现代控制理论复习题库
现代控制理论经典习题

1、我国人民哪些发明属于在经典控制理论萌芽阶段的发明?(AB)A 指南车B 水运仪象台C 指南针D 印刷术2、经典控制理论也可以称为(BD)A 现代控制理论B 自动控制理论C 近代控制理论D 古典控制理论3、以下哪些内容属于现代控制理论基础的内容?(AB)A 李雅普诺夫稳定性理论B 极小值原理C 频率响应法D 根轨迹法4 、传递函数模型假设模型初值不为零。
(✖)5 、传递函数描述的是单输入单输出的外部描述模型。
(✖)6 、线性系统理论属于现代控制理论的知识体系中数学模型部份。
(✔)7 、最优控制理论属于现代控制理论的知识体系中估计方法部份。
(✖)8、控制科学的意义下,现代控制理论主要研究(数学建模)和(控制理论方法) 的科学问题。
9 、现代控制理论在整个控制理论发展中起到了(承上起下)的作用。
10、除了稳定性外,现代控制理论基础还考虑系统(能控性)和(能观测性)两个内部特性。
一、现代控制理论作为一门科学技术,已经得到了广泛的运用。
你还知道现代控制理论具体应用到哪些具体实际的例子么?1、关于输出方程,下列哪些说法是正确的?(BD)A 输出方程中状态变量必须是一阶的B 输出方程中不含输入的任何阶倒数C 输出方程中输入变量可以是任意阶的D 输出方程中不含状态变量的任何阶倒数2、关于系统的动态方程,下列哪些说法是正确的?(AB)A 系统的状态方程的状态变量的个数是惟一的B 系统输出方程的输入输出变量是惟一的C 系统输出方程的输入输出变量是不惟一的D 系统的状态方程的状态变量是惟一的3、对于一个有多个动态方程表示的系统,下列说法正确的是?(AC)A 这些动态方程一定是等价的B 这些动态方程经过线性变化后,不能转化为一个动态方程C 这些动态方程经过线性变化后,可以转化为一个动态方程D 这些动态方程不一定是等价的4、选取的状态向量是线性相关的(✖)5、状态向量的选取是不惟一的(✔)6、状态向量的个数是不惟一的(✖)7、输出方程的选取是不惟一的(✔)8、(系统的输出量与状态变量、输入变量关系的数学表达式)称为输出方程。
现代控制理论试题

一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
(×)1.具有对角型状态矩阵的状态空间模型描述的系统可以看成是由多个一阶环节串联组成的系统;
(×)2.要使得观测器估计的状态尽可能快地逼近系统的实际状态,观测器的极点应该比系统极点快10倍以上;
(×)4.若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;
(√)5.状态反馈不改变系统的能控性。
二、(20分)已知系统的传递函数为
(1)采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图;
(2)采用并联分解方式,给出其状态空间模型,并画出对应的状态变量图。
答:(1)将G(s)写成以下形式:
解:能控标准形为
能观测标准形为
对角标准形为
三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统
求其状态转移矩阵。
解:解法1。
容易得到系统状态矩阵A的两个特征值是 ,它们是不相同的,故系统的矩阵A可以对角化。矩阵A对应于特征值 的特征向量是
取变换矩阵 ,则
因此,
从而,
由期望极点 可得期望的闭环特征多项式
通过让以上两个特征多项式相等,可以列出一组以控制器参数为变量的线性方程组,由这组线性方程可以求出极点配置状态反馈的增益矩阵K。
②变换法
验证系统的能控性,若系统能控,则进行以下设计。
将状态空间模型转化为能控标准型,相应的状态变换矩阵
设期望的特征多项式为
而能控标准型的特征多项式为
通过
可得
由此方程组得到
因此,要设计的极点配置状态反馈控制器
六、(20分)给定系统状态空间模型
现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。
现代控制理论复习题

现代控制理论复习题一 判断题 (10分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
(×)对一个系统,只能选取一组状态变量;(√)由一个状态空间模型可以确定惟一一个传递函数。
(×) 一个传递函数只能有唯一的状态空间表达式。
(×)若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
(×)若一个对象的连续状态空间模型是能观测的,则其离散化状态空间模型也一定是能观测的。
(×)对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
(√)对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵的特征值都具有负实部是一致的。
(√)由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性; (×)若传递函数存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的; (×)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; (√)状态反馈不改变系统的能控性。
(√)线性定常系统的最小实现不是惟一的,但最小实现的维数是惟一的。
(×)一个系统的传递函数若有零极点对消现象,则其状态空间表达式必定是既能控又能观测的。
(√)由一个状态空间模型可以确定惟一一个传递函数。
(×)若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
(×)对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
