41.高考数学专题20 三角函数综合练习(理)(原卷版)

合集下载

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.已知函数,则的值为 .【答案】.【解析】∵,两边求导,∴,令,得,∴,∴,即.【考点】导数的运用.2.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础题.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为. 13分【考点】1.三角函数的化简;2.三角函数的求值.3.函数的值域为.【答案】【解析】令,则.【考点】1、三角函数;2、二次函数;3、换元法.4.已知,,则x= .(结果用反三角函数表示)【答案】【解析】本题关键是注意反三角函数值的取值范围,适当利用诱导公式,,,而,故,即.【考点】反正弦函数.5.已知函数.(Ⅰ)求的单调减区间;(Ⅱ)求在区间上最大值和最小值.【答案】(Ⅰ)函数的单调减区间是:;(Ⅱ).【解析】(Ⅰ)将降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(Ⅱ)由(Ⅰ)可得,又的范围为,由此可得的范围,进而求得的范围.试题解析:.函数的单调减区间是:.的范围为,所以,所以即:【考点】1、三角恒等变换;2、三角函数的单调区间及范围.6.如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.⑴求的长度;⑵在线段上取一点点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?【答案】⑴;⑵当为时,取得最小值.【解析】⑴根据题中图形和条件不难想到作,垂足为,则可题中所有条件集中到两个直角三角形中,由,而在中,再由两角和的正切公式即可求出的值,又,可求出的值;⑵由题意易得在两直角三角形中,可得,再由两角和的正切公式可求出的表达式,由函数的特征,可通过导数求出函数的单调性和最值,进而求出的最小值,即可确定出的最小值.试题解析:⑴作,垂足为,则,,设,则 2分,化简得,解之得,或(舍)答:的长度为. 6分⑵设,则,. 8分设,,令,因为,得,当时,,是减函数;当时,,是增函数,所以,当时,取得最小值,即取得最小值, 12分因为恒成立,所以,所以,,因为在上是增函数,所以当时,取得最小值.答:当为时,取得最小值. 14分【考点】1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用7.已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围【答案】(1);(2).【解析】(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.试题解析:1)∵垂直,∴(2分)由正弦定理得(4分)∵,∴,(6分)又∵∠B是钝角,∴∠B(7分)(2)(3分)由(1)知A∈(0,),, (4分),(6分)∴的取值范围是(7分)【考点】(1)向量的垂直,正弦定理;(2)三角函数的值域.8.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.9.若,且,则 ( )A.B.C.D.【答案】B.【解析】,故选B.【考点】1.三角函数诱导公式;2.三角函数平方关系.10.在△ABC中,角均为锐角,且,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【答案】D.【解析】又角均为锐角,则且中,,故选D.【考点】1.诱导公式;2.正弦函数的单调性.11.已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)若时,的最小值为,求a的值.【答案】(Ⅰ)的最小正周期;(Ⅱ).【解析】(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.试题解析:(Ⅰ)∴的最小正周期(Ⅱ)时,时,取得最小值【考点】三角函数的性质.12.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.【答案】(1);(2).【解析】(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.试题解析:(1) 4分6分故的最小正周期为 8分(2)当时, 10分故所求的值域为 12分【考点】1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.13.下列命题中:函数的最小值是;②在中,若,则是等腰或直角三角形;③如果正实数满足,则;④如果是可导函数,则是函数在处取到极值的必要不充分条件.其中正确的命题是_____________.【答案】②③④.【解析】当,等号成立时当且仅当“即”,显然不成立,则命题①不正确;在中,若,则或,则是等腰或直角三角形,故②正确;由,因为正实数,满足,所以,故③正确;如果是可导函数,若函数在处取到极值,则,当,,但函数在处无极值,则是函数在处取到极值的必要不充分条件,故④正确.【考点】基本不等式、三角函数性质、不等式及导数的性质.14.已知向量,函数.(1)求函数的最小正周期;(2)已知分别为内角、、的对边, 其中为锐角,且,求和的面积.【答案】(1);(2).【解析】(1)根据题意,再利用二倍角公式及辅助角公式将化简为;(2)将代入,得,因为,所以,再利用余弦定理,解出,最后根据三角形面积公式求出. 试题解析:(1)由题意所以.由(1),因为,所以,解得.又余弦定理,所以,解得,所以.【考点】1.三角函数恒等变形;2.三角函数周期;3.余弦定理及三角形面积公式.15.已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为.(l)求的值;(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.【答案】(1);(2).【解析】(1)先根据,结合二倍角公式以及和角公式化简,求得,函数最大值是,那么函数的图像与直线两相邻公共点间的距离正好是一个周期,然后根据求解的值;(2)先将代入函数的解析式得到:,由已知条件以及,结合三角函数的图像与性质可以解得,所以,由正弦定理得,那么的周长可以表示为:,由差角公式以及和角公式将此式化简整理得,,结合角的取值以及三角函数的图像与性质可得.试题解析:(1), 3分∵,∴函数的周期,∵函数的图象与直线两相邻公共点间的距离为.∴,解得. 4分(2)由(Ⅰ)可知,,∵,∴,即,又∵,∴,∴,解得. 7分由正弦定理得:,所以周长为:, 10分,所以三角形周长的取值范围是. 12分【考点】1.和角公式;2.差角公式;3.二倍角公式;4.三角函数的图像与性质;5.正弦定理16.已知向量,(Ⅰ)当时,求的值;(Ⅱ)求函数在上的值域.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题主要利用向量平行的坐标运算得到,然后解出,再利用二倍角正切公式可得;(Ⅱ)本小题首先化简函数解析式,然后根据三角函数的图像与性质,得到三角函数的取值范围,进而求值域;试题解析:(Ⅰ),, 2分即,, 4分6分(Ⅱ)=10分,12分,即 14分【考点】1.平行向量;2.三角函数的图像与性质.17.已知 .【答案】【解析】.【考点】1.两角差的正切公式;2.三角函数的拆角方法.18.已知∈(,),sin=,则tan()等于()A.-7B.-C.7D.【答案】A.【解析】由题意,则.【考点】三角函数运算.19.在中,的对边分别为且成等差数列.(1)求B的值;(2)求的范围.【答案】(1);(2)【解析】(1)对于三角形问题中的边角混合的式子,可以利用正弦定理和余弦定理边角转化,或边化角转化为三角函数问题,或角化边转化为代数问题来处理,该题由等差中项列式,再利用正弦定理边化角为,,又根据三角形内角的关系,得,进而求;(2)由(1)得,可得,代入所求式中,化为自变量为的函数解析式,再化为,然后根据的范围,确定的范围,进而结合的图象确定的范围,进而求的范围.试题解析:(1)成等差数列,∴,由正弦定理得,,代入得,,即:,,又在中,,∵,∴;(2)∵,∴,∴===,∵,∴,∴,∴的取值范围是.【考点】1、等差中项;2、正弦定理;3、型函数的值域.20.取得最小值a时,此时x的值为b,则取得最大值时,的值等于________。

2023-2024学年高考数学三角函数专项练习题(附答案)

2023-2024学年高考数学三角函数专项练习题(附答案)

