎩的平衡点()0,0是渐近稳定的.一卷答案一、选择题:1.A,2.D,3.B,4.C,5.A,6.C,7.D,8.A,9.B, 10.C.二.计算题 1. 解:1)2101113012M bAbA b -⎡⎤⎢⎥⎡⎤==-⎣⎦⎢⎥⎢⎥-⎣⎦,()23rank M =< 系统是不完全能控的。
现代控制理论试题与答案

现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1A1,B1,C1和=∑2A2,B2,C2是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的完全能观的,则∑2是状态完全能观的完全能控的.对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=A,B,C,状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+为任意非奇异阵变换矩阵,空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φt2.线性定常非齐次方程的解:xt=Φtx0+∫t0Φt-τBuτdτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态xt0,转移到指定的任一终端状态xtf,称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:1在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.2T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为rn维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.1状态反馈不改变受控系统的能控性2输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能1采用状态反馈对系统任意配置极点的充要条件是∑0完全能控2对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件1∑0完全能控2动态补偿器的阶数为n-13对系统用从输出到x线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定1对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定2对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的3对系统采用输出到x反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出 11.系统解耦方法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现;5分 ②设系统的状态方程及输出方程为11000101;0111x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦[]001y x =试判定系统的能控性;5分2 已知系统的状态空间表达式为00001⎛⎫⎡⎤=+ ⎪⎢⎥⎝⎭⎣⎦x x u t ;[]x y 01=; ⎥⎦⎤⎢⎣⎡=11)0(x 试求当0;≥=t t u 时,系统的输出)(t y ;10分 3给定系统的状态空间表达式为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100110100013 ,211021y x -⎡⎤=⎢⎥⎣⎦ 试确定该系统能否状态反馈解耦,若能,则将其解耦10分 4 给定系统的状态空间表达式为设计一个具有特征值为 1 1 1---,,的全维状态观测器10分 5 ①已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围;5分② 判定系统11221223x x x x x x =-+⎧⎨=--⎩在原点的稳定性;5分6 已知系统 u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=110011 试将其化为能控标准型;10分 7 已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 求出串联后系统现代控制理论试题1 ① 取拉氏变换知 )()2()()22(33s u s s s y s ++=+21121)1(21)(2213++-=+++=s s s s s g 3分其状态空间最小实现为u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=101110 ; 21021+⎥⎦⎤⎢⎣⎡=x y 2分② 1n c u B ABA B -⎡⎤=⎣⎦012111101⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,秩为2,系统状态不完全能控; 2 解 02210(,)0.50.51⎛⎫Φ= ⎪-⎝⎭t t t t , 0()(,0)(0)(,)()tx t t x t B d τττ=Φ+Φ⎰ 1y = 3解 [][]100211101101c B ⎡⎤⎢⎥=-=-⎢⎥⎢⎥⎣⎦, [][]200021102101c B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦所以120d d ==,121121E E E -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦; 1111213--⎡⎤=⎢⎥⎣⎦E 又因为E 非奇异,所以能用实现解耦控制; 2分12630011c A F c A ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦1分 求出u kx Lv =-+4 解 令122E E E E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 代入系统得()123120()011100101sE sI A EC sE s E --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--=---⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭理想特征多项式为*332()(1)331f x s s s s =-=+++ 列方程,比较系数求得 001E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 全维状态观测器为[]ˆˆx A EC x Bu Ey =-++ 12020ˆ01100,00111x u y --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦5 解 ①显然原点为一个平衡点,根据克拉索夫斯基方法,可知 因为 02<-;所以,当0)cos 21(42cos 21cos 212211111>--=----x a a x x时,该系统在原点大范围渐近稳定;解上述不等式知,491>a 时,不等式恒成立; 即491>a 时,系统在原点大范围渐近稳定; ② 解 2114523I A λλλλλ+--==+++,两个特征根均具有负实部,系统大范围一致渐近稳定;2分6 解 1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦ [][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010 7 解 组合系统状态空间表达式为[]1200101001,00010011010010x x u y x -⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦5分组合系统传递函数为21()()()G s G s G s = 2分21331(1)(1)(1)(1)s s s s s s s ++=⨯=+-+-+ 3分。
(完整word版)现代控制理论复习题

现代控制理论复习题1.自然界存在两类系统:静态系统和动态系统。
2.系统的数学描述可分为外部描述和内部描述两种类型。
3.线性定常连续系统在输入为零时,由初始状态引起的运动称为自由运动。
4.稳定性、能控性、能观测性均是系统的重要结构性质。
5.互为对偶系统的特征方程和特征值相同。
6.任何状态不完全能控的线性定常连续系统,总可以分解成完全能控子系统和完全不能控子系统两部分。
7.任何状态不完全能观的线性定常连续系统,总可以分解成完全能观测子系统和完全不能观测子系统两部分。
8.对状态不完全能控又不完全能观的线性定常连续系统,总可以将系统分解成能控又能观测、能控但不能观测、不能控但能观测、不能控又不能观测四个子系统。
9.对SISO系统,状态完全能控能观的充要条件是系统的传递函数没有零极点对消。
10.李氏稳定性理论讨论的是动态系统各平衡态附近的局部稳定性问题。
11.经典控制理论讨论的是在有界输入下,是否产生有界输出的输入输出稳定性问题,李氏方法讨论的是动态系统各平衡态附近的局部稳定性问题。
12.状态反馈和输出反馈是控制系统设计中两种主要的反馈策略。
13.综合问题的性能指标可分为优化型和非优化型性能指标。
14.状态反馈不改变被控系统的能控性;输出反馈不改变被控系统的能控性和能观测性实对称矩阵P为正定的充要条件是P的各阶顺序主子式均大于零。
15.静态系统:对于任意时刻t,系统的输出唯一地却绝育同一时刻的输入,这类系统称为静态系统。
16.动态系统:对于任意时刻t,系统的输出不仅和t有关,而且与t时刻以前的累积有关,这类系统称为动态系统。
17.状态;状态方程:状态:系统运动信息的合集。
状态方程:系统的状态变量与输入之间的关系用一组一阶微分方程来描述的数学模型称之为状态方程。
18.状态变量:指能完全表征系统运动状态的最小一组变量。
状态向量:若一个系统有n个彼此独立的状态变量x1(t),x2(t)…xn(t),用它们作为分量所构成的向量x(t),就称为状态向量。
现代控制理论试题(详细答案)-现控题目

