Σ-Δ模数转换器基本原理及应用

Σ-Δ模数转换器基本原理及应用
Σ-Δ模数转换器基本原理及应用

Σ-Δ模数转换器基本原理及应用

一、Σ-Δ ADC基本原理

Σ-Δ ADC以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化, 通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率, 然后对ADC输出进行采样抽取处理以降低有效采样速率。Σ-ΔADC 的电路结构是由非常简单的模拟电路(一个比较器、一个开关、一个或几个积分器及模拟求和电路)和十分复杂的数字信号处理电路构成。要了解Σ-ΔADC的工作原理, 必须熟悉过采样、噪声整形、数字滤波和

采样抽取等基本概念

1.过采样

ADC是一种数字输出与模拟输入成正比的电路, 图1给出了理想3位单极性ADC的转换特性, 横坐标是输入电压U IN 的相对值, 纵坐标是经过采样量化的数字输出量, 以二进制000~111表示。理想ADC 第一位的变迁发生在相当于1/2LSB的模拟电压值上, 以后每隔1LSB都发生一次变迁, 直至距离满度的1 1/2 LSB。因为ADC的模拟量输入可以是任何值, 但数字输出是量化的, 所以实际的模拟输入与数字输出之间存在±1/2LSB的量化误差。在交流采样应用中, 这种量化误差会产生量化噪声。

图1 理想3位ADC转换特性

如果对理想ADC加一恒定直流输入电压, 那么多次采样得到的数字输出值总是相同的, 而且分辨率受量化误差的限制。如果在这个直流输入信号上叠加一个交流信号, 并用比这交流信号频率高得多的采样频率进行采样, 此时得到的数字输出值将是变化的, 用这些采样结果的平均值表示ADC的转换结果便能得到比用同样ADC高得多的采样分辨率, 这种方法称作过采样(oversampling)。如果模拟输入电压本身就是交流信号, 则不必另叠加一个交流信号。采用过采样方法(采样频率远高于输入信号频率)也同样可提高ADC 的分辨率。

由于过采样的采样速率高于输入信号最高频率的许多倍, 这有利于简化抗混叠滤波器的设计, 提高信噪比并改善动态范围。可以用频域分析方法来讨论过采样问题。由于直流信号转换具有的量化误差达1/2LSB, 所以数据采样系统具有量化噪声。一个理想的常规N位ADC的采样量化噪声有效值为q/12,均匀分布在奈奎斯特频带直流至fs/2范围内, 如图2所示。其中q为LSB的权重, fs为采样速率, 模拟低通滤波器将滤除fs/2以上的噪声。如果用Kfs的采样速率对输入信号进行采样(K

图2 使用模拟低通滤波器的奈奎斯特采样为过采样倍率),奈奎斯特频率增至Kfs/2, 整个量化噪声位于直流至Kfs/2之间, 其有效值降为原来的1/K,如图3所示。由于模拟低通滤波器只需滤除Kfs/2以上的噪声, 因此降低了对模拟低通滤波器的整体要求。又由于系统的通带频率仍为fa, 所以可在ADC之后加一个数字低通滤波器滤除fa至Kfs/2之间的无用信号而又不影响有用信号, 从而提高了信噪比, 实现了用低分辨率ADC达到高分辨率的效果。

如果简单地使用过采样方法使分辨率提高N位,必须进行K=2 2N 倍过采样。为使采样速率不超过一个合理的界限, 需要对量化噪声的频谱进行整形使得大部分噪声位于fs/2至Kfs/2之间,而仅仅一小部分留在直流至fs/2内, 这正是Σ-Δ ADC中Σ Δ调制器所起的作用。噪声频谱被调制器整形后, 数字滤波器可

图3 带模拟滤波和数字滤波的过采样

去除大部分量化噪声能量, 使总信噪比(以及动态范围)大大增加。

2.Σ-ΔADC的调制器和量化噪声整形

图4给出了一阶Σ-Δ ADC的原理框图。虚线框内是Σ Δ调制器,它以Kfs采样速率将输入信号转换为由1和0构成的连续串行位流。1位DAC由串行输出数据流驱动, 1位DAC的输出以负反馈形式与输入信号求和。根据反馈控制理论可知, 如果反馈环路的增益足够大, DAC输

出的平均值(串行位流)接近输入信号的平均值。

Σ-Δ 调制器的工作原理还可以用图5所示对应图4中,A,B,C,D各点的的信号波形图描述。其中图5(a)是输入电压U IN =0的情况, 输出为0, 1相间的数据流。如果数字滤波器对每8个采样值取平均, 所

得到的输出值为4/8, 这个值正好是3位双极性输入ADC的零。当输入电压U IN =+1/4U REF , 则信号波形如图5(b)所示, 求和输出A点的正、负幅度不对称, 引起正、反向积分斜率不等, 于是调制器输出1的个数多于0

图4 一阶Σ-ΔADC

的个数。如果数字滤波器仍对每8个采样值取平均, 所得到的输出值为5/8, 这个值正是3位双极性输入ADC对应于+1/4U REF 的转换值。

图5 Σ Δ调制器波形图

由于积分器可以在频域内用一个幅度响应与1/f成正比的滤波器加以表示(这里f是积分器输入信号频率)。又由于带时钟的锁存比较器具有类似斩波器的作用, 它将输入信号转换为高频交流信号, 在输入信号平均值附近变化, 因而低频下的量化噪声大大减少(这个积分器对量化噪声如同一个高通滤波器)。这种情况下产生噪声的频谱严格地依赖于采样速率、积分时间常数及电压反馈误差。用图6所示频域线性化模型对Σ Δ调制器可作进一步分析。其中积分器模拟一个具有给定传递函数H(f)的模拟滤波器, H(f)表明其幅频响应特性与输入频率成反比。量化器模拟放大器输出与量化噪声叠加。使用频域分析方法的一个优点是可以利用代数式表示信号。输出信号y可以表示为输入信号x在求和点处与输出信号相减,即(x-y),并与模拟滤波器(积分器)的传递函数及放大器增益g相乘, 然后再与量化噪声Q相加。如果增益g=1,H(f)=1/f,则有y=(x-y)/f+Q, 整理得y=x/(f+1)+Qf/(f+1)