(√)对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵的特征值都具有负实部是一致的。
(√)由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性; (×)若传递函数存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的; (×)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; 二 填空题(共10分,每空一分)1、同一系统,由于系统状态变量的选择不唯一,故建立的系统状态表达式 不唯一;但同一系统的传递函数阵却是 唯一 的,但 状态变量 个数等于系统中独立储能元件的个数。
现代控制理论试卷及答案-总结

、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数.〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现.〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的.〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的.〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态反馈使其稳定.〔×〕 6. 对一个系统,只能选取一组状态变量;〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;〔×〕 10. 状态反馈不改变系统的能控性和能观性.二、已知下图电路,以电源电压 u<t>为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输出量的输出方程.〔10 分〕解:〔1〕由电路原理得:二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网2 2络的状态方程和输出方程,并绘制状态变量图.解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量.以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令:i L = x 1 , u c = x 2,由基尔霍夫电压定律可得电压方程为: • •y y21 =-x x21+ u三、 〔每小题 10 分共 40 分〕基础题〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1+ -1 …………4 分不妨令X (s)1 = 1 ,X (s)2 = - 1 …………2 分 于是有 又Y(s)U(s)= 1+ X (s)1U(s)+ X (s)2U(s),所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有y = u + x + x …………2 分1 2最终的对角规 X 型实现为则系统的一个最小实现为:=「|2 0 ]+「| 1 ]|u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」U (s) s - 2 U (s) s + 1从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:〔2〕已知系统 =「| 0 1]| +「|1]|u, y = [1 -2] ,写出其对偶系统,判断该系统的能控性与其对偶系统的能观性.〔10 分〕解答:= 10 3-2+ -12 u…………………………2 分y = [1 2] ……………………………………2 分〔3〕设系统为试求系统输入为单位阶跃信号时的状态响应〔10 分〕 .解(t )=「|e-t 0 ]|L 0 e -2t 」……………………………..…….……..3 分(t) = (t )(0) + j 0t (t )u(t )d τ……….….……….……..3 分=11+ j 0t11d τ ….……..2 分=「| e-t ]| + j t 「| e -(t -t ) ]|d τL e -2t 」 0 |L e -2(t -t )」| .................................................................................... 1 分=(1- e1(1-2= 21 (1 e -2t )………………..1 分〔4〕已知系统 x =01 01x + 11u 试将其化为能控标准型.〔10 分〕 「0 1 ]解: u c = 11 02 , u -c 1 =|L 21 - 21 」| ............2 分 p 1= [0 1]u -c1 = [0 1]-121= [21 - 21].…….1 分 p 2= p 1A = [21- 21]01 01= [21 21].……..1 分 L -2 3」 L 2」「 1 - 1 ] 「 1 1]P = |L 212」| ,P -1 = |L -1 1」| ....................2 分能控标准型为x =「|0 1]|x +「|0]|u........ 4 分 四、设系统为试对系统进行能控性与能观测性分解,并求系统的传递函数.〔10 分〕 解:能控性分解:能观测性分解: 传递函数为g(s) ==(2分)五、试用李雅普诺夫第二法,判断系统 x •=「| 0 1 ]| x 的稳定性.〔10分〕方法一:解: x 1= x 2原点 x =0是系统的惟一平衡状态 .