2023-2024学年高考数学三角函数小专题一、单选题1.函数的最小正周期为( )()2sin 222sin 4f x x xπ⎛⎫=-- ⎪⎝⎭A .B .C .D .π2ππ42π2.若,则等于( )sin tan 0x x ⋅<1cos2x +A .B .C .D .2cos x 2cos x -2sin x 2sin x-3.已知,均为锐角,则( )251cos ,tan()53ααβ=-=-,αββ=A .B .C .D .5π12π3π4π64.将函数的图象平移后所得的图象对应的函数为,则进行的平移πsin 23y x ⎛⎫=+ ⎪⎝⎭cos 2y x =是( )A .向左平移个单位B .向右平移个单位C .向右平移个单位π12π6π12D .向左平移个单位π65.若,则( )1cos 63πα⎛⎫-=⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭A .B .C .D .42979429-79-6.设函数,其图象的一条对称轴在区间内,且的()3sin cos (0)f x x x ωωω=+>ππ,63⎡⎤⎢⎥⎣⎦()f x 最小正周期大于,则的取值范围为( )πωA .B .C .D .1,12⎛⎫⎪⎝⎭()0,2[)1,2()1,27.已知,且,求( )π4sin 45α⎛⎫+= ⎪⎝⎭π3π44<<αcos α=A .B .C .D .2106222610A .函数的图像可由()f xB .函数在区间()f xC .函数的图像关于直线()f xC .D .o o2sin15sin 75o oo otan 30tan151tan 30tan15+-11.已知函数的图像关于直线对称,函数关于点对称,则下列说(21)f x +1x =(1)f x +(1,0)法不正确的是( )A .B .4为的周期(1)(1)f x f x -=+()f x C .D .(1)0f =()32f x f x ⎛⎫=- ⎪⎝⎭12.已知函数的图象关于直线对称,则( )ππ()sin(3)()22f x x ϕϕ=+-<<π4x =A .函数为奇函数π()12f x +B .函数在上单调递增()f x ππ[,]126C .若,则的最小值为12|()()|2f x f x -=12||x x -2π3D .将函数图象上所有点的横坐标缩小为原来的,得到函数的图象()f x 13sin()y x ϕ=+三、填空题13.计算:=.tan 73tan1933tan 73tan13︒︒︒︒--14.已知,,则 .1sin cos 5αα+=-()0,πα∈tan α=15.已知函数的最小正周期为,则.π()2sin()(0)3f x x ωω=+>4πω=16.已知函数,则函数的对称轴的方程为22()2cos 43sin cos 2sin f x x x x x =+-()f x .答案:1.B【分析】把函数化成的形式,利用公式求函数的最小正周期.()sin y A x ωϕ=+2πT ω=【详解】因为()2sin 222sin 4f x x x π⎛⎫=-- ⎪⎝⎭()22sin 2cos 221cos 222x x x =---.22sin 2cos 2222x x =+-πsin 224x ⎛⎫=+- ⎪⎝⎭所以,函数的最小正周期为.2ππ2T ==故选:B 2.B【分析】先由已知条件判断的符号,然后对配凑升幂公式即可.cos x 1cos2x +【详解】由题知:2sin sin tan 00cos 0cos xx x x x ⋅<⇒<⇒<.21cos21cos222cos 2cos 2cos 2xx x x x++=⨯===-故选:B.3.C【分析】由两角差的正切公式求解即可.【详解】因为,,,π02α<<25cos 5α=25sin 1cos 5αα=-=,sin 1tan cos 2ααα==,()()()11tan tan 23tan tan 1111tan tan 123ααββααβααβ⎛⎫-- ⎪--⎝⎭⎡⎤=--===⎣⎦+-⎛⎫+⋅- ⎪⎝⎭所以.π4β=故选:C.4.A【分析】分析各选项平移后的函数解析式,由此作出判断即可.【详解】对于A :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,符合;πππsin 2sin 2cos 21232y x x x⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于B :向右平移个单位可得到,不πsin 23y x ⎛⎫=+ ⎪⎝⎭π6ππsin 2sin 2cos 263y x x x ⎡⎤⎛⎫=-+=≠ ⎪⎢⎥⎝⎭⎣⎦符合;对于C :向右平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,不符合;πππsin 2sin 2cos 21236y x x x⎡⎤⎛⎫⎛⎫=-+=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于D :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π6,不符合;ππ2πsin 2sin 2cos 2633y x x x⎡⎤⎛⎫⎛⎫=++=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选:A.5.D【分析】利用二倍角公式和诱导公式解题.【详解】因为2217cos(2)=cos22cos 121cos(2)366393ππππαααα⎛⎫⎛⎫⎛⎫--=--=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以.7sin 2sin 2cos 262339ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=--=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:D 6.C【分析】根据题意,得到,取得对称轴的方程,由的()π2sin()6f x x ω=+ππ,Z 3k x k ωω=+∈k 取值,结合题意,即可求解.【详解】由函数,()π3sin cos 2sin()6f x x x x ωωω=+=+令,可得,πππ,Z 62x k k ω+=+∈ππ,Z3k x k ωω=+∈因为图象的一条对称轴在区间内,可得,可得,ππ,63⎡⎤⎢⎥⎣⎦ππππ633k ωω≤+≤131231k k ωω⎧≤+⎪⎨⎪≥+⎩又因为的最小正周期大于,可得,解得,()f x π2ππω>2ω<当且仅当时,解得.0k =ω1≤<2综上可得,实数的取值范围为.ω[1,2)故选:C.7.A【分析】利用平方关系和两角差的余弦公式计算.【详解】因为,所以,,π3π44<<απππ24α<+<2ππ3cos()1sin ()445αα+=--+=-,ππππππ3422cos cos ()cos()cos sin()sin ()44444455210αααα⎡⎤=+-=+++=-+⨯=⎢⎥⎣⎦故选:A.8.B【分析】根据给定的函数图象,结合“五点法”作图求出函数解析式,再根据正弦函数的单调性、对称性,结合三角函数图象的平移变换,逐项判断作答.