图6 Σ Δ调制器的频域线性化模型

图7 整形后的量化噪声分布由上式可以看出, 当频率f接近于零时, 输出y趋于x并且无噪声

分量。当频率增高时, x项的值减小而噪声分量增加。对于高频输入,输出主要是量化噪声。(待续)

图8 二阶Σ-ΔADC

实际上, 模拟滤波器对输入信号具有低通滤波作用, 而对噪声分量具有高通滤波作用, 因此可将调制器的模拟滤波器的作用看作一种噪声整形滤波器, 整形后的量化噪声分布见图7(a)。正如一般的模拟滤波器, 滤波器的阶数越高其滤波性能越好。因此高阶Σ Δ调制器得到广泛应用, 图8是二阶Σ-ΔADC原理框图。图9给出了Σ Δ调制器的信噪比与阶数和过采样倍率之间的关系,其中SNR为信噪比, K为过采样倍率。例如, 当K=64, 一个理想的二阶系统的信噪比大约80dB, 分辨率大约相当于13位的ADC。

图9 信噪比与阶数和过采样倍率之间的关系

3. 数字滤波和采样抽取Σ Δ调制器对量化噪声整形以后, 将量化噪声移到所关心的频

带以外, 然后对整形的量化噪声进行数字滤波, 如图7(b)所示。数字滤波器的作用有两个: 一是相对于最终采样速率fs, 它必须起到抗混叠滤波器的作用; 二是它必须滤除Σ Δ调制器在噪声整形过程中产生的高频

噪声。因为数字滤波器降低了带宽, 所以输出数据速率要低于原始采样速率, 直至满足奈奎斯特定理。降低输出数据速率的方法是通过对每输出M个数据抽取1个的数字重采样方法实现的, 这种方法称作输出速率降为1/M的采样抽取decimation)。应当说明的是, 虽然"decimation"这词的词头含意为"十", 但是这里应广义地理解, 可以代表其它整数。M=4的采样抽取如图10所示, 其中输入信号x(n)的重采样率已被降到原来采样速率的1/4。这种采样抽取方法不会使信号产生任何损失,它实际上是去除过采样过程中产生的多余信号的一种方法。

图10 M=4的采样抽取

数字滤波器既可用有限脉冲响应(FIR)滤波器也可用无限脉冲响应(IIR)滤波器或者是两者的组合。FIR 滤波器具有容易设计、能与采样抽取过程合并计算、稳定性好、具有线性相位特性等优点,但它可能需要计算大量的系数。IIR滤波器由于使用了反馈环路从而提高滤波效率, 但IIR滤波器具有非线性特性, 不能与采样抽取过程合并计算, 而且需要考虑稳定性和溢出等问题, 所以应用起来比较复杂。交流应用场合大多数Σ-ΔADC的采样抽取滤波器都用FIR滤波器。

4. Σ-ΔADC的闲音

大部分Σ-ΔADC在本底噪声中出现一些被称作“闲音(idletones)”的尖峰, 通常这些尖峰信号能量很小, 不足以明显影响转换器的信噪比(S/N)。尽管如此,但是在许多应用中,都不允许在白噪声本底以外很宽频谱范围内有尖峰存在。有两种闲音源,其中最常见

的一种是由电压基准调制所引起的。这可通过调整电压基准来降低闲音。另外,调制器的阶数也会影响闲音大小。通常一阶调制器的闲音较大,而从二阶起调制器的闲音会逐渐减弱,所以实际的Σ-ΔADC中所用的调制器至少是二阶的,以便减小闲音。以上简要介绍了Σ-ΔADC的基本原理。下面以分辨率为16位的AD7701为例来说明Σ-Δ ADC在直流测量方面的应用。

二、AD7701 Σ-Δ ADC简介及其应用

AD7701是采用Σ Δ结构的单片16位ADC, 其主要特点是, 线性误差0.0015%~0.003%, 片内有自校准电路, 低通滤波器的转折频率(0.1~10Hz)可设置, 模拟输入电压范围为0~+2.5V或±2.5V,输出数据速率为4kSPS。AD7701的数字输出以串行方式工作,片内的串行输出口工作方式灵活, 在异步方式工作时与UART(通用异步接收/发送器)兼容; 在同步方式工作时可由内部时钟或外部时钟同步, 可方便地与工业控制微机连接。AD7701采用二阶Σ Δ调制器和六阶高斯数字低通滤波器。采样频率Kf 、数字滤波器的转折频率由主时钟频率决定; 主时钟频率为4.096MHz, 则采样频率KfS=16kHz, 滤波器转折频率为10Hz, 过采样倍率K=800。

三、AD7701、7703等Σ-Δ模数转换器, 用于低频、小信号的测量,具有相当高的分辨率和精度。与积分式ADC比较, 有较高的数据输出速率。但值得注意的是, 在模拟信号输入端采用多路切换方式时,切换通道后要等待足够建立时间, 再读取转换数据。在主时钟频率为

4.096MHz时,AD7701的建立时间(达到±0.5LSB)为125ms。由此可以看出, 在多路切换方式应用时, 对模拟输入信号的有效采样速率大大降低了。

四、图11是AD7701与8098单片机的接口电路。8098的串行口采用方式0(移位寄存器方式), TXD产生时钟脉冲, 经过反相作为AD7701的外时钟。AD7701工作在外时钟同步方式。RXD与AD7701的SDATA 相连, 用于传送数据。8098的P2.5编程为输出方式作为AD7701的片选, P0.4用于读取AD7701转换结束状态, HSO0用于启动AD7701的校准功能。AD7701的基准电压为2.5V,模拟输入电压U IN 从A IN 端输入。BP/UP是双极性或单极性选择端, 本电路接成单极性方式。由于AD7701具有16位分辨率,1LSB 对应38μV, 因此在组装电路时要特别注意布线工艺,特别是对模拟地和数字地的处理。

图11 AD7701与8098单片机的接口电路

图12 测试程序框图

图12是测试程序框图。在8098初始化时应使串行口设置成方式0。由于AD7701是16位的,而8098的串行口是8位的, 因此要分成两个字节读取。应当注意的是AD7701输出的数据高位在前, 而8098串行口首先读入的是低位, 所以在程序上要做一次高低位的换位变换。测量结果最后以16进制方式显示, 在实际应用时还应作10进制数转换和必要的比例变换。测试结果列于表1, 模拟输入电压用KEITHEY 192数字表测量, 测量值是从微机数码管上读取的16进制数。理论值是根据模拟输入电压按理想ADC转换关系计算的,从表中可以看出系统最大误差为2LSB,相当于0.003%, 实验采用的AD7701尾标为AN, 其最大线性误差为0.003%,因此实验结果符合该器件规定的技术指标。