选取标准二次型函数为李雅e普诺夫函数,即当x 1 = 0 ,x 2 = 0 时, v(x) = 0 ;当x 1 丰 0 ,x 2 = 0 时,v(x) = 0 ,因此v(x) 为 负半定.根据判断,可知该系统在李雅普诺夫意义下是稳定的. 另选一个李雅普诺夫函数,例如:为正定,而为负定的,且当 x ) w ,有V (x)) w .即该系统在原点处是大 X 围渐进 稳定. 方法二:• • ••L -1 -1」L 0 1」 L 1」解:或者设P =则由 A T P + PA = -I 得+=可知 P 是正定的.因此系统在原点处是大 X 围渐近稳定的六、 〔20 分〕线性定常系统的传函为 Y (s) = s +4U (s) (s + 2)(s +1)〔1〕实现状态反馈,将系统闭环的希翼极点配置为(-4,-3),求反馈阵K .〔5 分〕〔2〕试设计极点为(-10,-10) 全维状态观测器〔5 分〕 . 〔3〕绘制带观测器的状态反馈闭环系统的状态变量图〔4 分〕 〔4〕分析闭环先后系统的能控性和能观性〔4 分〕注明:由于实现是不惟一的,本题的答案不惟一!其中一种答案为:解:〔1〕 Y (s) = s + 4 = s + 4U (s) (s + 2)(s +1) s 2 + 3s + 2系统的能控标准型实现为: X =「| 0 1 ]| X +「|0]| u, y = [4 1]X ……1 分系统彻底可控,则可以任意配置极点……1 分 令状态反馈增益阵为K = [k k ]……1 分1 2则有A - BK =「| 0 1 ]|,则状态反馈闭环特征多项式为又期望的闭环极点给出的特征多项式为: (s + 4)(s + 3) = s 2+ 7s +12由入2 + (k + 3)入 + (k + 2) = s 2 + 7s +12 可得到K = [4 10]……3 分1 2〔2〕观测器的设计:L -k 2 - 2 -k 1- 3」 L -2 -3」 L 1」由传递函数可知,原系统不存在零极点相消,系统状态彻底能观,可以任意配置观测器的极点.……1 分 令E = [e e ]T ……1 分1 2由观测器 = (A - EC)+ Bu + Ey 可得其期望的特征多项式为:f * (s) = f (s) 亭 E = - 311 395T ……4 分〔3〕绘制闭环系统的摹拟结构图第一种绘制方法:……4 分〔注:观测器输出端的加号和减号应去掉!不好意思, 刚发现!!〕第二种绘制方法:〔4〕闭环前系统状态彻底能控且能观,闭环后系统能控但不能观〔因 为状态反馈不改变系统的能控性 ,但闭环后存在零极点对消 ,所以系 统状体不彻底可观测〕……4 分A 卷-+-41 s32x 21 sx1x14+ + y10++22 - 3+ +1 s 222 - 358 -34 322 - 3 + ++1+ + - s1 4 43v u +-++++一、判断题,判断下例各题的正误,正确的打√ , 错误的打×〔每小题1 分,共10 分〕1、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换过程〔√〕2、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕3、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕4、系统的状态转移矩阵就是矩阵指数〔×〕5、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕6、状态的能空性是系统的一种结构特性,依赖于系统的结构, 与系统的参数和控制变量作用的位置有关〔√〕7、状态能控性与输出能控性之间存在必然的联系〔×〕8、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√ 〕9、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无关〔√〕10、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕二、已知系统的传递函数为试分别用以下方法写出系统的实现:(1) 串联分解(2) 并联分解(3) 直接分解(4) 能观测性规X 型〔20 分〕解:2对于s3 +10s2 + 31s + 30 有(1) 串联分解串联分解有多种,如果不将 2 分解为两个有理数的乘积,如2 = 1 8 ,绘制该系统串联分解的结4构图,然后每一个惯性环节的输出设为状态变量,则可得到系统四种典型的实现为:则对应的状态空间表达式为:需要说明的是, 当交换环节相乘的顺序时,对应地交换对应行之间对角线的元素. . 的实现为:〈0 0一311]XX + u则. .的实现为:〈0一311]XX + u挨次类推!! (2) 并联分解实现有无数种,若实现为〈X = X + 21u只要满足y = [c L 1 c 2 c 3]2 1〔3〕直接分解〔4〕能观测规 X 型三、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状态响应分别为试据此定出系统矩阵A.〔10 分〕解: x(t) = e At x(0) 可得四、已知系统的传递函数为〔1〕试确定 a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述 a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性; 〔3〕若a = 3 ,写出系统的一个最小实现.〔15 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 〔2〕可写系统的能控标准形实现为此问答案不惟一 存在零极相消,系统不能观 〔3〕 a = 3 ,则有G(s) =2 3 一1 3 如例如: s 3 + 10s 2 + 31s +30 = (s + 2) + (s + 3) + (s + 5),则其实现可以为:可写出能控标准形最小实现为此问答案不惟一,可有多种解五、已知系统的状态空间表达式为 〔1〕判断系统的能控性与能观测性; 〔2〕若不能控,试问能控的状态变量数为多少? 