【详解】由图象可知,,2A =由图,因为,所以,,()10=1sin =2f ϕ⇒π02ϕ<<π=6ϕ()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭由图,则,5π012f ⎛⎫= ⎪⎝⎭5ππ122π,=,12655k k k k ωω⨯+=∈⇒-∈Z Z由图可知,所以,所以,1π5π12002125T ωω=>-⇒<<=2ω()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭对于A ,的图像向左平移个单位得到的sin =2sin2y A x x ω=π6ππ2sin2+=2sin 2+63y x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭图象,选项A 不正确;对于B ,由,可得,πππ2π22π,262k x k k -+≤+≤+∈Z ππππ,36k x k k -+≤≤+∈Z则函数的单调递增区间为,则在区间上单调递增,()f x πππ,π,36k k k ⎡⎤-++∈⎢⎥⎣⎦Z ()f x ππ,36⎡⎤-⎢⎥⎣⎦所以在区间上单调递增,选项B 正确;()f x ππ,312⎡⎤-⎢⎥⎣⎦对于C ,由于,则直线不是函数图象的对称轴,选项π2ππ2sin 12336f ⎛⎫⎛⎫=+=≠± ⎪ ⎪⎝⎭⎝⎭π3x =()f x C 不正确;对于D ,由,可得,则函数的图象关于点π2π,6x k k +=∈Zππ,122k x k =-+∈Z ()f x 对称,选项D 不正确.ππ,0,122k k ⎛⎫-+∈ ⎪⎝⎭Z 故选:B .9.ABD【分析】令,求得,可判定A 不正确;令,求得5π12x =5π3()122f =π8x =-可判定B 不正确;由时,可得,可判定C 正π5π()sin()812f -=-π22π,π,0,π6x -=--()0f x =确;由,结合正弦函数的性质,可判定D 不正确.π7ππ2(,)666x -∈--【详解】对于函数,()sin 26πf x x ⎛⎫=- ⎪⎝⎭对于A 中,令,可得,5π12x =5π5ππ2π3()sin(2)sin 1212632f =⨯-==所以函数的图象不关于点中心对称,所以A 不正确;()f x 5π,012⎛⎫⎪⎝⎭对于B 中,令,可得不是最值,π8x =-πππ5π()sin(2)sin()88612f -=-⨯-=-所以函数的图象不关于直线对称,所以B 不正确;()f x π8x =-对于C 中,由,可得,()π,πx ∈-π13π11π2,666x ⎛⎫-∈- ⎪⎝⎭当时,可得,π22π,π,0,π6x -=--()0f x =所以在上有4个零点,所以C 正确;()f x ()π,π-对于D 中,由,可得,π[,0]2x ∈-π7ππ2(,)666x -∈--根据正弦函数的性质,此时先减后增,所以D 不正确.()f x故选:ABD.10.BC【分析】由诱导公式先求出的值,然后用三角恒等公式逐一验证即可.11sin(6-π)【详解】由题意有,11ππ1sin sin 662⎛⎫-== ⎪⎝⎭对于A 选项:因为,故A 选项不符合题意;2o o 312cos 151cos3022-==≠对于B 选项:因为,故B 选项符合()o o o o o o o 1cos18cos 42sin18sin 42cos 1842cos 602-=+==题意;对于C 选项:因为,故()()o o o o o o o o 12sin15sin 75cos 7515cos 7515cos 60cos902=--+=-=C 选项符合题意;对于D 选项:因为,故D 选项不符合题意;()o o o o o o otan 30tan151tan 3015tan 4511tan 30tan152+=+==≠-故选:BC.11.CD【分析】根据题意结合函数的对称性可推出函数的周期以及对称轴,从而判断A ,B ;举特例符合题意,验证C ,D 选项,即得答案.【详解】由函数的图像关于直线对称,可得,(21)f x +1x =(2(1)1)(2(1)1)f x f x ++=-+即,即,(32)(32)f x f x +=-(3)(3)f x f x +=-以代换x ,则;1x +(4)(2)f x f x +=-由函数关于点对称,可得,(1)f x +(1,0)(2)(2)0f x f x ++-=结合可得,(4)(2)f x f x +=-(4)(2)f x f x +=-+即,则,即4为的一个周期,B 正确;(2)()f x f x +=-(4)()f x f x +=()f x 又,结合,(2)(2)f x f x +=--(2)()f x f x +=-可得,故,A 正确;(2)()f x f x -=(1)(1)f x f x -=+由以上分析可知函数关于直线对称,且关于点成中心对称,()f x 1x =(2,0)其周期为4,则满足题意,π()sin2f x x=但是,故C 错误;π(1)sin 12f ==说明函数图象关于直线对称,3()2f x f x ⎛⎫=- ⎪⎝⎭34x =而,即直线不是对称轴,D 错误,33π()sin 148f =≠±34x =π()sin 2f x x =故选:CD 12.AB【分析】利用三角函数的图象与性质结合图象变换一一判定即可.【详解】由题意可知,又,()πππ3πZ π424k k k ϕϕ⨯+=+∈⇒=-+ππ22ϕ-<<故,()ππ,sin 344f x x ϕ⎛⎫=-=- ⎪⎝⎭对于A 项,,由诱导公式知,即函πππsin 3sin 312124f x x x⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 3sin 3x x -=-数为奇函数,故A 正确;π()12f x +对于B 项,,由正弦函数的图象及性质可知函数在上ππππ[,]30,12644x x ⎡⎤∈⇒-∈⎢⎥⎣⎦()f x ππ[,]126单调递增,故B 正确;对于C 项,易知,若,则与一个取得最大值,一个()max 1f x =12|()()|2f x f x -=()1f x ()2f x 取得最小值,即与相隔最近为半个周期,即的最小值为,故C 错误;1x 2x 12||x x -π23T =对于D 项,由三角函数的伸缩变换可知,函数图象上所有点的横坐标缩小为原来的,()f x 13得到函数的图象,故D 错误.sin(9)y x ϕ=+故选:AB.13.3【分析】由题意由两角差的正切公式即可得解.【详解】由题意.()()tan 73tan133tan 73tan13tan 73131tan 73tan133tan 73tan133︒︒︒︒︒︒︒︒︒︒--=-+-=故.314./34-0.75-【分析】根据同角平方和关系可得,进而根据齐次式即可求解.12sin cos 25αα-=【详解】由可得,故,1sin cos 5αα+=-112sin cos 25αα+=12sin cos 25αα-=又,解得或,222sin cos tan 12sin cos sin cos tan 125αααααααα-===++3tan 4α=-4tan 3α=-由于,,故,12sin cos 025αα-=<()0,πα∈sin 0,cos 0αα><又,故,因此,1sin cos 05αα+=-<sin cos αα<tan 1α<故,3tan 4α=-故34-15./120.5【分析】利用正弦函数的周期公式即可得解.【详解】因为的最小正周期为,π()2sin()(0)3f x x ωω=+>4π所以,则.2π2π4πT ωω===ω=12故答案为.1216.ππ(Z)62kx k =+∈【分析】先利用三角函数恒等变换公式对函数化简变形,然后由可求得ππ2π(Z)62x k k +=+∈答案.【详解】22()2cos 43sin cos 2sin 1cos 223sin 2cos 21f x x x x x x x x =+-=+++-,π23sin 22cos 24sin 26x x x ⎛⎫=+=+ ⎪⎝⎭令,解得:.ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈故ππ(Z)62kx k =+∈。

