高一数学公式大全
高一数学必修公式总结大全

一、椭圆的离心率公式椭圆的离心率公式,即e=(a-b)/a,其中a是椭圆的长轴,b是椭圆的短轴。
这个公式可以用来描述椭圆形状的数学特征,表示椭圆形平面上离心率的大小。
二、双曲线的离心率公式双曲线的离心率公式为e=±1/a。
其中a是双曲线的半焦距。
仍用这个公式可以描述双曲线的数学特征,表示其离心率的大小。
三、抛物线的离心率公式抛物线的离心率即e=[(x1-x2)/2a]^0.5,其中x1是抛物线的右顶点,x2为抛物线的左顶点,a为抛物线的横轴焦点距。
仍用这个公式可以描述抛物线的数学特征,表示其离心率的大小。
四、圆的离心率公式圆的离心率e=0 。
圆是离心率最小的,表示它的形状是无最外离心点的,是离心距的定义的最小形状。
仍用这个公式可以描述圆的数学特征,表示其离心率的大小。
五、正弦定理、余弦定理正弦定理是由泰勒法定理衍生出的,它是由半径ru以及正弦的两个角的值推导出的,即a=ru*sinA,b=ru*cosA。
由此可以推导出:a/b=tanA,余弦定理是由三边推导出的,其中a,b与c为三角形的边长,A,B,C为三角形的对应角度。
其推导公式:c2=a2+b2-2ab乘以cosC。
六、勾股定理勾股定理是指直角三角形中,两条直角边分别表示为a、b,则斜边长为c,其公式为:a2+b2=c2。
这是一个最基本的数学定理,具有重要的实用价值。
七、海伦公式海伦公式是三角形的面积的计算公式,其公式为:s = (√p(p - a)(p - b)(p - c)),其中p为三角形的周长的一半,a,b,c分别为三角形的三边边长。
海伦公式是由勾股定理进一步推算而来,它可以用来计算三角形的面积。
八、勾股恒等式勾股恒等式是指:三角形的直角边的平方和,与斜边的平方相等。
即a2+b2=c2。
它是很基本的数学定理,由此可以推出勾股定理。
九、平面向量定理平面向量定理指的是两个平面向量的和等于算出它们的叉积的外接正方形的对角线的二倍。
高一数学公式总结_高一数学公式整理

高一数学公式总结_高一数学公式整理高一数学公式正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积s=c_h斜棱柱侧面积s=c_h正棱锥侧面积s=1/2c_h正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_r2圆柱侧面积s=c_h=2pi_h圆锥侧面积s=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r锥体体积公式v=1/3_s_h圆锥体体积公式v=1/3_pi_r2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_h圆柱体v=pi_r2h<<<高一和差化积公式2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB <<<高一某些数列前n项和公式1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3<<<高一圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】<<<高一数学椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
高一数学公式和知识点

高一数学公式和知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一数学公式和知识点本店铺整理的《高一数学公式和知识点》希望能够帮助到大家。
高一数学必修一所有公式归纳

高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
高一数学上册全部公式

高一数学上册全部公式一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。
- 若A中的元素都在B中,则A⊆ B(A是B的子集);若A⊆ B且B⊆ A,则A = B。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
2. 函数的表示法。
- 解析法:用数学表达式表示两个变量之间的对应关系。
- 图象法:用图象表示两个变量之间的对应关系。
- 列表法:列出表格来表示两个变量之间的对应关系。
3. 函数的性质。
- 单调性。
- 设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
- 奇偶性。
- 对于函数y = f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于函数定义域内的任意一个x,都有f(-x)= - f(x),那么函数y = f(x)是奇函数。
4. 一次函数y = kx + b(k≠0)- 斜率k=(Δ y)/(Δ x),k决定函数的单调性,当k>0时,函数单调递增;当k<0时,函数单调递减。
- b为截距,是直线与y轴交点的纵坐标。
5. 二次函数y = ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 对称轴方程x =-(b)/(2a)- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
高一数学必背公式及知识点汇总

高一数学必背公式及知识点汇总在高一数学学习中,掌握公式和知识点是非常重要的,它们是我们解题的基础。
下面将为大家总结一些高一数学中必须掌握的公式和知识点。
一、函数与方程1. 一次函数:函数表达式:y = kx + b直线斜率公式:k = (y₂ - y₁) / (x₂ - x₁)斜率与角度的关系: tanθ = k2. 二次函数:函数表达式:y = ax² + bx + c顶点坐标:(h, k)根与系数的关系:x₁ + x₂ = -b / a, x₁ * x₂ = c / a判别式:Δ = b² - 4ac根的个数与判别式的关系:Δ > 0 时,有两个不相等的实根;Δ = 0 时,有两个相等的实根;Δ < 0 时,无实根3. 指数与对数:指数运算法则:aᵇ * aᶜ = a⁽ᵇ⁺ᶜ⁾对数运算法则:log(mn) = logm + logn二、平面几何1. 勾股定理:a² + b² = c²(其中a、b为直角边,c为斜边)2. 直角三角形中的正弦定理、余弦定理:正弦定理:sinA / a = sinB / b = sinC / c余弦定理:c² = a² + b² - 2ab · cosC3. 三角函数的周期性及基本关系:正弦函数:f(x) = sinx余弦函数:f(x) = cosx正切函数:f(x) = tanx三、概率统计1. 事件发生的概率:P(A) = n(A) / n(S) (其中n(A)表示事件A 发生的次数,n(S)表示样本空间S中的元素个数)2. 排列组合:排列:从n个不同元素中,取出m(m≤n)个元素,按照一定的顺序排列,有多少种不同的排列方式组合:从n个不同元素中,取出m(m≤n)个元素,不考虑顺序,有多少种不同的组合方式3. 正态分布:正态分布的概率密度函数:f(x) = (1 / (σ * √(2π))) · exp((-1/2) * ((x - μ) / σ)²)正态分布的标准差和方差符号:σ和σ²四、解析几何1. 二维平面坐标系:直线的斜率:k = (y₂ - y₁) / (x₂ - x₁)中点坐标公式:(x,y) = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)2. 空间直角坐标系:三维空间两点间距离公式:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)以上是高一数学中的一些必背公式和知识点汇总,希望能对大家的学习有所帮助。
高一数学必修1公式总结

