炉温均匀性测量方法

炉温均匀性测量方法
炉温均匀性测量方法

炉温均匀性测量方法

1. 升温前将柔性偶的测温端固定在测量位置上。

注意:

4测温端应指向炉内中心,且整个柔性偶不得影响炉子的正常运转。

5应确保测量结束后,柔性偶能从炉子内顺利抽出。

2. 待炉子升到工作温度且保温一定时间后便可进行测量了。

UJ33a型直流电位差计使用方

法如下:

11调零。第一步,先把“倍率(K1)”旋钮扳到测量档(根据炉温选择用多大的倍率)然后调节“调零”旋钮,将“检

流计”的指针调零。第二步,将“K2”扳到“标准”档,然后

先后调节“工作电流调节”的“粗”和“微”,将“检流计”的

指针调零。

12测量。将“K2”扳到“未知”档,将“K3”扳到“测量”档,然后将测量钳的一端分别接到“未知”的“+”“—”接线柱上,

另一端夹在柔性偶的正负极上,调节“×10”、“×1”、“×

0.1”三档,使“检流计”的指针指零。记录mv值即可。

mv值=(“×10”示数+“×1”示数+“×0.1”示数)ד倍率(K1)”

注意:

测量钳的正负不要颠倒,且测量时两测量钳之间要确保绝缘。

24测量完成后将“K2”档扳到“K2”,将“倍率(K1)”扳到“断”

档,若长期不用应取出电池。

25该电位差计使用6节1号电池和3节9V电池

UJ33a型直流电位差计

IBOO炉温测试仪的功能介绍

IBOO炉温测试仪的功能介绍 炉温测试仪的作用随着现代科技的快速发展不断的在提高,对于炉温测试仪作为炉温领域最新一代便于操作,灵活使用高质量的炉温记录仪,对烤炉设计及烘烤过程质量控制提供领先和独创行业的专业性报告.控制生产时间、能量、返工和产品报废强的好帮手.满足广大群众、企业对于仪器工具的各种需求.炉温测试仪的强大功能主要体现在哪些方面?下面我们来了解一下. 针对于炉温测试仪的强大功能体现在那些方面: 1、可测波峰焊(0.1S)和回流焊(1S)的在线实际焊接温度曲线,三种PC介面(英文,中简,中繁)显示并可互换. 2、每通道可记录资料3000点,配合PC机98X以上系统即可高清晰显示焊炉温度实际设定曲线,每条曲线颜色可多色设定,并通过印表机横向列印或纵向列印. 3、电脑上自动显示每通道最高温度,水平温度/时间线,单点温度和时间显示. 4、可设置要测得的PCB每点焊接点(元件点)的尺寸,距离,运行方向及可下载显示PCB彩图和定位点,自动显示温区. 5、通过PC机用滑鼠可设定焊接区域,焊接时间点,上升斜率,下降斜率,超出指定温度的时间总值,任意两间点的斜率,时间值. 6、并通过详细资讯查看详细资讯对话方块,并可进入列印范围,让操作者了解得更透彻. 7、内装可充电式电池,最长可连续使用10小时. 8、可以连续测量记录保存20组数据,避免来回奔波的烦恼. 我们要知道作为炉温领域的突出电表,炉温测试仪的产生代表着很大的意义和价值.不仅质量卓越,功能强大.而且对于使用者来说操作上那是非常的简单便捷,对于多种语言版本更大方便了海内外的顾客,让他们操作时没有语言方面的障碍.是企业的好帮手.