2020年高考理科数学《三角函数》题型归纳与训练含答案解析

2020年高考理科数学《三角函数》题型归纳与训练含答案解析

2020年高考理科数学《三角函数》题型归纳与训练【题型归纳】题型一 三角函数的概念、诱导公式及同角关系式例1 (1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .(-12,32)B .(-32,-12) C .(-12,-32)D .(-32,12) (2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为________. 【答案】(1)A (2)-34【解析】(1)设Q 点的坐标为(x ,y), 则x =cos 2π3=-12,y =sin 2π3=32.∴Q 点的坐标为(-12,32).(2)原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义, 得tan α=y x =-34,∴原式=-34.【易错点】诱导公式和三角函数定义不熟练【思维点拨】(1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关.(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等. 题型二 三角函数的图象及应用例1已知曲线1cos C y x =:,22πsin 23C y x ⎛⎫=+⎪⎝⎭:,则下面结正确的是( ).A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【答案】D【解析】(1) 1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224y x y x x ⎛⎫⎛⎫⎛⎫=+−−−−−−−−→=+=+→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原点横标缩来2ππsin 2sin 233y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭. 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x ,根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D. 【易错点】函数图像水平方向平移容易出错 【思维点拨】平移变换理论 (1)平移变换:①沿x 轴平移,按“左加右减”法则; ②沿y 轴平移,按“上加下减”法则. (2)伸缩变换:①沿x 轴伸缩时,横坐标x 伸长(0<ω<1)或缩短(ω>1)为原来的 倍(纵坐标y 不变); ②沿y 轴伸缩时,纵坐标y 伸长(A>1)或缩短(0<A<1)为原来的A 倍(横坐标x 不变). 2.注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.例2函数sin 21cos xy x=-的部分图像大致为( ).【答案】C【解析】由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当x =π时,0y =,排除D ;当1x =时,sin 21cos 2y =>-,排除A.故选C.【易错点】函数图形判断通过过排除法 【思维点拨】例3函数f(x)=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( ) A .2,-π3B .2,-π6C .4,-π6D .4,π3【答案】A【解析】 (1)因为T 2=11π12-5π12,所以T =π.又T =2πω(ω>0),所以2πω=π,所以ω=2.又2×5π12+φ=π2+2kπ(k ∈Z ),且-π2<φ<π2,故φ=-π3.【易错点】求φ时,容易忽略讨论k 【思维点拨】题型三 三角函数性质例1 (1)已知函数f(x)=sin(ωx +φ)+3cos(ωx +φ)(ω>0,0<|φ|<π2)为奇函数,且函数y =f(x)的图象的两相邻对称轴之间的距离为π2.(1)求f(π6)的值;(2)将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递增区间.【答案】(1)f(π6)=2sin π3=3(2)[kπ-π12,kπ+5π12](k ∈Z ).【解析】(1)f(x)=sin(ωx +φ)+3cos(ωx +φ) =2[12sin(ωx +φ)+32cos(ωx +φ)]=2sin(ωx +φ+π3).因为f(x)为奇函数,所以f(0)=2sin(φ+π3)=0,又0<|φ|<π2,可得φ=-π3,所以f(x)=2sin ωx ,由题意得2πω=2·π2,所以ω=2.故f(x)=2sin 2x. 因此f(π6)=2sin π3= 3.(2)将f(x)的图象向右平移π6个单位后,得到f(x -π6)的图象,所以g(x)=f(x -π6)=2sin[2(x -π6)]=2sin(2x -π3).当2kπ-π2≤2x -π3≤2kπ+π2(k ∈Z ),即kπ-π12≤x≤kπ+5π12(k ∈Z )时,g(x)单调递增,因此g(x)的单调递增区间为[kπ-π12,kπ+5π12](k ∈Z ).【易错点】 【思维点拨】题型四三角函数范围问题例1函数()23sin 0,42f x x x x ⎛π⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是 . 【答案】1【解析】()2233πsin 1cos 0442f x x x x x x ⎛⎫⎡⎤=+-=--∈ ⎪⎢⎥⎣⎦⎝⎭,,令cos x t =且[]01t ∈,,214y t =-+21t ⎛=-+ ⎝⎭,则当t =时,()f x 取最大值1. 【易错点】换元之后转化为二次函数在定区间上的定义域及最值 【思维点拨】 例2函数()cos sin =2+fx x x 的最大值为 .【解析】2()21f x +=【易错点】【思维点拨】辅助角公式运用 例3【2017年Ⅲ】函数()1ππsin cos 536f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为( ). A .65B .1C .35D .15【答案】A 【解析】11()sin sin sin sin 5362533f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=++-+=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 6sin 53x π⎛⎫+ ⎪⎝⎭.故选A. 【易错点】本题属于中档题,基础差一点的学生在解题思路方面可能会存在一定问题,三角恒等变换中公式的选择对于学生来说是一个难点,对于老师教学来说是一个重点,选择合适的公式能起到事半功倍的效果!【思维点拨】题型五三角函数求值问题 例1已知π0,2α⎛⎫∈ ⎪⎝⎭,tan 2α=,则πcos 4α⎛⎫-= ⎪⎝⎭ .【解析】由tan 2sin 2cos ααα==得 又22sin cos 1αα+=,所以21cos 5α=.因为0,2απ⎛⎫∈ ⎪⎝⎭,所以cos 5α=,sin 5α=.因为cos cos cos sin sin 44αααππ⎛⎫-=π+ ⎪⎝⎭,所以cos 4525210πα⎛⎫-=+⨯= ⎪⎝⎭. 【易错点】【思维点拨】例2(1)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625(2)sin 20cos10cos160sin10-=( )A .-B C .12- D .12【答案】(1)A (2)12【解析】(1)由sin 3tan cos 4ααα==,22cos sin 1αα+=,得3sin 5α=,4cos 5α=或3sin 5α=-, 4cos 5α=-,所以24sin 22sin cos 25ααα==,则2164864cos 2sin 2252525αα+=+=,故选A(2)原式=1sin 20cos10cos 20sin10sin(2010)sin 302+=+==【易错点】 【思维点拨】例3已知函数f(x)=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x. (1)求f(x)的最小正周期和最大值; (2)讨论f(x)在⎣⎡⎦⎤π6,2π3上的单调性.【答案】(1)f(x)的最小正周期为π,最大值为2-32,(2)f(x)在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减【解析】 (1)f(x)=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos xsin x -32(1+cos 2x)=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f(x)的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x≤5π12时, f(x)单调递增,当π2≤2x -π3≤π,即5π12≤x≤2π3时, f(x)单调递减.综上可知,f(x)在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 【易错点】【思维点拨】解答技巧,方法策略等 题型六 简单的三角恒等变换 例1(2018·新疆第二次适应性检测)cos10(13tan 30)cos50︒+︒︒的值是________.【答案】2【解析】依题意得cos 10°1+3tan 10°cos 50°=cos 10°+3sin 10°cos 50°=2sin 10°+30°cos 50°=2sin 40°sin 40°=2.【易错点】【思维点拨】解答技巧,方法策略等 例2已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.【答案】(1)-3(2)1【解析】(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.【易错点】 【思维点拨】解三角函数的给值求值问题的基本步骤 (1)先化简所求式子或所给条件; (2)观察已知条件与所求式子之间的联系; (3)将已知条件代入所求式子,化简求值. 例3若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π4【答案】A【解析】选A ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π,∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π. ∴α∈⎣⎡⎦⎤π4,π2且cos 2α=-255,又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2,∴β-α∈⎣⎡⎦⎤π2,5π4,cos(β-α)=-31010, ∴cos(α+β)=cos[(β-α)+2α]=cos(β-α)cos 2α-sin(β-α)sin 2α=⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22,又α+β∈⎣⎡⎦⎤5π4,2π,所以α+β=7π4. 【易错点】 【思维点拨】对于给值求角问题,通过先求角的某个三角函数值来求角,在选取函数时,遵循以下原则: (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝⎛⎭⎫0,π2,选正弦或余弦函数皆可;若角的范围是(0,π),选余弦函数较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦函数较好.【巩固训练】题型一 三角函数的概念、诱导公式及同角关系式1. 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,P y 是角θ终边上一点,且sin θ=则y = . 【答案】-8.【解析】由tan ⎝⎛⎭⎫π4-θ=1-tanθ1+tanθ=12,得tanθ=13,∴sinθcosθ=sinθcosθsin 2θ+cos 2θ=tanθtan 2θ+1=1319+1=310.故填310. 2. (1)已知tan α=2,求值: ①2sin α-3cos α4sin α-9cos α;②4sin 2α-3sin αcos α-5cos 2α.(2)已知θ∈(0,π),且sin θ+cos θ=13,求sin θ-cos θ的值.【答案】(1)①-1②1(2)173【解析】(1)①2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1.②4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.(2)∵sin θ+cos θ=13,∴(sin θ+cos θ)2=1+2sin θcos θ=19,∴sin θcos θ=-49.∵θ∈(0,π),θ∈⎝⎛⎭⎫π2,θ, ∴sin θ>0>cos θ,sin θ-cos θ>0.由(sin θ-cos θ)2=1-2sin θcos θ=1+89=179,得sin θ-cos θ=173.3.若cos(π-α)=53且α∈⎝⎛⎭⎫π2,π,则sin(π+α)=( ) A .-53B .-23C .