磁光效应

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁光效应

磁光效应是指处于磁化状态的物质与光之间发生相互作用而引起的各种光学现象。包括法拉第效应、克尔磁光效应、塞曼效应和科顿-穆顿效应等。这些效应均起源于物质的磁化,反映了光与物质磁性间的联系。下面我们将分别简要介绍各个不同的磁光效应

1.法拉第效应

1)发现:

1845年,法拉第发现:当一束平面偏振光通过

置于磁场中的磁光介质时,平面偏振光的偏

振面就会随着平行于光线方向的磁场发生旋

转。旋转的这个角度称之为法拉第旋转角,

偏转角度ψ与磁感应强度B和光穿越介质的

长度l的乘积成正比,即ψ=VBl,比例系数V

称为费尔德常数,与介质性质及光波频率有关。偏转方向取决于介质性质和磁场方向。上述现象称为法拉第效应或磁致旋光效应。

2)实验原理

法拉第效应实验装

置如图所示。

由光源产生的复合

白光通过小型单色

仪后可以获得波长在360~800nm的单色光,经过起偏镜成为单色线偏振光,然后穿过电磁铁。电磁铁采用直流供电,中间磁路有通光孔,保证人射光与磁场B方向一致。根据励磁电流的大小可以求得对应的磁场值。入射光穿过样品后从电磁铁的另一极穿出人射到检偏器上,透过检偏器的光进入光电倍增管,由数显表显示光电流的大小,即出射光强的大小。根据出射光强最大(或最小)时检偏器的位置读数即可得出旋光角。检偏器的角度位置读数也由数显表读出。

3)应用:

法拉第效应可以应用于测量仪器。例如,法拉第效应被用于测量旋光度、或光波的振幅调变、或磁场的遥感。在自旋电子学里,法拉第效应被用于研究半导体内部的电子自旋的极化。法拉第旋转器(Faraday rotator)可以用于光波的调幅,是光隔离器与光循环器(optical circulator)的基础组件,在光通讯与其它激光领域必备组件。具体应用如下:

(1) 量糖计(自然旋光)

(2) 磁光开关与磁光调制器(点调制与空间调制)

(3) 磁光光盘:光信息存储

(4) 磁光电流传感器(或互感器):测量大电流等;

法拉第效应可用于混合碳水化合物成分分析和分子结构研究。在激光技术中这一效应被利用来制作光隔离器和红外调制器。该效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。

2.克尔磁光效应

i.发现及简介

线偏振光入射到磁化媒质表面反射出去时,偏振面发生旋转的现象。也叫克尔磁光效应或克尔磁光旋转。这是继法拉第效应发现后,英国科学家J.克尔于1876年发现的第二个重要的磁光效应。

ii.分类

按磁化强度和入射面的相对取向,克尔磁光效应包括三种情况:

a)极向克尔效应, 即磁化强度M 与介质表面垂直时的克尔效应;

b)横向克尔效应, 即M 与介质表面平行, 但垂直于光的入射面时

的克尔效应;

c)纵向克尔效应, 即M 既平行于介质表面又平行于光入射面时的

克尔效应(如下图所示).

极向和纵向克尔磁光效应的磁致旋光都正比于磁化强度,一般极向的效应最强,纵向次之,横向则无明显的磁致旋光。

iii.应用

A.克尔磁光效应的最重要应用是观察铁磁体的磁畴:

不同的磁畴有不同的自发磁化方向,引起反射光振动面的不同旋转,通过偏振片观察反射光时,将观察到与各磁畴对应的明暗不同的区域。用此方法还可对磁畴变化作动态观察。

B.在自旋电子学的应用

磁光克尔效应对固体的自旋相关的电子能带结构相当敏感,因此,磁光克尔效应是一种独特的研究磁性材料中电子行为的实验方法。

3.塞曼效应:

a)原理简介:

塞曼效应是物理学史上一个著名的实

验。荷兰物理学家塞曼在1896年发现

把产生光谱的光源置于足够强的磁场

中,磁场作用于发光体使光谱发生变化,

一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼

效应。

塞曼效应是继1845年法拉第效应和1875

年克尔效应之后发现的第三个磁场对光有

影响的实例。这个现象的发现是对光的电

磁理论的有力支持,证实了原子具有磁矩

和空间取向量子化,使人们对物质光谱、原子、分子有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。

1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖,以表彰他们研究磁场对光的效应所作的特殊贡献。

b)历史发展:

1897年12月,普雷斯顿(T.Preston)报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。1925年,两名荷兰学生乌仑贝克(G.E.Uhlenbeck,1900--1974)和古兹米特(S.A.Goudsmit,1902--1978)提出了电子自旋假设,很好地解释了反常塞曼效应。

c)应用:

应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。由此计算得到的荷质比数值与约瑟夫汤姆逊在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。

塞曼效应也可以用来测量天体的磁场。1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。

4.科顿-穆顿效应

科顿-穆顿效应(Cotton-Mouton Effect)又称磁双折射效应,简记为MLB。是1907年A.科顿和H.穆顿在液体中发现。光在透明介质中传播时,若在垂直于光的传播方向上加一外磁场,则介质表现出单轴晶体的性质,光轴沿磁场方向,主折射率之差正比于磁感应强度的平方。此效应也称磁致双折射。

相关文档
最新文档