〔3〕试将系统按能控性进行分解; 〔4〕求系统的传递函数.〔15 分〕 解:〔1〕系统的能控性矩阵为U C = [b Ab ]= 10 -20, det U C = 0, rankU C = 1 < 2故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ]故系统的状态不能观测 4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1C〔3〕由状态方程式可知是x 能控的, x 是不能控的2 1〔4〕系统的传递函数为1 分2 分G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关六、给定系统解李雅普诺夫方程,求使得系统渐近稳定的 a 值 X 围.〔10 分〕七、伺服机电的输入为电枢电压,输出是轴转角,其传递函数为〔1〕设计状态反馈控制器u = -Kx + v ,使得闭环系统的极点为-5 士 j5 ;〔2〕设计全维状态观测器,观测器具有二重极点-15;〔3〕将上述设计的反馈控制器和观测器结合,构成带观测器的反馈控制器,画出闭环系统的状 态变量图;〔4〕求整个闭环系统的传递函数.〔20 分〕 第二章题 A 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 11、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换 过程〔 √〕12、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕13、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕3 分2 2 2s + 2U O= |L cA 」| = |L 19 -10」| , det U C = -115 丰 0, rankU O = 214、系统的状态转移矩阵就是矩阵指数〔×〕15、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕16、状态的能空性是系统的一种结构特性 ,依赖于系统的结构, 与系统的参数和控制变量作 用的位置有关〔 √〕17、状态能控性与输出能控性之间存在必然的联系〔×〕18、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√〕 19、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无 关〔 √〕20、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕第二题:已知系统的传递函数为G(s) == ,试分别用以下方法写出系统的实现:(5) 串联分解〔4 分〕 (6) 并联分解〔4 分〕 (7) 直接分解〔4 分〕 (8) 能观测性规 X 型〔4 分〕(9) 绘制串联分解实现时系统的结构图〔4 分〕解:s对于有s 3 +10s 2 + 31s + 30(3) 串联分解 串联分解有三种s = s . 1 . 1 = 1 . s . 1 = 1 . 1 . s s 3 +10s 2 + 31s + 30 (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) = (1)..=.(1).=.(1)对应的状态方程为:(4) 并联分解实现有无数种,其中之三为: 〔3〕直接分解 〔4〕能观测规 X 型 (10) 结构图第二章题 B 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 1、状态空间模型描述了输入-输出之间的行为,而且在任何初始条件下都能揭示系统的内部 行为〔 √〕2、状态空间描述是对系统的一种彻底的描述,而传递函数则只是对系统的一种外部描述〔√〕3、任何采样周期下都可以通过近似离散化方法将连续时间系统离散化〔×〕4、对于一个线性系统来说,经过线性非奇妙状态变换后,其状态能控性不变〔 √〕5、系统状态的能控所关心的是系统的任意时刻的运动〔×〕6、能观〔能控〕性问题可以转化为能控〔能观〕性问题来处理〔√〕7、一个系统的传递函数所表示的是该系统既能控又能观的子系统〔√〕8、一个系统的传递函数若有零、 极点对消现象,则视状态变量的选择不同,系统或者是不能控的Y(s) s 3 +10s 2 + 31s + 32U (s) (s 2 + 5s + 6)(s + 1)或者是不能观的〔 √〕9、对于一个给定的系统,李雅普诺夫函数是惟一的〔 ×〕 10、若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的〔√〕 第二题: 求以下 RLC 网络系统的状态空间模型, 并绘制其结构图.取电压 e_i 为输入,e_o 为输 出.其中 R 1 、R 2 、C 和 L 为常数.第二题图答案:解: 〔状态变量可以另取〕定义状态变量: x 1 为电阻两端电压 v,x 2 为通过电感的电流 i.输入 u 为 e_i ,输出 y 为e_o .使用 基尔霍夫电流定理列 R 1 和 R 2 间节点的电流方程:使用基尔霍夫电压定理列出包含 C 、R 2 、L 回路的电压方程: 最后,输出电压的表达式为: 得到状态空间模型: 结构图为:第三题: 如图所示,系统的输入量为 u 1 和 u 2、输出量为 y 和请选择适当的状态变量,并写出系 统的状态空间表达式,根据状态空间表达式求系统的闭环传递函数:第三题图 解:状态变量如下图所示〔3 分〕从方框图中可以写出状态方程和输出方程〔4〕 状态方程的矩阵向量形式: 系统的传递函数为〔3 分〕:. 