高一数学必修1公式总结高一数学必修1公式总结:一、基本运算公式:1. 加法法则:a + b = b + a2. 乘法法则:a × b = b × a3. 减法法则:a - b ≠ b - a4. 除法法则:a ÷ b ≠ b ÷ a二、整式的加减法:1. 同类项相加减法则:同类项之间的系数相加减,字母部分保持不变。
2. 不同类项相加减法则:不能进行直接加减,需进行合并同类项。
3. 加减法运算例子:(3x + 5) + (2x - 3) = (5x + 2),(4x^2 + 3x - 1) - (2x^2 + 4) = (2x^2 + 3x - 5)三、整式的乘法:1. 乘法运算原则:对于两个整式相乘,应将每个整式的各项分别相乘,然后进行合并。
2. 乘法法则例子:(3x + 2)(4x - 1) = 12x^2 + 2x - 4四、整式的除法:1. 除法运算原则:先将除数与被除数的首项相除,得到商的首项,然后用被除数减去商的乘积,得到剩下的式子,再对剩下的式子进行除法运算。
2. 除法法则例子:(12x^2 + 2x - 4) ÷ (3x + 2) = 4x - 3五、一元二次方程:1. 一元二次方程标准形式:ax^2 + bx + c = 02. 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac))/(2a)六、线性不等式:1. 符号法则:若a > b,则乘以相同正数或除以相同负数,不等号方向不变;若a < b,则乘以相同正数或除以相同负数,不等号方向相反。
2. 线性不等式解法例子:2x - 3 < 7,解得 x > 5七、等差数列:1. 等差数列通项公式:an = a1 + (n - 1)d,其中 an 表示第n项,a1 表示首项,d 表示公差。
2. 等差数列求和公式:Sn = (n/2)(a1 + an),其中 Sn 表示前 n项和。
高一数学知识点公式大全总结

高一数学知识点公式大全总结一、代数部分1. 二次根式求解法设$\sqrt{a}=b$,则$a=b^2$2. 平方差公式$(a+b)(a-b)=a^2-b^2$3. 平方和公式$(a+b)^2=a^2+2ab+b^2$4. 方程组解法联立两个方程,可以使用消元法或代入法等方式求解。
5. 一次函数的斜率$y=kx+b$中,斜率$k$的计算公式为$k=\frac{y_2-y_1}{x_2-x_1}$6. 一次函数的截距$y=kx+b$中,截距$b$的计算公式为$b=y-kx$7. 一元一次方程求解方法对于形如$ax+b=0$的方程,解为$x=-\frac{b}{a}$8. 一元二次方程求解方法对于形如$ax^2+bx+c=0$的方程,求解公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$9. 分式的运算法则加减法:通分后相加或相减,分母相同。
乘法:相乘后约分。
除法:转换为乘法,分子乘以倒数。
10. 根式的运算法则加减法:合并同类项,并进行化简。
乘法:相乘后合并同类项,并进行化简。
除法:转换为乘法,除数的倒数乘以被除数。
二、几何部分1. 三角形内角和定理三角形的内角之和等于180度,即$\angle A+\angle B+\angle C=180^\circ$2. 直线与平行线的夹角当两条直线平行时,与这两条直线相交的直线与其中任一条直线的夹角相等,即$\angle A=\angle B$3. 三角形的面积公式设三角形的底为$b$,高为$h$,则三角形的面积$S=\frac{1}{2}bh$4. 直角三角形的勾股定理设直角三角形的两个直角边分别为$a$和$b$,斜边为$c$,则$a^2+b^2=c^2$5. 等腰三角形的性质等腰三角形的两边边长相等,底角也相等。
6. 正方形的性质正方形的四条边相等,四个内角都为90度。
7. 平行四边形的性质平行四边形的对边相等且平行,相邻两个内角互补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧阳地创编 欧阳地创编 两角和公式 时间:2021.03.04 创作:欧阳地 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-
1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 欧阳地创编
欧阳地创编 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) 欧阳地创编
欧阳地创编 a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 降幂公式 (sin^2)x=1-cos2x/2 (cos^2)x=i=cos2x/2 万能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα 欧阳地创编
欧阳地创编 tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: 欧阳地创编
欧阳地创编 sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 奇变偶不变,符号看象限。 同角三角函数基本关系 同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 欧阳地创编
欧阳地创编 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 两角和差公式 两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)] 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) sin^2(α/2)=(1-cosα)/2 欧阳地创编
欧阳地创编 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) 另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα) 万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 和差化积公式 三角函数的和差化积公式 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cosα+cosβ=2cos[(α+欧阳地创编
欧阳地创编 β)/2]·cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 积化和差公式 三角函数的积化和差公式 sinα ·cosβ=0.5[sin(α+β)+sin(α-β)] cosα ·sinβ=0.5[sin(α+β)-sin(α-β)] cosα ·cosβ=0.5[cos(α+β)+cos(α-β)] sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)] 和差化积公式推导 附推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到