-13D .±23【答案】B【解析】cos (π-α)=-cos α=53,∴cos α=-53. 又∵α∈⎝⎛⎭⎫π2,π,∴sin α=1-cos 2α=1-⎝⎛⎭⎫-532=23, ∴sin (π+α)=-sin α=-23,故选B .题型二 三角函数图像1.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( A ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移 π12个单位 D .向左平移π4个单位【答案】A【解析】因为y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4,所以将y =2cos 3x 的图象向右平移π12个单位后可得到y =2cos ⎝⎛⎭⎫3x -π4的图象. 2.函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫A>0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f(x 1)=f(x 2),则f(x 1+x 2)=( )A .1B .12C .22D .32【答案】D【解析】 观察图象可知,A =1,T =π,∴ω=2,f(x)=sin(2x +φ). 将⎝⎛⎭⎫-π6,0代入上式得sin ⎝⎛⎭⎫-π3+φ=0. 由|φ|<π2,得φ=π3,则f(x)=sin ⎝⎛⎭⎫2x +π3.函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f(x 1)=f(x 2),∴x 1+x 22=π12, ∴x 1+x 2=π6,∴f(x 1+x 2)=sin ⎝⎛⎭⎫2×π6+π3=32,故选D . 3.已知函数f(x)=2sin ⎝⎛⎭⎫2ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f(x)在区间⎣⎡⎦⎤0,π2上的单调性. 【答案】(1) ω=1(2) f(x)在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎝⎛⎦⎤π8,π2上单调递减.【解析】 (1)因为f(x)=2sin ⎝⎛⎭⎫2ωx +π4的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1. (2)因为f(x)=2sin ⎝⎛⎭⎫2x +π4. 若0≤x≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x≤π8时,f(x)单调递增; 当π2<2x +π4≤5π4,即π8<x≤π2时,f(x)单调递减. 综上可知,f(x)在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎝⎛⎦⎤π8,π2上单调递减. 题型三 三角函数性质1. 已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .⎣⎡⎦⎤12,54 B .⎣⎡⎦⎤12,34 C .⎣⎡⎦⎤0,12 D .[0,2]【答案】A【解析】由π2<x<π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4.又y =sin x 在⎝⎛⎭⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A .2.设函数f(x)=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f(x)的一个周期为-2πB .y =f(x)的图象关于直线x =8π3对称C .f(x +π)的一个零点为x =π6D .f(x)在⎝⎛⎭⎫π2,π单调递减 【答案】D【解析】根据函数解析式可知函数f(x)的最小正周期为2π,所以函数一个周期为-2π,A 项正确;当x =8π3时,x +π3=3π,所以cos ⎝⎛⎭⎫x +π3=-1,所以B 项正确;f(x +π)=cos ⎝⎛⎭⎫x +π+π3=cos ⎝⎛⎭⎫x +4π3,当x =π6时,x +4π3=3π2,所以f(x +π)=0,所以C 项正确;函数f(x)=cos ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫π2,23π上单调递减,在⎝⎛⎭⎫23π,π上单调递增,故D 项不正确,故选D .3.已知函数①y =sin x +cos x ,②y =22sin xcos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0中心对称 B .两个函数的图象均关于直线x =-π4对称C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数 D .将函数②的图象向左平移π4个单位得到函数①的图象【答案】C【解析】函数①y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,②y =22·sin xcos x =2sin 2x ,由于①的图象关于点⎝⎛⎭⎫-π4,0中心对称,②的图象不关于点⎝⎛⎭⎫-π4,0中心对称,故A 项不正确;由于函数①的图象不可能关于直线x =-π4对称,故B 项不正确;由于这两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数,故C 项正确;将函数②的图象向左平移π4个单位得到函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4的图象,而y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4≠2sin ⎝⎛⎭⎫x +π4,故D 项不正确,故选C .题型四三角函数范围问题1.已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是 .【答案】3√32【解析】由题意可得T=2π是f(x)=2sin x+sin 2x 的一个周期,所以求f(x)的最小值可考虑求f(x)在[0,2π)上的值域.由f(x)=2sin x+sin 2x,得f'(x)=2cos x+2cos 2x=4cos 2x+2cos x -2.令f'(x)=0,可得cos x=12或cos x=-1,x ∈[0,2π)时,解得x=π3或x=5π3或x=π.因为f(x)=2sin x+sin 2x 的最值只能在x=π3,x=5π3,x=π或x=0时取到,且f (π3)=3√32,f (5π3)=-3√32,f(π)=0,f(0)=0,所以函数f(x)的最小值为-3√32.2.已知y =3-sin x -2cos 2x ,x ∈⎣⎡⎦⎤π6,7π6,求y 的最大值与最小值之和. 【答案】238【解析】 ∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x) =2⎝⎛⎭⎫sin x -142+78, ∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.故函数的最大值与最小值的和为2+78=238.3.已知函数f(x)=sin(ωx +φ)(0<ω<1,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝⎛⎭⎫3π4,0对称. (1)求ω,φ的值; (2)求f(x)的单调递增区间;(3)若x ∈⎣⎡⎦⎤-3π4,π2,求f(x)的最大值与最小值, 【答案】(1)ω=23.(2) ⎣⎡⎦⎤3kπ-3π2,3kπ,k ∈Z (3) 函数f(x)的最大值为1,最小值为0. 【解析】(1)因为f(x)=sin(ωx +φ)是R 上的偶函数,所以φ=π2+kπ,k ∈Z ,且0≤φ≤π,则φ=π2,即f(x)=cos ωx.因为图象关于点M ⎝⎛⎭⎫34π,0对称, 所以ω×34π=π2+mπ,m ∈Z ,ω=23+4m3,又0<ω<1,所以ω=23.(2)由(1)得f(x)=cos 23x ,由-π+2kπ≤23x≤2kπ,且 k ∈Z 得,3kπ-3π2≤x≤3kπ,k ∈Z ,所以函数的递增区间是⎣⎡⎦⎤3kπ-3π2,3kπ,k ∈Z . (3)因为x ∈⎣⎡⎦⎤-3π4,π2,所以23x ∈⎣⎡⎦⎤-π2,π3, 当23x =0时,即x =0,函数f(x)的最大值为1, 当23x =-π2时,即x =-3π4,函数f(x)的最小值为0.题型五三角函数求值问题 1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A .3π4B .5π4C .7π4D .5π4或7π4【答案】 C【解析】∵α,β为钝角,sin α=55,cos β=-31010,∴cos α=-255,sin β=1010, ∴cos(α+β)=cos αcos β-sin αsin β=22>0. 又α+β∈(π,2π),∴α+β∈⎝⎛⎭⎫3π2,2π,∴α+β=7π4. 2.已知函数f(x)=2cos 2ωx -1+23sin ωxcos ωx(0<ω<1),直线x =π3是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y =g(x)的图象是由y =f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝⎛⎭⎫2α+π3=65,α∈⎝⎛⎭⎫0,π2,求sin α的值. 【答案】(1)f(x)的单调递增区间为⎣⎡⎦⎤2kπ-2π3,2kπ+π3(k ∈Z )(2) 【解析】 (1)f(x)=cos 2ωx +3sin 2ωx =2sin ⎝⎛⎭⎫2ωx +π6,(2)43-310由于直线x =π3是函数f(x)=2sin ⎝⎛⎭⎫2ωx +π6的图象的一条对称轴,所以sin ⎝⎛⎭⎫2π3ω+π6=±1,因此2π3ω+π6=kπ+π2(k ∈Z ),解得ω=32k +12(k ∈Z ),又0<ω<1,所以ω=12,所以f(x)=2sin ⎝⎛⎭⎫x +π6.由2kπ-π2≤x +π6≤2kπ+π2(k ∈Z ),得2kπ-2π3≤x≤2kπ+π3(k ∈Z ), 所以函数f(x)的单调递增区间为⎣⎡⎦⎤2kπ-2π3,2kπ+π3(k ∈Z ). (2)由题意可得g(x)=2sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +2π3+π6,即g(x)=2cos x 2, 由g ⎝⎛⎭⎫2α+π3=2cos ⎣⎡⎦⎤12⎝⎛⎭⎫2α+π3=2cos ⎝⎛⎭⎫α+π6=65,得cos ⎝⎛⎭⎫α+π6=35, 又α∈⎝⎛⎭⎫0,π2,故π6<α+π6<2π3,所以sin ⎝⎛⎭⎫α+π6=45, 所以sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6=sin ⎝⎛⎭⎫α+π6cos π6-cos ⎝⎛⎭⎫α+π6sin π6=45×32-35×12=43-310.3.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫5π6+α-sin 2⎝⎛⎭⎫α-π6的值. 【答案】-3+23 【解析】 cos ⎝⎛⎭⎫56π+α-sin 2⎝⎛⎭⎫α-π6 =cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α-sin 2⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α-⎣⎡⎦⎤1-cos 2⎝⎛⎭⎫π6-α =-33-⎝⎛⎭⎫1-13=-3+23. 题型六 简单的三角恒等变换1.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则cos 2α=( ) A .1 B .-1 C.12D .0【答案】选D【解析】 ∵sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α,即⎝⎛⎭⎫12-32sin α=-⎝⎛⎭⎫12-32cos α, ∴tan α=sin αcos α=-1,∴cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0.2.计算cos 10°-3cos -100°r(1-sin 10°)=________(用数字作答).【答案】2【解析】cos 10°-3cos -100°r(1-sin 10°)=cos 10°+3cos 80°1-cos 80°=cos 10°+3sin 10°2sin 40°=2sin10°+30°r(2sin 40°)=2.3.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,则β=________.【答案】π3【解析】由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝⎛⎭⎫172=437,由0<β<α<π2,得0<α-β<π2,又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2α-β=1-⎝⎛⎭⎫13142=3314.由β=α-(α-β),得cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.。