解:由电路图可知:图1 :RC 无源网络可得:选,,=所以可以得到:解:运用公式可得:可得传递函数为:解:先求出系统的.可得:令,X<k>+解:计算算式为:所以:解:由于 A 无特定形式,用秩判据简单.因此,不管 a 去何值都不能够联合彻底能控和彻底能观测解:〔1〕选取李雅普若夫函数V<x>,取,可知:V<0>=0,即〔2〕计算基此可知:即:〔3〕判断和出:为正定.并判断其定号性.对取定和系统状态方程,计算得到:为负半定..对此, 只需判断的不为系统状态方程的解.为此,将带入状态方程, 导表明,状态方程的解只为, 不是系统状态方程的解.通过类似分析也可以得证不是系统状态方程的解. 基此, 可知判断.〔4〕综合可知,对于给定非线性时不变系统,可构造李雅普若夫函数判断满足:V<x>为正定, 为负定;对任意,当,有基此,并根据李雅普若夫方法渐近稳定性定理知:系统原点平衡状态为大X 围渐近稳定.解:可知,系统彻底可控,可以用状态反馈进行任意极点配置. 由于状态维数为 3 维.所以设.系统期望的特征多项式为:而令,二者相应系数相等.得:5 3 ]即: 验证:A 卷二、基础题〔每题 10 分〕1、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状 态响应分别为试据此定出系统矩阵 A .解: x(t) = e At x(0) 2 分可得e At = 4 4「| 1 (e -t + e 3t )4 分4 e -t + 4 e 3t |「 1 -5 e -t + 3 e 3t |L -1 1 1 ] 21 (e -t + e 3t )」2 ]-1 「| 43 e -t + 41 e 3t -1」| = - 23 e -t + 21e 3t45 e -t + 43e 3t ]|「-1 - 25 e -t + 23e 3t 」 |L 1-2] 1 」| A ==-te3t14-43t =0 = 41 11 2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化. 解:① 首先计算矩阵指数.采用拉氏变换法:e t = L -1 (s -)-1 = L -1〈-1= L -122)=3 分② 进而计算离散时间系统的系数矩阵.= e T =「|1 0.5 (1- e -2T )] T 「14 分0.4323] 0.1353」|2 分 「3 e -t + 1 e 3t |L 0 e -2T 」|| 将T = 1s 代入得 = e = |L 0 - 4 e -t + 4 e 3t| |- 3 e -t + 1 e 3t |L 2 2 = | 2||L -e -t + e 3t2 2 」|=(j T)B =〈(|j T「|10 |l 0 |L00.5(1- e-2t)] )|「0]「0.5T + 0.25e-2T - 0.25]=|L -0.5e-2T + 0.5 」|「1.0789]= | |③故系统离散化状态方程为xx21 = xx21kk+ u (k ) 2 分3、已知系统的传递函数为〔1〕试确定a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性;〔3〕若a = 3 ,写出系统的一个最小实现.〔10 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 3 分〔2〕可写系统的能控标准形实现为此问答案不惟一x =-x + u y =[2a 2 0]x3 分存在零极相消,系统不能观 1 分〔3〕a = 3 ,则有G(s) =可写出能控标准形最小实现为此问答案不惟一,可有多种解三、已知系统的状态空间表达式为3 分〔1〕判断系统的能控性与能观测性;〔2〕若不能控,试问能控的状态变量数为多少?〔3〕试将系统按能控性进行分解;〔4〕求系统的传递函数.〔10 分〕解:〔1〕系统的能控性矩阵为UC= [b Ab]=1-2, det UC= 0, rankUC= 1 < 23 分L0.4323」|dt卜||e-2t 」| J|L 1」故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ] U O= | | = | | ,detU = -115 丰 0, rankU = 2 C O4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1 1 分 C〔3〕由状态方程式可知是x 能控的, x 是不能控的 2 分3 分B 卷二、基础题〔每题 10 分〕1、给定一个连续时间线性定常系统, 已知状态转移矩阵个(t) 为 试据此定出系统矩阵 A .解:A =〈dt d(t) 卜Jt =0=t =0「 0 2 ] = | |2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化.解:① 首先计算矩阵指数.采用拉氏变换法: ② 进而计算离散时间系统的系数矩阵.「 1 T ] 「1 1]= e T = |L 0 1」|将T = 1s 代入得 = e T = |L 0 1」| ③ 故系统离散化状态方程为 3、已知系统的传递函数为试写出系统的能控标准形实现.〔10 分〕解:系统的能控标准形实现为三、试确定下列系统当 p 与 q 如何取值系统既能控又能观.〔10 分〕 解:系统的能控性矩阵为其行列式为 det [b Ab ]= p 2 + p - 12根据判定能控性的定理 , 若系统能控 , 则系统能控性矩阵的秩为 2,亦即行列式值不为2 1〔4〕系统的传递函数为G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关2 2 2s + 2L -1 -3」L cA 」 L 19 -10」 故系统的状态不能观测[b Ab]= p2+ p - 12 丰00 , det因此当p 丰3,-4 时系统能控系统能观测性矩阵为其行列式为根据判定能观性的定理, 若系统能观, 则系统能观性矩阵的秩为2, 亦即「c ]det | | = 12q2 - q - 1 丰0L cA」1 1因此当q 丰, - 时系统能观3 41 1综上可知, 当p 丰3, -4 , q 丰, - 时系统既能控又能观3 4。