表1 测量结果(U REF =2.4994V)

三、结束语

对于含有积分器的Σ Δ调制器其通带可低到直流, 因此可将其量化噪声向高频方向移动。目前, 大多数Σ-ΔADC属于这种类型。用于音频或通信领域的某些Σ-ΔADC为了消除系统直流失调则包含有带通而不是低通数字滤波器。现在用于直流测量的Σ ΔADC其分辨率高达24位(如AD7710, AD7711, AD7712, AD7713, AD7714等); 用于高品质数字音频场合的Σ-ΔADC其分辨率达18位(AD1879)。现正处于研究初期阶段的带通Σ-ΔADC对于数字音频接收器, 医疗超声和许多其它应用场合似乎都是一种理想器件。在使用Σ-ΔADC设计电路时, 除了对所有的转换器都适用的接地、电容旁路去耦等通用规则外,还应注意以下几个问题。第一应使转换器驱动电路应尽量靠近转换器以便把外部电路之间以及开关电容

节点之间引线产生的感抗减到最小,从而减小输入的建立时间并把从输入端到线路板其它部件的辐射减到最小。第二个问题必须考虑时钟信号产生的干扰对ADC的影响。第三要考虑抗混叠问题。当然,Σ-ΔADC 也有一些缺点。例如现在的Σ-ΔADC的采样速率受带宽和有效采样速率(输出字速率)的限制,使其不能用于图象视频等高频场合;由于数字滤波器需要较长的建立时间,所以Σ-ΔADC很难用于具有多通道的多路转换器的模数转换场合;此外输入信号超过Σ-ΔADC允许范围可能会引起其内部调制器的饱和。尽管有这些缺点,Σ-ΔADC仍以其分辨率高、线性度好、成本低等特点得到越来越广泛的应用, 特别是在既有模拟又有数字的混合信号处理场合。

∑-△模数转换器的原理及应用

∑-△模数转换器的原理及应用 张中平 (东南大学微电子机械系统教育部重点实验室,南京210096) 摘要:∑-△模数转换器由于造价低、精度高、性能稳定及使用方便等特点,越来越广泛地使用在一些高精度仪器仪表和测量设备中,介绍该转换器的基本原理,并重点举例介绍AD7708芯片的应用,该芯片是16 bit模数转换器,与24 bit AD7718引脚相同,可直接升级。 关键词:模数转换器;寄存器;串行口 我们通常使用的模数转换器(ADC)大多为积分型和逐次逼近型,积分型转换效果不够好,转换过程中带来的误差比较大;逐次逼近型转换效果较好但制作成本较高,尤其是高位数转换,转换位数越多,精度越高,制作成本就越高。而∑-△ADC可以以相对逐次逼近型简单的电路结构,而得到低成本,高位数及高精度的转换效果∑-△ADC大多设计为16或24 bit转换精度。近几年来,在相关的高精度仪器制作领域该转换器得到了越来越广泛的应用[1]。 1 ∑-△ADC的基本工作原理简介 ∑-△模数转换器的工作原理简单的讲,就是将模数转换过后的数字量再做一次窄带低通滤波处理。当模拟量进入转换器后,先在调制器中做求积处理,并将模拟量转为数字量,在这个过程中会产生一定的量化噪声,这种噪声将影响到输出结果,因此,采用将转换过的数字量以较低的频率一位一位地传送到输出端,同时在这之间加一级低通滤波器的方法,就可将量化噪声过滤掉,从而得到一组精确的数字量[1,2]。 2 AD7708/AD7718,∑-△ADC的应用 AD7708/AD7718是美国ADI公司若干种∑ΔADC中的一种。其中AD7708为16 bit转换精度,AD7718为24 bit转换精度,同为28条引脚,而且相同引脚功能相同,可以互换。为方便起见,下面只介绍其中一种,也是我们工作中用过的AD7708。 2.1AD7708的工作原理 同其它智能化器件一样,AD7708也可以用软件来调节其所具有的功能,即通过微控制器MCU编程向AD7708的相应寄存器填写适当的参数。AD7708芯片中共有11个寄存器, 当模式寄存器(Mode Regis-ter)的最高位后,其工作方框图[2]如图1所示。

数模及模数转换器习题解答

数模及模数转换器习题解答

————————————————————————————————作者: ————————————————————————————————日期: ?

自我检测题 1.就实质而言,D/A转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A /D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D转换器两个最重要的指标是分辨率和转换速度。 6.8位D /A 转换器当输入数字量只有最低位为1时,输出电压为0.02V ,若输入数字量只有最高位为1时,则输出电压为 V 。 A.0.039 B .2.56 C .1.27 D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D.参考电压 8.图T7.8所示R-2R网络型D/A 转换器的转换公式为 。 R R R I V REF 2R 2R 2R 2R 2R S 3 S 2 S 1 S 0 D 3 D 2 D 1 D 0 R F =R A + -v O i ∑ 图T 7.8 A .∑ =?- =3 3 REF o 22 i i i D V v ??B .∑=?- =3 4 REF o 2 232i i i D V v ??C .∑=?- =3 4 REF o 2 2 i i i D V v ??D .∑=?= 3 4 REF o 2 2 i i i D V v 9.D/A 转换器可能存在哪几种转换误差?试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。 10.比较权电阻型、R -2R 网络型、权电流型等D/A 转换器的特点,结合制造工

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

数模及模数转换器习题解答

数模及模数转换器习题 解答 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

自我检测题 1.就实质而言,D/A 转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A/D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D 6.8位D/A 1时,输出电压为,若输入数字量只有最高位为1时,则输出电压为 V 。 A . B .2.56 C . D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D .参考电压 8.图所示R-2R 网络型D/A 转换器的转换公式为 。 V REF v O 图 A .∑=?- =3 3 REF o 2 2 i i i D V v B .∑=?- =3 4 REF o 2 232i i i D V v D .∑=?= 3 4 REF o 2 2i i i D V v 9.D/A 转换器可能存在哪几种转换误差试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A 转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。