现代控制理论试题(含详细答案)一、选择题(每题5分,共25分)1. 系统的状态变量是指()A. 系统的输入信号B. 系统的输出信号C. 系统内部描述系统行为的变量D. 系统的反馈信号答案:C2. 状态空间表达式中,系统的状态方程和输出方程分别为()A. x(t) = Ax(t) + Bu(t),y(t) = Cx(t) + Du(t)B. x(t) = Bu(t) + Ax(t),y(t) = Du(t) + Cx(t)C. x(t) = Ax(t) + Bu(t),y(t) = Du(t) + Cx(t)D. x(t) = Bu(t) + Ax(t),y(t) = Cx(t) + Du(t)答案:A3. 系统传递函数的零点和极点分别对应于()A. 频率响应的幅值和相位B. 频率响应的相位和幅值C. 频率响应的谐振频率和谐振峰度D. 频率响应的稳态增益和相位答案:C4. 在控制系统中,以下哪种控制器可以使系统具有无静差特性()A. 比例控制器B. 积分控制器C. 比例-积分控制器D. 比例-微分控制器答案:C5. 状态空间表达式中,系统的可观性矩阵和可控制性矩阵分别为()A. Q = [C A],P = [B A]B. Q = [C A],P = [B A^(-1)]C. Q = [C^T A^T],P = [B^T A^T]D. Q = [C^T A^T],P = [B^T A]答案:D6. 状态空间表达式中,系统的状态方程为______,输出方程为______。
答案:x(t) = Ax(t) + Bu(t),y(t) = Cx(t) +Du(t)7. 系统传递函数的零点是指______,极点是指______。
答案:使传递函数等于零的频率点,使传递函数分母等于零的频率点8. 控制系统中的稳态误差与______、______和______有关。
答案:系统类型、输入信号类型、开环增益9. 状态反馈控制器的设计方法包括______、______和______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代控制理论复习题库一、选择题1.下面关于建模与模型说法错误的就是( C )。
A.无论就是何种系统,其模型均可用来提示规律或因果关系。
B.建模实际上就是通过数据、图表、数学表达式、程序、逻辑关系或各种方式的组合表示状态变量、输入变量、输出变量、参数之间的关系。
C.为设计控制器为目的建立模型只需要简练就可以了。
D.工程系统模型建模有两种途径,一就是机理建模,二就是系统辨识。
2.系统()3()10()y t y t u t++=的类型就是( B ) 。
A.集中参数、线性、动态系统。
B.集中参数、非线性、动态系统。
C.非集中参数、线性、动态系统。
D.集中参数、非线性、静态系统。
3.下面关于控制与控制系统说法错误的就是( B )。
A.反馈闭环控制可以在一定程度上克服不确定性。
B.反馈闭环控制不可能克服系统参数摄动。
C.反馈闭环控制可在一定程度上克服外界扰动的影响。
D.控制系统在达到控制目的的同时,强调稳、快、准、鲁棒、资源少省。
x Pz说法错误的就是( D )。
4.下面关于线性非奇异变换=A.非奇异变换阵P就是同一个线性空间两组不同基之间的过渡矩阵。
B.对于线性定常系统,线性非奇异变换不改变系统的特征值。
C.对于线性定常系统,线性非奇异变换不改变系统的传递函数。
D.对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。
5.下面关于稳定线性系统的响应说法正确的就是( A )。
A.线性系统的响应包含两部分,一部就是零状态响应,一部分就是零输入响应。
B.线性系统的零状态响应就是稳态响应的一部分。
C.线性系统暂态响应就是零输入响应的一部分。
D.离零点最近的极点在输出响应中所表征的运动模态权值越大。
6.下面关于连续线性时不变系统的能控性与能观性说法正确的就是( A ) 。
A.能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。
B.能控性就是指存在受限控制使系统由任意初态转移到零状态的能力。
C.能观性表征的就是状态反映输出的能力。
D.对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。
7. 下面关于系统Lyapunov 稳定性说法正确的就是( C ) 。
A.系统Lyapunov 稳定性就是针对平衡点的,只要一个平衡点稳定,其她平衡点也稳定。
B.通过克拉索夫斯基法一定可以构造出稳定系统的Lyapunov 函数。
C.Lyapunov 第二法只可以判定一般系统的稳定性,判定线性系统稳定性,只可以采用Lyapunov 方程。
D.线性系统Lyapunov 局部稳定等价于全局稳定性。
8. 下面关于时不变线性系统的控制综合说法正确的就是( A ) 。
A.基于极点配置实现状态反馈控制一定可以使系统稳定。
B.不可控的系统也就是不可镇定的。
C.不可观的系统一定不能通过基于降维观测器的状态反馈实现系统镇定。
D.基于观测器的状态反馈实际就是输出动态补偿与串联补偿的复合。
9. SISO 线性定常系统与其对偶系统,它们的输入输出传递函数就是( B ) 。
A.不一定相同B.一定相同的C.倒数关系D. 互逆关系10. 对SISO 线性定常连续系统,传递函数存在零极点对消,则系统状态( D ) 。
A.不能控且不能观B.不能观C.不能控D.ABC 三种情况都有可能11. 对于能控能观的线性定常连续系统,采用静态输出反馈闭环系统的状态( A ) 。
A.能控且能观B.能观C.能控D.ABC 三种情况都有可能12. 、线性SISO 定常系统(,,)∑=A b c ,输出渐近稳定的充要条件就是( B ) 。
A.其不可简约的传递函数()G s 的全部极点位于s 的左半平面。
B.矩阵A 的特征值均具有负实部。
C.其不可简约的传递函数()G s 的全部极点位于s 的右半平面。