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.已知tan,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<<,则cos+sin= ( )A.B.C.-D.-【答案】C【解析】∵tan·=k2-3=1∴k=±2,而3π<<,∴tan>0,即tan+=k=2,解之得tanα=1,所以sin=cos=∴cos+sin=-2.已知向量,,函数,.(1)求函数的图像的对称中心坐标;(2)将函数图像向下平移个单位,再向左平移个单位得函数的图像,试写出的解析式并作出它在上的图像.【答案】(1);(2).【解析】本题主要考查向量的数量积、降幂公式、诱导公式、两角和与差的正弦公式、函数的对称中心、函数图像的平移、三角函数的图像等基础知识,考查学生的画图能力、计算能力和数形结合思想.第一问,先利用向量的数量积得到的解析式,再利用降幂公式、诱导公式、两角和与差的正弦公式,化简表达式,使之化简成的形式,数形结合得到对称中心坐标;第二问,利用函数图像的平移法则:左+右-,上+下-,利用五点作图法作出要求范围内的图像.试题解析:(1)4分由于得:,所以.所以的图像的对称中心坐标为 6分(2)=,列表:描点、连线得函数在上的图象如图所示:12分【考点】向量的数量积、降幂公式、诱导公式、两角和与差的正弦公式、函数的对称中心、函数图像的平移、三角函数的图像.3.在中,角A,B,C所对的边分别为a,b,c,已知.(1)当,且的面积为时,求a的值;(2)当时,求的值.【答案】(1);(2).【解析】(1)此题综合性较强,首先根据三角形面积公式:,将代入得到与的关系,根据余弦定理得到与的关系,再根据同角基本关系式,列出关于的关系式,得出结果;(2)由已知然后再结合余弦定理,得与的关系,然后结合得出的关系,从而判定三角形的形状,由边的关系得出角的三角函数值,结合已知消或,得出三角函数值,考察知识点比较全面,灵活转化公式之间的相互关系,进行消元.试题解析:(1)解:因为,的面积为,所以,所以, 3分又,由余弦定理得, 5分由,所以,解得. 7分(2)解:,,由余弦定理得,,所以,, 9分由正弦定理得,, 11分所以. 13分【考点】1.余弦定理;2.三角形面积公式;3.正弦定理;4同角基本关系式.4.函数.(Ⅰ)求的值;(Ⅱ)求函数的最小正周期及其图象的所有对称轴的方程.【答案】(Ⅰ);(Ⅱ),【解析】(Ⅰ)可将角代入函数解析式直接计算。

(完整版)三角函数高考题及练习题(含答案),推荐文档

(完整版)三角函数高考题及练习题(含答案),推荐文档

16

又 k∈Z,知 k=5,由此可知在闭区间 4 4 上存在 f(x)的对称轴,其方程为 x= 3 .
题型三 三角函数的性质与图象的移动问题
例 3 把函数 f(x)=sin2x-2sinxcosx+3cos2x 的图象沿 x 轴向左平移 m 个单位(m>0),
17π
所得函数的图象关于直线 x= 8 对称. (1) 求 m 的最小值;
例 2 函数 f(x)=Asin(ωx+φ)(A、ω、φ 是常数,A>0,ω>0)的部分图象如图所示.
(1) 求 f(0)的值;
[ ]π
我去人(2也) 若就0<φ<有π,人求函!数 为f(x)在U区R间扼0,腕3 入上的站取值内范围信. 不存在向你偶同意调剖沙
建议解收:(1)由藏题图可下知 A=载2,本文,以便随时学习!
8
8 上是减函数.所以当 x1、x2∈ 8
8 ,且 x1<x2 时,都有 f(x1)>f(x2),
f(x1)-f(x2)
从而经过任意两点(x1,f(x1))和(x2,f(x2))的直线的斜率 k= x1-x2 <0.
( )π
2
2x+
(3) 解:令 f(x)=1,所以 cos 4 =- 2 .
( ) π π 9π , 因为 x∈(0,π),所以 2x+4∈ 4 4 .
T 7π π π


∵ 4=12-3=4,∴ ω=2.又 2×12+φ=2kπ+ 2 , π
∴ φ=2kπ+3(k∈Z),
( )π 6
2kπ+
∴ f(0)= 2sin
3=2.
(2)
( ) π
π
π
π