现代控制理论考试试题

现代控制理论考试试题(正文开始)一、选择题1.控制系统的目标是()。
A. 提高系统的可靠性B. 提高系统的速度C. 提高系统的稳定性D. 提高系统的精度2.在控制系统中,遥感技术主要用于()。
A. 信号传输B. 参数估计C. 故障检测D. 软件设计3.传感器的作用是()。
A. 测量和检测B. 控制和调节C. 存储和处理D. 传输和接收4.反馈控制系统的特点是()。
A. 没有可靠性要求B. 没有精度要求C. 具有稳定性要求D. 具有高速响应要求5.频率响应函数是指()。
A. 系统的输出响应B. 系统的传输函数C. 系统的幅度特性D. 系统的无穷小响应二、简答题1.请解释什么是控制系统的稳定性,并给出判断系统稳定性的方法。
控制系统的稳定性是指系统在一定刺激下,输出保持有界或有限的范围内,不发生持续增长或不发散的性质。
判断系统稳定性的方法有两种:一种是通过系统的特征方程判断,如果特征方程的所有根的实部都小于零,则系统稳定;另一种是通过系统的频率响应函数判断,如果系统的幅频特性在一定频率范围内有界,则系统稳定。
2.什么是控制系统的鲁棒性?鲁棒性的提高可以通过哪些方法实现?控制系统的鲁棒性是指系统对于参数变化、扰动和不确定性的抵抗能力。
在实际应用中,由于系统中存在参数误差、外部扰动等因素,控制系统往往无法精确满足设计的要求,此时需要考虑鲁棒性。
提高鲁棒性的方法包括:采用更加鲁棒的控制器设计方法,如H∞控制、μ合成控制等;通过系统自适应、鲁棒估计等方法,对系统的参数变化进行实时估计和校正;对系统的扰动进行补偿等。
三、分析题考虑一个反馈控制系统,其开环传递函数为G(s),闭环传递函数为T(s),控制器的传递函数为C(s)。
1.给出控制系统的传递函数表达式。
控制系统的传递函数表达式为T(s) = G(s) / (1 + G(s)C(s))。
2.当G(s) = (s+1) / (s^2+3s+2),C(s) = K,求控制系统的闭环传递函数表达式。
现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单3.有电路如图1-28所示。
以电压U(t)为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻 R 2上的电压作为输出量的输出方程。
4.建立图P12所示系统的状态空间表达式。
M 21 f(t)5.两输入u i ,U 2,两输出y i ,y 的系统,其模拟结构图如图1-30所示,练习题 ,输出为,试自选状态变量并列写出其状2.有电路如图所示,设输入为 态空间表达式。
Cri _ l- ------- sR 2 U i U ciL uA------—2R i试求其状态空间表达式和传递函数阵。
6.系统的结构如图所示。
以图中所标记的 x 1、x 2、x 3作为状态变量,推导其状态空间表达式。
其中,u 、y 分别为系统的输入、 输出,1、2试求图中所示的电网络中,以电感L i 、L 2上的支电流x i 、X 2作为状态变量的状态空间表达式。
这里 u 是恒流源的电流值,输出 y 是R 3上的 支路电压。
8.已知系统的微分方程y y 4y 5y 3u ,试列写出状态空间表达式。
9.已知系统的微分方程2y 3y u u , 试列写出状态空间表达式。
10. 已知系统的微分方程y2y 3y 5y5u 7u ,试列写出状态空间表达式。
7.3均为标量。
11.系统的动态特性由下列微分方程描述y 5 y 7 y 3y u 3u 2u列写其相应的状态空间表达式,并画出相应的模拟结构图。
12. 已知系统传递函数 W(s) 坐 卫 2 ,试求出系统的约旦标准型s(s 2)(s 3)的实现,并画出相应的模拟结构图13. 给定下列状态空间表达式X 1 0 1 0 X 10 X 2 2 30 X 2 1 u X 31 13 X 32X 1y 00 1 x 2X 3(1)画出其模拟结构图;(2)求系统的传递函数14. 已知下列传递函数,试用直接分解法建立其状态空间表达式,并画出状 态变量图。
现代控制理论试题

现代控制理论试题(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除现代控制理论试题一、名词解释(15分)1、能控性2、能观性3、系统的最小实现4、渐近稳定性二、简答题(15分)1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质?2、如何判断线性定常系统的能控性如何判断线性定常系统的能观性3、传递函数矩阵的最小实现A、B、C和D的充要条件是什么?4、对于线性定常系统能够任意配置极点的充要条件是什么?5、线性定常连续系统状态观测器的存在条件是什么?三、计算题(70分)1、RC无源网络如图1所示,试列写出其状态方程和输出方程。
其中,为系统的输入,选两端的电压为状态变量,两端的电压为状态变量,电压为为系统的输出y。