第九章:数模和模数转换器

第九章:数模和模数转换器 一、单选题 1:想选一个中等速度,价格低廉的A/D转换器,下面符合条件的是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 2:下面抑制电网公频干扰能力强的A/D转换器是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 3:不适合对高频信号进行A/D转换的是()。 A 并联比较型 B 逐次逼近型 C 双积分型 D 不能确定 4:四位DAC和八位DAC的输出最小电压一样大,那么他们的最大输出电压()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 5:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下最大输出电压()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 6:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下分辨率()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 7:下列A/D转换器类型中,相同转换位数转换速度最高的是()。 A 并联比较型 B 逐次逼近型 C 双积分型 D 不能确定 8.一个无符号8位数字量输入的DAC,其分辨率为位。 A.1 B.3 C.4 D.8 9.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。 A.采样 B.量化 C.保持 D.编码 10.以下四种转换器,是A/D转换器且转换速度最高。 A.并联比较型 B.逐次逼近型 C.双积分型 D.施密特触发器 二、判断题 1:D/A转换器的建立时间等于数字信号由全零变全1或由全1变全0所需要的时间。()2:D/A转换器的转换精度等于D/A转换器的分辨率。() 3:采用四舍五入量化误差分析时,A/D转换过程中最小量化单位与量化误差是相等的。() 4:在A/D转换过程中量化误差是可以避免的。() 5:由于R-2R 倒T 型D/A转换器自身的优点,其应用比权电阻DAC广泛。() 6:倒T型网络D/A转换器由于支路电流不变,所以不需要建立时间。() 7:A/D转换的分辨率是指输出数字量中只有最低有效位为1时所需的模拟电压输入值。() 8.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。()9.D/A转换器的最大输出电压的绝对值可达到基准电压V REF。()

7数模及模数转换器习题解答

7数模及模数转换器习题解答119 自我检测题 1.就实质而言,D/A转换器类似于译码器,A/D转换器类似于编码器。 2.电压比较器相当于1位A/D转换器。 3.A/D转换的过程可分为采样、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A/D转换器而言,双积分型的抗干扰能力强,逐次逼近型的转换速度快。 5.A/D 6.8位D/A转换器当输入数字量只有最低位为1时,输出电压为0.02V,若输入数字量只有最高位为1时,则输出电压为V。 A.0.039 B.2.56 C.1.27 D.都不是 7.D/A转换器的主要参数有、转换精度和转换速度。 A.分辨率B.输入电阻C.输出电阻D.参考电压 8.图T7.8所示R-2R网络型D/A转换器的转换公式为。 V REF v O 图T7.8 A.∑ = ? - = 3 3 REF o 2 2i i i D V v B.∑ = ? - = 3 4 REF o 2 2 3 2 i i i D V v D.∑ = ? = 3 4 REF o 2 2i i i D V v 9.D/A转换器可能存在哪几种转换误差?试分析误差的特点及其产生误差的原因。 解:D/A转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。 10.比较权电阻型、R-2R网络型、权电流型等D/A转换器的特点,结合制造工艺、转换的精度和转换的速度等方面比较。

模数转换器ADC0809应用原理

AD0809应用原理--很全面的资料 1. 0809的芯片说明: ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS 组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1)ADC0809的内部逻辑结构 由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当O E端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (2).引脚结构 IN0-IN7:8条模拟量输入通道

如下图所示,从ADC0809的通道IN3输入0-5V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。ADC0809的VREF接+5V电压。 4.电路原理图 5.程序设计: (1).进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。 (2).进行A/D转换之前,要启动转换的方法: ABC=110选择第三通道 ST=0,ST=1,ST=0产生启动转换的正脉冲信号 . (3). 关于0809的计算: ad0809是根据逐位逼近的方法产生数据的。。 参考电压为0-5V的话。以0809八位255的转换精度每一位的电压值为(5-0)/255≈0. 0196V 设输入电压为X则: X-27*0.0196>=0则AD7=1否则AD7=0。 X-26*0.0196>=0则AD6=1否则AD6=0。 X-20*0.0196>=0则AD0=1否则AD0=0。 (27指2的7次方。26-------20同理) 若参考电压为0-1V (1-0)/255≈0.0039V精度自然高了。。可测量范围小了。 1)汇编源程序: CH EQU 30H DPCNT EQU 31H DPBUF EQU 33H GDATA EQU 32H ST BIT P3.0

∑-△模数转换器工作原理

∑-△ADC工作原理 越来越多的应用,例如过程控制、称重等,都需要高分辨率、高集成度和低价格的ADC、新型∑-△转换技术恰好可以满足这些要求。然而,很多设计者对于这种转换技术并不十分了解,因而更愿意选用传统的逐次比较ADC。∑-△转换器中的模拟部分非常简单(类似于一个1bit ADC),而数字部分要复杂得多,按照功能可划分为数字滤波和抽取单元。由于更接近于一个数字器件,∑-△ADC的制造成本非常低廉。 一、∑-△ADC工作原理 要理解∑-△ADC的工作原理,首先应对以下概念有所了解:过采样、噪声成形、数字滤波和抽取。 1.过采样 首先,考虑一个传统ADC的频域传输特性。输入一个正弦信号,然后以频率fs采样-按照Nyquist 定理,采样频率至少两倍于输入信号。从FFT分析结果可以看到,一个单音和一系列频率分布于DC到fs /2间的随机噪声。这就是所谓的量化噪声,主要是由于有限的ADC分辨率而造成的。单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。对于一个Nbit ADC,SNR可由公式:SNR=6.02N+1.76dB得到。为了改善SNR和更为精确地再现输入信号,对于传统ADC来讲,必须增加位数。 如果将采样频率提高一个过采样系数k,即采样频率为Kfs,再来讨论同样的问题。FFT分析显示噪声基线降低了,SNR值未变,但噪声能量分散到一个更宽的频率范围。∑-△转换器正是利用了这一原理,具体方法是紧接着1bit ADC之后进行数字滤波。大部分噪声被数字滤波器滤掉,这样,RMS噪声就降低了,从而一个低分辨率ADC, ∑-△转换器也可获得宽动态范围。 那么,简单的过采样和滤波是如何改善SNR的呢?一个1bit ADC的SNR为7.78dB(6.02+1.76),每4倍过采样将使SNR增加6dB,SNR每增加6dB等效于分辨率增加1bit。这样,采用1bit ADC进行64倍过采样就能获得4bit分辨率;而要获得16bit分辨率就必须进行415倍过采样,这是不切实际的。∑-△转换器采用噪声成形技术消除了这种局限,每4倍过采样系数可增加高于6dB的信噪比。 2.噪声成形 通过图1所示的一阶∑-△调制器的工作原理,可以理解噪声成形的工作机制。 图1 ∑-△调制器 ∑-△调制器包含1个差分放大器、1个积分器、1个比较器以及1个由1bit DAC(1个简单的开关,可以将差分放人器的反相输入接到正或负参考电压)构成的反馈环。反馈DAC的作用是使积分器的平均输出电压接近于比较器的参考电平。调制器输出中“1”的密度将正比于输入信号,如果输入电压上升,比较器必须产生更多数量的“1”,反之亦然。积分器用来对误差电压求和,对于输入信号表现为一个低通滤波器,而对于量化噪声则表现为高通滤波。这样,大部分量化噪声就被推向更高的频段。和前面的简单过采样相比,总的噪声功率没有改变,但噪声的分布发生了变化. 现在,如果对噪声成型后的∑-△调制器输出进行数字滤波,将有可能移走比简单过采样中更多的噪声。这种调制器(一阶)在每两倍的过采样率下可提供9dB的SNR改善。