D.矩阵A 的特征值均具有非正实部。
13. 线性定常系统的状态转移矩阵0()t t -Φ,其逆就是( C ) 。
A.0()t t +ΦB.0()t t -ΦC.0()t t -ΦD.0()t t --Φ14. 下面关于线性定常系统的反馈控制表述正确的就是( B ) 。
A.基于状态观测器的反馈闭环系统与直接状态反馈闭环系统的响应在每一时刻都就是相等的。
B.不可控的系统也可能采用反馈控制对其进行镇定。
C.对可控系统,输出反馈与状态反馈均可以实现极点任意配置。
D.Lyapunov 函数方法只能用来判定稳定性,不能用于设计使系统稳定的控制器。
15. 下面关于线性连续系统的状态转移矩阵表述错误的就是( D ) 。
A.0000(,)()(,),(,)t t t t t t t ==ΦA ΦΦIB.100(,)(,)t t t t -=ΦΦC.100212(,)(,)(,)t t t t t t =ΦΦΦD.状态转移矩阵不唯一16. 系统前向通道传递函数阵为G 1(s ),反馈通道传递函数阵为G 2(s ),则系统闭环传递函数为( B ) 。
A.1121()[()()]s s s -+G G G IB.1112()[()()]s s s -+G G G IC.1122[()()]()s s s -+G G G ID.1212[()()]()I s s s -+G G G17. 已知信号的最高频为ωf ,则通过离散化后能复原原信号的采样频率为( D ) 。
A.小于等于ωfB.ωfC.1、5ωfD.大于等于2ωf18. 传递函数G (s )的分母多项式为()G s α导出的状态空间描述的特征多项式为()s α,则必有(A ) 。
A.()()G s s αα= B.()()G s s αα> C.()()G s s αα< D.deg ()deg ()G s s αα≤19. 已知闭环系统的传递函数为1(1)s s +,则它就是( B ) 。
A.Lyapunov 渐近稳定B.Lyapunov 大范围渐近稳定C.Lyapunov 稳定D.Lyapunov 不稳定20. 已知时变系统的状态转移矩阵为,则10(,)t t -Φ等于( D ) 。
A.0(,)(t)t t ΦAB. 0(,)()t t t -ΦAC.0()(,)t t t A ΦD. 0()(,)t t t A Φ21. [(1),]k T kT +Φ在0t kT =附近泰勒展开的一阶近似为( B ) 。
A.0()t T AB.0()t T +A IC.()t T +A ID.0()t T -A I22. 下面关于线性连续定常系统的最小实现说法中( B )就是不正确的。
A.最小实现的维数就是唯一的。
B.最小实现的方式就是不唯的,有无数个。
C.最小实现的系统就是能观且能控的。
D.最小实现的系统就是稳定的。
23. 对确定性线性连续时不变系统,设计的线性观测器输入信号有2类信号,即( A )。
A.原系统的输入与输出B.原系统的输入与状态C.原系统的状态与输出D.自身的状态与原系统的输入24. 关于线性系统与非线性系统说法正确的就是( D )。
A.凡就是输入与状态关系满足叠加性的系统就就是线性系统。
B.非线性方程一定表示非线性系统。
C.系统中含有非线性元件的系统一定就是非线性系统。
D.因为初始条件与冲激输入的效果就是完全等效,所以将(,,,)∑=A BC D 在任何情况下都瞧成线性系统。
25. 线性定常系统的状态转移矩阵e t A 的性质错误的就是( D )。
A.若t 与τ就是独立的自变量,则有()e e e t t ττ+=A A AB. e =e t t A A A AC.11e =e t t --A A A AD. ()e =e e t t τ+A B A B26. 下面关于连续线性系统的能控性说法正确的就是( D )。
A.若0t 时刻的状态0x 能控,设f 0t t >且在系统的时间定域内,则必有f000(,)()()t t t d ττττ=-?x ΦB u 。
B.能控性就是指存在受限控制使系统由任意初态转移到零状态的能力。
C.常数非奇异变换改变系统的能控性。
D.系统状态若不完全能控,则一定可以将状态分成完全能控子空间与不完全能控的子空间,这两个子空间完全正交。
27. 下面关于连续线性系统的能观性说法错误的就是( A )。
A.一个系统不能观,意味着存在0()t x 满足000f ()(,)()0,[,]t t t t t t t =∈C Φx 。
B.能观性表征了输出反映内部状态的能力。
C.常数非奇异变换不改变系统的能观性。
D.系统状态若不完全能观,则一定可以将状态分成完全能观子空间与不完全能观的子空间,这两个子空间完全正交。
28. 下面关于线性时不变系统的观测器说法正确的就是( B )。
A.观测器在任何情况下一定存在。
B.观测器只有在不能观的部分渐近稳定时才存在。
C.全维观测器要比降维观测器简单。
D.观测器观测的状态在任意时刻与原系统的状态就是相等的。
29. 下面关于状态空间模型描述正确的就是( )。
A.对一个系统,只能选取一组状态变量。
B.对于线性定常系统的状态空间模型,经常数矩阵非奇异变换后的模型,其传递函数阵就是的零点就是有差别的。
C.代数等价的状态空间模型具有相同的特征多项式与稳定性。
D.模型的阶数就就是系统中含有储能元件的个数。
30. 下面关于线性时不变系统的系统矩阵说法错误的就是( )。
A.由系统矩阵可以得到系统的运动模态。
B.系统矩阵的形式决定着系统的稳定性质。