图1:RC无源网络2、计算下列状态空间描述的传递函数g(s)3、求出下列连续时间线性是不变系统的时间离散化状态方程:其中,采样周期为T=2.4、求取下列各连续时间线性时不变系统的状态变量解和5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的取值范围:6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐近稳定:7、给定一个单输入单输出连续时间线性时不变系统的传递函数为试确定一个状态反馈矩阵K,使闭环极点配置为,和。
现代控制理论试题答案一、概念题1、何为系统的能控性和能观性?2、答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。
(2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t),就称系统在t0时刻是能观测的。
若在任意初始时刻系统都能观测,则0称系统是状态完全能观测的,简称能观测的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代控制理论复习题库一、填空题1. 对任意传递函数00()mnjj j j j j G s b sa s ===∑∑,其物理实现存在的条件是 。
2. 系统的状态方程为齐次微分方程=x Ax ,若初始时刻为0,x (0)=x 0则其解为___)()(0x x e t x t A =________。
其中, ___t e A __称为系统状态转移矩阵。
3. 对线性连续定常系统,渐近稳定等价于大范围渐近稳定,原因是___整个状态空间中只有一个平衡状态______________。
4. 系统1111(,,)∑=A B C 和2222(,,)∑=A B C 是互为对偶的两个系统,若1∑使完全能控的,则2∑是___完全能控_______的。
5. 能控性与能观性的概念是由__卡尔曼kalman ________提出的,基于能量的稳定性理论是由___lyapunov_______构建的6. 线性定常连续系统=+x Ax Bu ,系统矩阵是_____A______,控制矩阵是_____B_____。
7. 系统状态的可观测性表征的是状态可由 输出反映初始状态 完全反映的能力。
8. 线性系统的状态观测器有两个输入,即_________和__________。
9. 状态空间描述包括两部分,一部分是_状态_方程_______,另一部分是____输出方程______。
10. 系统状态的可控性表征的是状态可由 任意初始状态到零状态 完全控制的能力。
11. 由系统的输入-输出的动态关系建立系统的____传递函数___________,这样的问题叫实现问题。
12.某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统是否存在?___不存在_______。
13. 对线性定常系统,状态观测器的设计和状态反馈控制器的设计可以分开进行,互不影响,称为___分离___原理。
14. 对线性定常系统基于观测器构成的状态反馈系统和状态直接反馈系统,它们的传递函数矩阵是否相同?__不相同___。
15. 线性定常系统在控制作用()u t 下作强制运动,系统状态方程为u =+x Ax b ,若0()1(),(0)u t K t =⋅=x x ,系统的响应为10()e (e )t t t K -=+-A A x x A b I ,则若0()(),(0)u t K t δ=⋅=x x 时,系统的响应为_______________。
16. 设线性定常连续系统为=+x Ax Bu ,对任意给定的正定对称矩阵Q ,若存在正定的实对称矩阵P ,满足李亚普诺夫____________________,则可取T ()V =x x Px 为系统李亚普诺夫函数。
17. 自动化科学与技术和信息科学与技术有共同的理论基础,即信息论、___控制论_______、____系统论_______。
18. 系统的几个特征,分别是多元性、相关性、相对性、__整体性______、___抽象性______。
19. 动态系统中的系统变量有三种形式,即输入变量、__输出变量______、___状态变量______。
20. 线性定常系统的状态反馈系统的零点与原系统的零点是________的。
21. 已知LTI 系统的状态方程为23,0x x t =-+≥,则其状态转移矩阵是_________。
22. 已知LTI 系统的系统矩阵为A 经变换=x Tx 后,变成110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,其系统特征值为______,其几何重数为______。
23. 将LTI 连续系统c (,,)∑=A B C 精确离散化为d (,,)∑=G H C ,采样同期设为0.02s ,则=G ______,=H ______。
24. n 阶LTI 连续系统c (,,)∑=A B C 能控性矩阵秩判据是_____________________。
25. n 阶LTI 连续系统c (,,)∑=A B C 能观性矩阵秩判据是_____________________。
26. 已知系统的输出y 与输入u 的微分方程为24()47()y y y y t u u u t +-+=++,写出一种状态空间表达式27. 已知对象的传递函数为()5(31)G s s =+,若输入信号为sin8t ,则输出信号的频率是________Hz 。
28. 对于LTI 系统,如果已测得系统在零初始条件下的冲激响应为()t g t e -=,则在零初始条件下的阶跃响应是_________。
29. 已知()011,10231u y ⎛⎫⎛⎫=+= ⎪ ⎪--⎝⎭⎝⎭x x x ,计算传递函数为_______________。
30. 线性映射与线性变换的区别是____________________________________________。