数模转换器和模数转换器实验报告

实验报告 课程名称微机原理与接口技术 实验项目实验五 数/模转换器和模/数转换器实验实验仪器 TPC-USB通用微机接口实验系统 系别计算机系 专业网络工程 班级/学号 学生 _ 实验日期 成绩_______________________ 指导教师王欣

实验五数/模转换器和模/数转换器实验 一、实验目的 1. 了解数/模转换器的基本原理,掌握DAC0832芯片的使用方法。 2. 了解模/数转换器的基本原理,掌握ADC0809的使用方法。 二.实验设备 1.PC微机系统一套 2.TPC-USB通用微机接口实验系统一套 三.实验要求 1.实验前要作好充分准备,包括程序框图、源程序清单、调试步骤、测试方法、对运行结果的分析等。 2.熟悉与实验有关的系统软件(如编辑程序、汇编程序、连接程序和调试程序等)使用方法。在程序调试过程中,有意识地了解并掌握TPC-USB通用微机接口实验系统的软硬件环境及使用,掌握程序的调试及运行的方法技巧。 3.实验前仔细阅读理解教材相关章节的相关容,实验时必须携带教材及实验讲义。 四.实验容及步骤 (一)数/模转换器实验 1.实验电路原理如图1,DAC0832采用单缓冲方式,具有单双极性输入端(图中的Ua、Ub),编程产生以下锯齿波(从Ua和Ub输出,用示波器观察) 图1 实验连接参考电路图之一 编程提示: 1. 8位D/A转换器DAC0832的口地址为290H,输入数据与输出电压的关系为:

(UREF表示参考电压,N表示数数据),这里的参考电压为PC机的+5V电源。 2. 产生锯齿波只须将输出到DAC0832的数据由0循环递增。 3. 参考流程图(见图2): 图2 实验参考流程图之一 (二)模/数转换器 1. 实验电路原理图如图3。将实验(一)的DAC的输出Ua,送入ADC0809通道1(IN1)。 图3 实验连接参考电路图之二 2. 编程采集IN1输入的电压,在屏幕上显示出转换后的数据(用16进制数)。编程提示: 1. ADC0809的IN0口地址为298H,IN1口地址为299H。 2. IN0单极性输入电压与转换后数字的关系为:

模数转换器原理

模数(A/D)转换器工作原理A/D转换器(Analog-to-Digital Converter)又叫模/数转换器,即是将模拟信号(电压或是电流的形式)转换成数字信号。这种数字信号可让仪表,计算机外设接口或是微处理机来加以操作或胜作使用。 A/D 转换器 (ADC)的型式有很多种,方式的不同会影响测量后的精准度。 A/D 转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D 转换芯片。 A/D 转换器按分辨率分为4 位、6 位、8 位、10 位、14 位、16 位和BCD码的31/2 位、51/2 位等。按照转换速度可分为超高速(转换时间=330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。 A/D 转换器按照转换原理可分为直接A/D 转换器和间接A/D 转换器。所谓直接A/D 转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D 转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D 芯片采用逐次逼近型者多;间接A/D 转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型A/D 转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D 转换功能,使用十分方便。 ADC 经常用于通讯、数字相机、仪器和测量以及计算机系统中,可方便数字讯号处理和信息的储存。大多数情况下,ADC 的功能会与数字电路整合在同一芯片上,但部份设备仍需使用独立的ADC。行动电话是数字芯片中整合ADC 功能的例子,而具有更高要求的蜂巢式基地台则需依赖独立的ADC 以提供最佳性能。 ADC 具备一些特性,包括: 1. 模拟输入,可以是单信道或多信道模拟输入; 2. 参考输入电压,该电压可由外部提供,也可以在ADC 内部产生; 3. 频率输入,通常由外部提供,用于确定ADC 的转换速率; 4. 电源输入,通常有模拟和数字电源接脚; 5. 数字输出,ADC 可以提供平行或串行的数字输出。在输出位数越多(分辨率越好)以及转换时间越快的要求下,其制造成本与单价就越贵。 一个完整的A/D转换过程中,必须包括取样、保持、量化与编码等几部分电路。 AD转换器需注意的项目: 取样与保持 量化与编码