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)之相礼和热创作1.掌握正弦函数、余弦函数、正切函数的图象与性子;会用五点法”作出正弦函数及余弦函数的图象;掌握函数y = Asin(3叶I的图象及性子.2.高考试题中,三角函数题绝对比较传统,地位靠前,通常是以简单题方式出现,因而在本讲复习中要注重三角学问的根底性,特别是要纯熟掌握三角函数的定义、三角函数图象的辨认及其简单的性子(周期、单调性、奇偶、最值、对称、图象平移及变换等).3.三角函数是每年高考的必考内容,多数为根底题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性子的考查.在这一讲复习中要器重解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.一兀.... ...... …1.函数y = 2sin2x —4 — 1是取小正周期为的(填奇”或偶”的数.答案:兀奇解析:y= — cos2x — 2 = — sin2x.2.函数f(x) = Igx — sinx的零点个数为 .答案:3解析:在(0, + 00内作出函数y=lgx、y = sinx的图象,即可得到答案.3.函数y=2sin(3x+(|))|妒2的一条对称轴为x = 12,则j=•答案:;4解析:由已知可得3X12+ <^= k兀+ 2,kGZ,即(|)= k% + 4 kGZ.由于|逐以是Q4.4.若f(x) = 2sin 3x(0< 3 <1在区间0, 3上的最大值是V2,则3=答案:解析:由0WX3,彳导0W 3 x3< 3,则f(x)在0, 3上单调递增,且在这个区间上的最大值是" 以是2sin-v =也,且 3 题型二 三角函数定义及运用成绩例1设函数f( H V3sin 9 + cos 9 ,其中角。

的顶点与坐标 原点重合,始边与x 轴非负半轴重合,终边经过点 P(x, y),且 o< e 宸. (i)若点P 的坐标是2, g,求f(瞰值;= 2).⑵ 在直角坐标系中画出可行域知 0W 。