31. 线性变换的目的是__通过相似变换实现其相应的矩阵具有较简洁的形式,这在系统中体现为消除系统变量间的耦合关系________________________________。
32. 通过特征分解,提取的特征值表示特征的重要程度,而特征向量则表示_________。
33. 称一个集中式参数动态系统适定,指其解是存在的、唯一的,且具有_________和_________。
34. 状态方程的响应由两部分组成,一部是零状态响应,一部分是__零输入_______。
35. 在状态空间描述系统时,状态的选择是___不唯一_____(填“唯一”或“不唯一”)的。
36. 在状态空间建模中,选择不同的状态变量,得到的系统特征值____不相同____。
(填“相同”或 “不相同”) 37. 一个线性系统可控性反映的是控制作用能否对系统的所有___变量____产生影响。
38. 一个线性系统可观性反映的是能否在有限的时间内通过观测输出量,识别出系统的所有______。
39. 两个线性系统的特征方程是相同的,那么这两个线性系统的稳定性是__相同___的。
40. 系统的五个基本特征分别为:相关性、多元性、相对性、抽象性和___整体性____。
41. 动态系统从参数随时间变化性来分,可分为:定常系统和___时变系统______。
42. 输入输出关系可用线性映射描述的系统就称之为线性系统,实际上系统只要满足__叠加性_____就是线性系统。
43. 在状态空间中可采用数学手段描述一个动态系统,包括两部分:一部分为状态方程,另一部分为__输出方程________。
44. 讨论某个(),e e x u 的足够小领域内的运动,任一光滑非线性系统均可通Taylor 展开,在这个领域内可用一个__________来代替。
45. 根据线性系统的叠加性原理,系统的响应可以分解成两部分:零输入响应和___零状态响应_______。
46. 系统的变量分为三大类:即输入变量、__状态变量________和输出变量。
47. 几乎任何稳定的控制系统具有一定的鲁棒性,这主要是因为_______的作用。
48. 采样是将时间上连续的信号转换成时间上离散的脉冲或数字序列的过程;保持是将________________________________的过程。
49. 线性系统只有一个平衡点,线性系统稳定性取决于系统矩阵的__特征值_____,而与初始条件和输入无关。
50. 判断是否为状态转移矩阵,其条件是只要满足___________________________。
51. 状态转移矩阵具有__唯一性_____、自反性、反身性以及传递性。
52. 若系统矩阵A 的某特征值代数重数为3,几何重数为3,说明矩阵A 化成Jordan 形后与该特征值对应的各Jordan 块是____阶。
53. 在反馈连接中,两个系统(前向通道和反馈通道)都是正则的,则反馈连接__不一定__(填一定或不一定)是正则的。
54. 串联的子系统若均为真的,则串联后的系统是_也为真______。
55.对一个动态系统,输入10cos(50)t 的正弦信号,其非钳位输出信号的基波频率是___100____rad/s 。
56. 严格真的传递函数通过单模变换后转化成的Smith-McMillan 规范型___不一定____ (填一定或不一定)是严真的。
二、判断题1. 任一线性连续定常系统的系统矩阵均可对角形化。
( )2. 设A 是常阵,则矩阵指数函数满足11e e t t --=A A A A 。
( )3. 对于SISO 线性连续定常系统,在状态方程中加入确定性扰动不会影响能控制性。
( )4. 对SISO 线性连续定常系统,传递函数存在零极点对消,则系统一定不能观且不能控制。
( × )5. 对线性连续定常系统,非奇异变换后的系统与原系统是代数等价的。
( )6. 对线性连续定常系统,非奇异变换后的系统特征值不变。
( )7. 线性连续定常系统的最小实现是唯一的。
( √ )8. 给定一个标量函数2212V x x =+一定是正定的。
( )9. 稳定性问题是相对于某个平衡状态而言的。
( ) 10. Lyapunov 第二法只给出了判定稳定性的充分条件。
( )11. 对于一个能观能控的线性连续定常系统,一定具有输出反馈的能镇定性。
( ) 12. 若一个线性连续定常系统完全能控,则该系统一定可能通过状态反馈镇定。
( )13. 若一个线性连续定常受控系统能控但不能观,则通过输出反馈构成的闭环系统也是同样能控但不能观的。
( )14. 针对某一问题,镇定性问题完全可以通过极点配置方法解决。
( ) 15. 能镇定的线性连续定常系统可以通过状态反馈将所有极点任意配置。
( )16. 对于SISO 线性连续定常系统,状态反馈后形成的闭环系统零点与原系统一样。
( ) 17. 对于线性连续定常系统,状态反馈不改变系统的能观性,但不能保证系统的能控性不变。
( ) 18. 对一个系统,只能选取一组状态变量。
( )19. 状态转移矩阵由系统状态方程的系统矩阵决定,进而决定系统的动态特性。
( ) 20. 若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。
( )21. 若一个对象的线性连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
( ) 22. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
( × )00(,)()(,)t t t t t =ΦA Φ00(,)t t =ΦI23. 对系统=x Ax ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。
( √ ) 24. 对不能观测的系统状态可以设计降维观测器对其观测。
( )25. 对于线性连续定常系统,用观测器构成的状态反馈系统和状态直接反馈系统具有相同的传递函数矩阵。