模数转换器工作原理、类型及主要技术指标

模数转换器工作原理、类型及主要技术指标 模数转换器(Analog to Digital Converter,简称A/D转换器,或ADC),通常是将模拟信号转变为数字信号。作为模拟电路中重要的元器件,本文将会介绍模数转换器的原理、分类及技术指标等基础知识。 ADC的发展随着电子技术的迅速发展以及计算机在自动检测和自动控制系统中的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,模拟量经传感器转换成电信号的模拟量后,需经模/数转换变成数字信号才可输入到数字系统中进行处理和控制,因而作为把模拟电量转换成数字量输出的接口电路-A/D转换器是现实世界中模拟信号向数字信号的桥梁,是电子技术发展的关键和瓶所在。 自电子管A/D转换器面世以来,经历了分立半导体、集成电路数据转换器的发展历程。在集成技术中,又发展了模块、混合和单片机集成数据转换器技术。在这一历程中,工艺制作技术都得到了很大改进。单片集成电路的工艺技术主要有双极工艺、CMOS工艺以及双极和CMOS相结合的BiCMOS工艺。模块、混合和单片集成转换器齐头发展,互相发挥优势,互相弥补不足,开发了适用不同应用要求的A/D和D/A转换器。近年来转换器产品已达数千种。 ADC原理D/A转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。 模数转换一般要经过采样、保持和量化、编码这几个步骤。 ADC的主要类型目前有多种类型的ADC,有传统的并行、逐次逼近型、积分型ADC,也有近年来新发展起来的-型和流水线型ADC,多种类型的ADC各有其优缺点并能满足不同的具体应用要求。低功耗、高速、高分辨率是新型的ADC的发展方向,同时ADC的这一发展方向将适应现代数字电子技术的发展。 并行比较ADC 并行比较ADC是现今速度最快的模/数转换器,采样速率在1GSPS以上,通常称为闪烁

模数转换器综述_ADC

模数转换器ADC_综述 随着数字技术,特别是计算机技术的飞速发展普及,在现代控制、通讯及检测领域中,对信号的处理广泛采用了数字计算机技术。由于系统的实际处理对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别和处理这些信号,必须首先将这些模拟信号转换成数字信号。这样,就需要一种能将模拟信号转换为数字信号的电路,即模数转换电路(Analog to Digital Converter, ADC)。 模数转换过程 模数转换包括采样、保持、量化和编码四个过程。采样就是将一个连续变化的信号x(t)转换成时间上离散的采样信号x(n)。根据Nyquist-Shannon theorem采样定理,采样频率至少要大于或等于模拟信号最高频率的两倍,才可以无失真地重建恢复原始信号x(t)。通常采样脉冲的宽度是很短的,故采样输出是截断的窄脉冲。要将一个采样输出信号数字化,需要将采样输出所得的瞬时模拟信号保持一段时间,这就是保持过程。图1即为采样过程。 图1采样过程 量化是将连续幅度的抽样信号转换成离散时间、离散幅度的数字信号,数字信号最低有效位中的1表示的数量大小,就等于量化单位Q,如图2所示。把量化的数值用二进制代码表示,称为编码,见图3。这个二进制代码就是ADC转换的输出信号。 量化的主要问题就是量化误差。既然模拟电压是连续的,那么它就不一定能被Q整除,因而不可避免的会引入误差,我们把这种误差称为量化误差。在把模拟信号划分为不同的量化等级时,用不同的划分方法可以得到不同的量化误差。 图2采样过程

图3编码过程 要提高ADC的精度,可以通过提高采样间隔Ts和分辨率Q来实现。实际中,输入模拟信号的频率由于存在无限次谐波,因此要在采样前加入抗混叠滤波器,该滤波器与采样频率的关系一般为:f s≈ (3…5)*f filter。图4描述了这一过程。 图4加入抗混叠滤波器 模数转换技术是现实各种模拟信号通向数字世界的桥梁,作为将模拟信号转换成数字信号的模数转换技术主要有以下几种。 分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。下面对各种类型的ADC作简要介绍。 并行比较型 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash型。由于转换速率极高,转换需要很多个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。其原理如图5所示。

逐次逼近型模数转换器基本原理

逐次逼近型模数转换器基本原理 逐次逼近型模数转换器一般由顺序脉冲发生器、逐次逼近寄存器、数模转换器和电压比较器等几部分组成,其原理框图如图11-3所示。 图11-3 逐次逼近型模数转换器的原理框图 转换开始前先将所有寄存器清零。开始转换以后,时钟脉冲首先将寄存器最高位置成1,使输出数字为100…0。这个数码被数模转换器转换成相应的模拟电 压,送到比较器中与进行比较。若>,说明数字过大了,故将最高位的 1清除;若<,说明数字还不够大,应将最高位的1保留。然后,再按同 样的方式将次高位置成1,并且经过比较以后确定这个1是否应该保留。这样逐位比较下去,一直到最低位为止。比较完毕后,寄存器中的状态就是所要求的数字量输出。 可见逐次逼近转换过程与用天平称量一个未知质量的物体时的操作过程一样,只不过使用的砝码质量一个比一个小一半。 能实现图11-3所示方案的电路很多。图11-4所示电路是其中的一种,这是 一个四位逐次逼近型模数转换器。图中四个JK触发器~组成四位逐次逼 近寄存器;5个D触发器~接成环形移位寄存器(又称为顺序脉冲发生器), 它们和门~一起构成控制逻辑电路。 图11-4 四位逐次逼近型模数转换器

现分析电路的转换过程。为了分析方便,设D/A转换器的参考电压为=+8 V,输入的模拟电压为=4.52 V。 转换开始前,先将逐次逼近寄存器的四个触发器~清零,并把环形计数器的状态置为00001。 第1个时钟脉冲C的上升沿到来时,环形计数器右移一位,其状态变为10000。 由于,均为0,于是触发器被置1,和被置0。 所以,这时加到D/A转换器输入端的代码为1000,D/A转换器的输出电压为 和在比较器中比较,由于<,所以比较器的输出电压为。 第2个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为 01000。这时由于,,均为0,于是触发器的1保留。 与此同时,的高电平将触发器置1。所以,这时加到D/A转换器输入端的 代码为1100,D/A转换器的输出电压为 和在比较器中比较,由于>,所以比较器的输出电压为。 第3个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为 00100。这时由于,,均为0,于是触发器的1保留, 而被置0。与此同时,的高电平将置1。所以,这时加到D/A转换器输入端的代码为1010,D/A转换器的输出电压为 和在比较器中比较,由于>,所以比较器的输出电压为。 第4个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为00010。 这时由于,,均为0,于是触发器、的状态保持不变, 而触发器被置0。与此同时,的高电平将触发器置1。所以,这时加到