2023年高考数学微专题练习专练20函数y=Asinωx φ的图像及三角函数模型含解析理

2023年高考数学微专题练习专练20函数y=Asinωx φ的图像及三角函数模型含解析理

专练20 函数y =A sin (ωx +φ)的图像及三角函数模型命题范围:三角函数的解析式、三角函数的图像变换.[基础强化]一、选择题1.要得到函数y =sin (4x -π3)的图像,只需将函数y =sin4x 的图像( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位2.把函数y =cos2x +1的图像上所有的点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是( )3.将函数y =sin (2x +π5)的图像向右平移π10个单位长度,所得图像对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增B .在区间⎣⎢⎡⎦⎥⎤-π4,0上单调递减C .在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递增D .在区间⎣⎢⎡⎦⎥⎤π2,π上单调递减 4.函数y =A sin (ωx +φ)的部分图像如图所示,则( ) A .y =2sin (2x -π6)B .y =2sin (2x -π3)C .y =2sin (x +π6)D .y =2sin (x +π3)5.[2022·江西省南昌市第十中学月考]将函数y =sin2x +3cos2x 的图像沿x 轴向左平移φ(φ>0)个单位后,得到关于y 轴对称的图像,则φ的最小值为( )A .π12B .π6C .π4D .5π12 6.函数y =2sin (ωx +φ)(ω>0,-π2<φ<π2)的部分图像如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π37.[2021·全国乙卷]把函数y =f (x )图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin (x -π4)的图像,则f (x )=( )A.sin (x 2-7π12)B.sin (x 2+π12)C.sin (2x -7π12)D.sin (2x +π12)8.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 29.[2022·安徽省示范高中皖北协作区联考]将函数f (x )=2sin (2x -π3)的图像向右平移π6个单位后所得到的函数记为g (x ),则下列结论中正确的是( )A .g (x )的对称中心为(k π2+π6,0)(k ∈Z )B .g (x )=2sin (2x +π3)C .g (x )在(π12,7π12)上单调递减D .g (x )的图像关于x =π12对称二、填空题 10.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的一段图像如图所示,则函数f (x )的解析式为f (x )=________.11.[2022·南昌市模拟]已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的图像与x 轴在原点右侧的第一个交点为(1,0),在y 轴右侧的第一个最高点为(3,2),则f (-1)=________.12.将函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ<π2)图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f (π6)=________.[能力提升]13.[2022·安徽芜湖模拟]已知函数f (x )=A cos (ωx +φ)+b (A >0,ω>0,|φ|<π2)的大致图像如图所示,将函数f (x )的图像上点的横坐标拉伸为原来的3倍后,再向左平移π2个单位长度,得到函数g (x )的图像,则函数g (x )的单调递增区间为( )A .[-3π2+3k π,3k π](k ∈Z )B .[3k π,3k π+3π2](k ∈Z )C.[-7π4+3k π,-π4+3k π](k ∈Z )D .[-π4+3k π,5π4+3k π](k ∈Z )14.[2022·陕西省西安中学模拟]已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图像如图所示,现将f (x )的图像向左平移π12个单位长度得到y =g (x )的图像,则方程2g (x )=2在[0,2π]上实数解的个数为( )A .5B .6C .7D .815.[2022·西南大学附中模拟]水车在古代是进行灌溉引水的工具,亦称“水转筒车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A (3,-33)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足y =f (t )=R sin (ωt +φ)(t ≥0,ω>0,|φ|<π2),则下列叙述正确的是( )A .水斗作周期运动的初相为-π6B .在水斗开始旋转的60秒(含)中,其高度不断增加C .在水斗开始旋转的60秒(含)中,其最高点离平衡位置的纵向距离是3 3D .当水斗旋转100秒时,其和初始点A 的距离为616.[2022·全国甲卷(理),11]设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .⎣⎢⎡⎭⎪⎫53,136B .⎣⎢⎡⎭⎪⎫53,196C .⎝ ⎛⎦⎥⎤136,83D .⎝ ⎛⎦⎥⎤136,196 专练20 函数y =A sin (ωx +φ)的 图像及三角函数模型1.B ∵y =sin (4x -π3)=sin ⎣⎢⎡⎦⎥⎤4(x -π12),∴要得到y =sin (4x -π3)的图像,只需将y =sin4x 的图像向右平移π12个单位.2.A y =cos2x +1――→横坐标伸长2倍纵坐标不变y =cos x +1――→向左平移1个单位长度y =cos (x +1)+1――→向下平移1个单位长度y =cos (x +1).函数图像过(π2-1,0),结合选项可知,选A.3.A 将y =sin (2x +π5)的图像向右平移π10个单位长度,得到y =sin ⎣⎢⎡⎦⎥⎤2(x -π10)+π5=sin2x ,令2k π-π2≤2x ≤2k π+π2(k ∈Z ),得k π-π4≤x ≤k π+π4(k ∈Z ),∴y =sin2x在⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z )上单调递增,当k =0时,得到y =sin2x 的一个单调增区间为⎣⎢⎡⎦⎥⎤-π4,π4,故A 正确,B 不正确,由2k π+π2≤2x ≤2k π+32π(k ∈Z ),得y =sin2x 的单调减区间为⎣⎢⎡⎦⎥⎤k π+π4,k π+34π(k ∈Z ),结合选项可知C 、D 不正确.4.A 由图知A =2,T 2=π3-(-π6)=π2,∴T =π,∴ω=2.将(π3,2)坐标代入,得2×π3+φ=2k π+π2,k ∈Z ,∴φ=2k π-π6,k ∈Z .取k =0,得φ=-π6.5.A ∵函数y =sin2x +3cos2x =2sin (2x +π3),将函数y =sin2x +3cos2x 的图像沿x 轴向左平移φ个单位后,得到函数y =2sin (2x +2φ+π3),因为函数是偶函数,∴2φ+π3=k π+π2(k ∈Z )∴φ=k π2+π12(k ∈Z ).当k =0时,φ=π12.则φ的最小值为π12.6.A 由题意得512π+π3=34T ,∴T =π,又T =2πω,∴ω=2,又当x =512π时,2sin (2×512π+φ)=2,∴φ=-π3+2k π(k ∈Z ),又-π2<φ<π2,∴φ=-π3.7.B 依题意,将y =sin ⎝⎛⎭⎪⎫x -π4的图像向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图像,所以y =sin ⎝⎛⎭⎪⎫x -π4将其图像向左平移π3个单位长度→y =sin ⎝⎛⎭⎪⎫x +π12的图像――→所有点的横坐标扩大到原来的2倍f (x )=sin ⎝⎛⎭⎪⎫x 2+π12的图像.8.D y =sin (2x +2π3)=cos (2x +2π3-π2)=cos (2x +π6)=cos ⎣⎢⎡⎦⎥⎤2(x +π12),由y =cos x 的图像得到y =cos2x 的图像,需将曲线C 1上各点的横坐标缩短到原来的12,纵坐标不变;由y =cos2x 的图像得到y =cos ⎣⎢⎡⎦⎥⎤2(x +π12)的图像,需将y =cos2x 的图像上的各点向左平移π12个单位长度,故选D.9.D 函数f (x )=2sin (2x -π3)的图像向右平移π6个单位得到g (x )=2sin [2(x -π6)-π3]=2sin (2x -2π3), g (x )=2sin (2x -2π3)=2sin (2x +π3-π)=-2sin (2x +π3),B 选项错误. 2x +π3=k π,x =k π2-π6,所以g (x )的对称中心为(k π2-π6,0)(k ∈Z ),A 选项错误.π12<x <7π12,π6<2x <7π6,π2<2x +π3<3π2,所以g (x )=-2sin (2x +π3)在(π12,7π12)上递增,C 选项错误.g (π12)=-2sin (π6+π3)=-2sin π2=-2,所以g (x )的图像关于x =π12对称,D 选项正确.10.2sin (2x +3π4)解析:由题图可知,f (x )max =2,f (x )min =-2, 故A =2, 最小正周期T =2×⎣⎢⎡⎦⎥⎤3π8-(-π8)=π,故ω=2ππ=2,所以f (x )=2sin (2x +φ). 又曲线y =f (x )过点(-π8,2),所以2sin ⎣⎢⎡⎦⎥⎤2×(-π8)+φ=2, 即φ-π4=π2+2k π,k ∈Z .又|φ|<π,所以φ=3π4.故函数f (x )的解析式为f (x )=2sin (2x +3π4).11.-2解析:由与x 轴在原点右侧的第一个交点为(1,0),在y 轴右侧的第一个最高点为(3,2)知T 4=3-1,T =8,或3T 4=3-1,T =83,当T =8时,ω=2πT =π4,A =2,∴f (x )=2sin (π4x +φ),代入点(1,0),2sin (π4+φ)=0,又|φ|<π2,∴φ=-π4,f (x )=2sin (π4x -π4),f (-1)=-2;当T =83时,ω=2πT =3π4,A =2,∴f (x )=2sin (3π4x +φ),代入点(1,0), 2sin (3π4+φ)=0,又|φ|<π2,∴φ=π4,f (x )=2sin (3π4x +π4),f (-1)=-2.综上,f (-1)=-2. 12.22解析:由题意得将y =sin x 的图像向左平移π6个单位,得到y =sin (x +π6),再纵坐标不变,横坐标伸长为原来的2倍,得到y =sin (12x +π6),即f (x )=sin (12x +π6),∴f (π6)=sin π4=22.13.C 依题意,⎩⎪⎨⎪⎧A +b =1,-A +b =-3,解得⎩⎪⎨⎪⎧A =2,b =-1,故f (x )=2cos (ωx +φ)-1, 而f (π12)=1,f (π3)=-1,∴T 4=π3-π12=π4, 故T =π=2πω,则ω=2;∴2cos (π6+φ)-1=1,故π6+φ=2k π(k ∈Z ), 又|φ|<π2,故φ=-π6,∴f (x )=2cos (2x -π6)-1;将函数f (x )的图像上点的横坐标拉伸为原来的3倍后, 得到y =2cos (23x -π6)-1,再向左平移π2个单位长度,得到g (x )=2cos (23x +π3-π6)-1=2cos (23x +π6)-1,令-π+2k π≤23x +π6≤2k π(k ∈Z ),故-7π4+3k π≤x ≤-π4+3k π(k ∈Z ),故函数g (x )的单调递增区间为[-7π4+3k π,-π4+3k π](k ∈Z ). 14.B 根据函数f (x )=A sin (ωx +φ),(A >0,ω>0,|φ|<π)的部分图像, 可得12·2πω=11π12-7π12,∴ω=3.所以f (x )=A sin (3x +φ),结合五点法作图,3×7π12+φ=2π+2k π,k ∈Z ,∴φ=π4+2k π,k ∈Z ,因为|φ|<π,∴φ=π4,故f (x )=A sin (3x +π4).再把点(π2,-1)代入,可得-1=A sin ⎝ ⎛⎭⎪⎫3π2+π4,即-1=-A cos π4,∴A =2,所以f (x )=2sin (3x +π4).现将f (x )的图像向左平移π12个单位长度,得到函数y =g (x )=2sin [3(x +π12)+π4]=2cos3x ,因为2g (x )=2,即cos3x =12,所以3x =π3+2k 1π,k 1∈Z 或3x =-π3+2k 2π,k 2∈Z ,解得x =π9+2k 1π3,k 1∈Z 或x =-π9+2k 2π3,k 2∈Z ,因为x ∈[0,2π],所以x =π9或7π9或13π9或5π9或11π9或17π9, 故方程2g (x )=2在[0,2π]上实数解的个数为6个. 15.D 由A (3,-33), 知R =32+(-33)2=6, 又T =120,所以ω=2πT =π60.当t =0时,点P 在点A 位置,有-33=6sin φ, 解得sin φ=-32, 又|φ|<π2,所以φ=-π3,故A 错误;可知f (t )=6sin (π60t -π3),当t ∈(0,60]时,π60t -π3∈(-π3,2π3],所以函数f (t )先增后减,故B 错误; 当t ∈(0,60]时,π60t -π3∈(-π3,2π3],sin (π60t -π3)∈(-32,1], 所以点P 到x 轴的距离的最大值为6,故C 错误;11 当t =100时,π60t -π3=4π3, P 的纵坐标为y =-33,横坐标为x =-3,所以|PA |=|-3-3|=6,故D 正确.16.C 因为f (x )=sin ⎝⎛⎭⎪⎫ωx +π3,结合选项,只考虑ω>0.当ωx +π3=π2+k π(k ∈Z ),即x =π6ω+k πω(k ∈Z )时,f (x )取得极值.又因为f (x )在区间(0,π)上恰有三个极值点,所以⎩⎪⎨⎪⎧π6ω+2πω<π,π6ω+3πω≥π,解得136<ω≤196.当ωx +π3=k π(k ∈Z ),即x =-π3ω+k πω(k ∈Z )时,f (x )=0.又因为f (x )在区间(0,π)上恰有两个零点,所以⎩⎪⎨⎪⎧-π3ω+2πω<π,-π3ω+3πω≥π,解得53<ω≤83.综上可得,ω的取值范围是⎝ ⎛⎦⎥⎤136,83.故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档