模数转换器(ADC)的几种主要类型

模数转换器(ADC)的几种主要类型 现在的软件无线电、数字图像采集都需要有高速的A/D采样保证有效性和精度,一般的测控系统也希望在精度上有所突破,人类数字化的浪潮推动了A/D转换器不断变革,而A/D转换器是人类实现数字化的先锋。A/D转换器发展了30多年,经历了多次的技术革新,从并行、逐次逼近型、积分型ADC,到近年来新发展起来的∑-Δ型和流水线型ADC,它们各有其优缺点,能满足不同的应用场合的使用。 逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。下面对各种类型的ADC作简要介绍。 1.逐次逼近型 逐次逼近型ADC是应用非常广泛的模/数转换方法,它包括1个比较器、1个数模转换器、1个逐次逼近寄存器(SAR)和1个逻辑控制单元。它是将采样输入信号与已知电压不断进行比较,1个时钟周期完成1位转换,N位转换需要N个时钟周期,转换完成,输出二进制数。这一类型ADC的分辨率和采样速率是相

互矛盾的,分辨率低时采样速率较高,要提高分辨率,采样速率就会受到限制。 优点:分辨率低于12位时,价格较低,采样速率可达1MSPS;与其它ADC相比,功耗相当低。 缺点:在高于14位分辨率情况下,价格较高;传感器产生的信号在进行模/数转换之前需要进行调理,包括增益级和滤波,这样会明显增加成本。 2.积分型ADC 积分型ADC又称为双斜率或多斜率ADC,它的应用也比较广泛。它由1个带有输入切换开关的模拟积分器、1个比较器和1个计数单元构成,通过两次积分将输入的模拟电压转换成与其平均值成正比的时间间隔。与此同时,在此时间间隔内利用计数器对时钟脉冲进行计数,从而实现A/D转换。 积分型ADC两次积分的时间都是利用同一个时钟发生器和计数器来确定,因此所得到的D表达式与时钟频率无关,其转换精度只取决于参考电压VR。此外,由于输入端采用了积分器,所以对交流噪声的干扰有很强的抑制能力。能够抑制高频噪声和固定的低频干扰(如50Hz或60Hz),适合在嘈杂的工业环境中使用。这类ADC主要应用于低速、精密测量等领域,如数字电压表。 优点:分辨率高,可达22位;功耗低、成本低。

模数与数模转换器的仿真

课程设计任务书

摘要 目前,无论是模拟通信还是数字通信,在不同的通信业务中都得到了广泛的应用。但是,数字通信的发展速度已明显超过模拟通信,成为当代主流,因为它有很多模拟通信所没有的优点,因此模拟信号往往要被编码成数字信号,从而在数字信道中传输。 本次课程设计是在MATLAB软件环境下进行的,完成的是对A/D和D/A转换器的设计。A/D转换负责将模拟信号转换为数字信号,即用一串数字编码(如0101)去表示对应的一个模拟信号的一点的值,其转换过程是先对输入的模拟信号进行抽样,所使用的抽样频率要满足抽样定理的要求,然后对抽样结果进行幅度离散化(称为量化)并编码为二进制序列。D/A转换的功能与A/D转换相反,它将输入的数字信号序列转换为模拟信号,其转换过程是将输入(二进制)数字序列恢复为相应电平的抽样值序列,然后通过满足抽样定理要求的低通滤波器恢复模拟信号。A/D转换采用平顶抽样技术,所以恢复模拟信号存在高频段的失真,若对恢复信号质量要求严格,需采用均衡器来补偿这种孔径失真。A/D转换器的输出数据形式可以是并行的,也可以是串行的。 关键词:MATLAB;抽样;量化;编码

目录 1.课程设计目的 (1) 2.课程设计要求 (1) 3.相关知识 (1) 3.1 模拟信号数字化 (1) 3.2 A/D和D/A转换的原理 (2) 4.课程设计分析 (3) 4..1 A/D和D/A转换器的模型 (3) 4.2 模块参数设置 (8) 5.仿真 (8) 6.结果分析 (10) 7.参考文献 (11)

1.课程设计目的 (1)加深对A/D和D/A基本理论知识的理解。 (2)培养独立开展科研的能力和编程能力。 (3)掌握A/D和D/A结构及其在通信系统中的应用。 2.课程设计要求 (1)掌握课程设计的相关知识、概念清晰。 (2)程序设计合理、能够正确运行。 3.相关知识 3.1模拟信号数字化 通信系统可以分为模拟和数字通信系统两大类。数字通信系统具有抗干扰能力强,且噪声不积累;传输差错可控;便于用现代数字信号处理技术对数字信息进行处理、变换、存储;易于集成,使通信设备微型化,重量轻;易于加密处理,且保密性好等优点,所以应用非常广泛,已经成为现代通信的主要发展趋势。自然界中的信号都是模拟信号,这就需要我们对模拟信号进行抽样、量化、编码,形成数字信号后,在数字信号系统中传输。在接收端则通过相应的逆变换恢复成模拟信号。若要利用数字通信系统传输模拟信号,一般需要三个步骤:(1)把模拟信号数字化,即模数转换(A/D); (2)进行数字方式传输; (3)把数字信号还原为模拟信号,即数模转换(D/A)。 如果电信号的参量取值连续(不可数、无穷多),则称之为模拟信号。例如,话筒送出的送出电压包含有话音信息,并在一定的取值范围内连续变化。模拟信号有时也称连续信号,这里连续的含义是指信号的某一参量连续变化,或者说在某一取值范围内可以取无穷多个值,而不一定在时间上也连续。 如果电信号的参量仅可能取有限个值,则称之为数字信号。如电报信号、计算机输入/输出信号、PCM信号等。数字信号有时也称离散信号,这个离散是指信号的某一参量是离散变化的,而不一定在时间上也离散。

模数与数模转换

3. 模数转换器 (1) 模/数(A/D )转换器 A/D 转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机或数字系统进行处理、存储、控制和显示。在工业控制和数据采集及其它领域中,A/D 转换器是不可缺少的重要组成部分。 1) 逐次逼近型A/D 转换器 逐次逼近型A/D 转换器又称逐次渐近型A/D 转换器,是一种反馈比较型A/D 转换器。逐次逼近型A/D 转换器进行转换的过程类似于天平称物体重量的过程。天平的一端放着被称的物体,另一端加砝码,各砝码的重量按二进制关系设置,一个比一个重量减半。称重时,把砝码从大到小依次放在天平上,与被称物体比较,如砝码不如物体重,则该砝码予以保留,反之去掉该砝码,多次试探,经天平比较加以取舍,直到天平基本平衡称出物体的重量为止。这样就以一系列二进制码的重量之和表示了被称物体的重量。例如设物体重11克,砝码的重量分别为1克、2克、4克和8克。称重时,物体天平的一端,在另一端先将8克的砝码放上,它比物体轻,该砝码予以保留(记为1),我们将被保留的砝码记为1,不被保留的砝码记为0。然后再将4克的砝码放上,现在砝码总和比物体重了,该砝码不予保留(记为0),依次类推,我们得到的物体重量用二进制数表示为1011。用下表7.1表示整个称重过程。 表7.1 逐次逼近法称重物体过程表 图7.7 逐次逼近型A/D 转换器方框图 利用上述天平称物体重量的原理可构成逐次逼近型A/D 转换器。 逐次逼近型A/D 转换器的结构框图如图7.7所示,包括四个部分:电压比较器、D/A 转换器、逐次逼近寄存器和顺序脉冲发生器及相应的控制逻辑。 逐次逼近型A/D 转换器是将大小不同的参考电压与输入模拟电压逐步进行比较,比较结果以相应的二进制代码表示。转换开始前先将寄存器清零,即送给D /A 转换器的数字量为0,三个输出门G 7、G 8、G 9被封锁,没有输出。转换控制信号有效后(为高电平)开始转换,在时钟脉冲作用下,顺序脉冲发生器发出一系列节拍脉冲,寄存器受顺序脉冲发生器及控制电路的控制,逐位改变其中的数码。首先控制逻辑将寄存器的最高位置为1,使其输出为100……00。这个数码被D/A 转换器转换成相应的模拟电压U o ,送到比较器与待转换的输入模拟电压U i 进行比较。若U o >U i ,说明寄存器输出数码过大,故将最高位的1变成0,同时将次高位置1;若U o ≤U i ,说明寄存器输出数码还不够大,则应将这一位的1 保留。数码的取舍通过电压比较器的输出经控制器来完成的。依次类推按上述方法将下一位置1进行比较确定该位的1是否保留,直到最低位为止。此时寄存器里保留下来的数码即为所求的输出数字量。 2) 并联比较型A/D 转换器 并联比较型A/D 转换器是一种高速A/D 转换器。图8-9所示是3位并联型A/D 转换器,

模数转换器基本原理及应用

Σ-Δ模数转换器基本原理及应用 一、Σ-Δ ADC基本原理 Σ-Δ ADC以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化, 通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率, 然后对ADC输出进行采样抽取处理以降低有效采样速率。Σ-ΔADC的电路结构是由非常简单的模拟电路(一个比较器、一个开关、一个或几个积分器及模拟求和电路)和十分复杂的数字信号处理电路构成。要了解Σ-ΔADC的工作原理, 必须熟悉过采样、噪声整形、数字滤波和采样抽 取等基本概念 1.过采样 ADC是一种数字输出与模拟输入成正比的电路, 图1给出了理想3位单极性ADC的转换特性, 横坐标是输入电压U IN 的相对值, 纵坐标是经过采样量化的数字输出量, 以二进制000~111表示。理想ADC第一位的变迁发生在相当于1/2LSB的模拟电压值上, 以后每隔1LSB都发生一次变迁, 直至距离满度的1 1/2 LSB。因为ADC的模拟量输入可以是任何值, 但数字输出是量化的, 所以实际的模拟输入与数字输出之间存在±1/2LSB的量化误差。在交流采样应用中, 这种量化误差会产生量化噪声。 图1 理想3位ADC转换特性 如果对理想ADC加一恒定直流输入电压, 那么多次采样得到的数字输出值总是相同的, 而且分辨率受量化误差的限制。如果在这个直流输入信号上叠加一个交流信号, 并用比这交流信号频率高得多的采样频率进行采样, 此时得到的数字输出值将是变化的, 用这些采样结果的平均值表示ADC的转换结果便能得到比用同样ADC高得多的采样分辨率, 这种方法称作过采样(oversampling)。如果模拟输入电压本身就是交流信号, 则不必另叠加一个交流信号。采用过采样方法(采样频率远高于输入信号频率)也同样可提高ADC的分辨率。 由于过采样的采样速率高于输入信号最高频率的许多倍, 这有利于简化抗混叠滤波器的设计, 提高信噪比并改善动态范围。可以用频域分析方法来讨论过采样问题。由于直流信号转换具有的量化误差达1/2LSB, 所以数据采样系统具有量化噪声。一个理想的常规N位ADC的采样量化噪声有效值为q/12,均匀分布在奈奎斯特频带直流至fs/2范围内, 如图2所示。其中q为LSB的权重, fs为采样速率, 模拟低通滤波器将滤除fs/2以上的噪声。如果用Kfs的采样速率对输入信号进行采样(K

模数转换器ADC0808的应用

实训报告十 实训目的: 通过实现由ADC0808作为A/D转换器对RV1进行电压测量,并在数码管上显示;了解ADC0808的工作方式,进行模拟数据的采样,从而利用c语言编程实现单片机控制处理信息。 实训原理图:

实训步骤: 1.在ptoteus平台找出所需的元器件 2.理解该实验的原理,按照原理图画出仿真图; 3.根据实验要求写出如下程序: #include unsigned char code dispcode[4]={0x10,0x20,0x40,0x00}; unsigned char temp; unsigned char dispbuf[4]; unsigned char count=0; unsigned char getdata; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^2; sbit CLK=P3^7; void delay(unsigned int i) { unsigned int j; for (j=0;j

{ EA=1; ET0=1; ET1=1; TMOD=0x12; TH0=216; TL0=216; TH1=(65536-4000)/256; TL1=(65536-4000)%256; TR1=1; TR0=1; } void conversion() { ST=0; ST=1; ST=0; while(EOC==0) {;} OE=1; getdata=P0; OE=0; temp=getdata; dispbuf[0]=getdata/100; temp=temp-dispbuf[0]*100; dispbuf[1]=temp/10; temp=temp-dispbuf[1]*10; dispbuf[2]=temp; } void T0X()interrupt 1 { CLK=~CLK; } void T1X() interrupt 3 { TH1=(65536-4000)/256; TL1=(65536-4000)%256; for(count=0;count<=3;count++) { P1=dispbuf[count]|dispcode[count];//输出显示控制代码 delay(50);

相关文档
最新文档