通孔回流工艺解析经典版

通孔回流焊接的作用 一.什么叫通孔回流焊接技 在传统的电子组装工艺中,对于安装有过孔插装元件采用波峰焊接技术。但波峰焊接有许多不足之处:不适合高密度、细间距元件焊接;桥接、漏焊较多;需喷涂助焊剂; PCB板受到较大热冲击翘曲变形。因此波峰焊接在许多方面不能适应高精密度电子组装技术的发展。为了适应这种高精密度表面组装技术的发展,解决以上焊接难点的措施是采用通孔回流焊接技(THRThrough-holeReflow),又称为穿孔回流焊PIHR(Pin-in-HoleReflow)。该技术原理是在PCB板完成贴片后,使用一种安装有许多针管的特殊钢网模板,调整模板位置使针管与插装元件的过孔焊盘对齐,使用刮刀将模板上的锡膏漏印到焊盘上,然后安装插装元件,最后插装元件与贴片元件同时通过回流焊完成焊接。从中可以看出穿孔回流焊相对于传统工艺的优越性:首先是减少了工序,省去了波峰焊这道工序,节省了人工费用,在效率上也得到了提高;其次回流焊相对于波峰焊,产生桥接的可能性要小的多,这样就提高了一次通过率。穿孔回流焊相对传统工艺在生产效率、先进性上都有很大优势。通孔回流焊接技术起源于日本SONY公司,20世纪90年代初已开始应用,但它主要应用于SONY自己的产品上,如电视调谐器及CDWalkman。 通孔回流焊有时也称作分类元件回流焊,正在逐渐兴起。它可以去除波峰焊环节,而成为PCB混装技术中的一个工艺环节。通孔回流焊最大的好处就是可以在发挥表面贴装制造工艺的优点的同时使用通孔插件来得到较好的机械联接强度。对于较大尺寸的PCB板的平整度不能够使所有表面贴装元器件的引脚都能和焊盘接触,同时,就算引脚和焊盘都能接触上,它所提供的机械强度也往往是不够大的,很容易在产品的使用中脱开而成为故障点。尽管通孔回流焊可发取得偿还好处,但是在实际应用中通孔回流焊仍有几个缺点,锡膏量大,这样会增加因助焊剂的挥了冷却而产生对机器污染的程度,需要一个有效的助焊剂残留清除装置。通孔回流焊另外一点是许多连接器并没有设计成可以承受通孔回流焊的温度,早期通孔回流焊基于直接红外加热的回流焊炉子已不能适用,这种回流焊炉子缺少有效的热传递效率来处理一般表面贴装元件与具有复杂几何外观的通孔连接器同在一块PCB上的能力。只有大容量的具有高的热传递的强制对流通孔回流焊炉子,才有可能实现通孔回流,并且也得到实践证明,剩下的问题就是如何保证通孔中的锡膏与元件脚有一个适当的回流焊温度曲线。随着工艺与元件的改进,通孔回流焊也会越来越多被应用。影响回流焊工艺的因素很多,也很复杂,需要工艺人员在生产中不断研究探讨,将从多个方面来进行探讨。 二.通孔回流焊接工艺的特点 1. 通孔回流焊与波峰焊相比的优点 (1)通孔回流焊焊接质量好,不良比率PPM(百万分率的缺陷率)可低于20。 (2)虚焊、连锡等缺陷少,返修率极低。 (3)PCB布局的设计无须像波峰焊工艺那样特别考虑。 (4)工艺流程简单,设备操作简单。 (5)通孔回流焊设备占地面积少,因其印刷机及回流炉都较小,故只需较小的面积。 (6)无锡渣问题。 (7)机器为全封闭式,干净,生产车间里无异味。 (8)通孔回流焊设备管理及保养简单。 (9)印刷工艺中采用了印刷模板,各焊接点及印刷的焊膏量可根据需要调节。

回火炉厂家哪家好

回火炉厂家哪家好 【盛阳工业炉专业生产回火炉】介绍了回火炉中的真空热处理炉恒温区的测量原理、测量步骤及测量过程中需要注意的事项,恒温区的均匀性,是保证热处理工艺需求、保证热处理产品品质、提高生产率的重要保障。回火炉厂家哪家好,我们推荐盛阳工业炉,一起来看一下吧~ #详情查看#【盛阳工业炉:回火炉】 真空热处理炉恒温区真空热处理炉的发热元件布置,通常有:圆形布置和矩形布置。在真空状态下加热,热传导方式只有辐射。恒温区的测量,通常是在空载状态下进行的。恒温区的存在,是为了保证热处理工艺需要,保证热处理产品品质,提高生产率。恒温区的判断标准很多,不同行业按照各自行业需求,判断各自的恒温区。每一台真空热处理炉,通常都是按照恒温区尺寸要求设计的,合格的真空热处理炉,都得满足恒温区尺寸要求。真空热处理炉炉内温度均匀性,是指炉内设计恒温区边缘各测试点高和低与控制点的温度偏差。为了保证工艺温度和实际记录温度的一致性,在选择控温热电偶时,按照热电偶的测温范围应尽量选择误差小、精度等级高的;其次选择带冷端补偿的控制仪表,以保证工作偶与炉内温度一致;再次,应当尽可能地将控温热电偶安装在炉内温度近似于平均炉温值的地方,以便正确地反

映真空热处理炉的恒温区的均匀性。恒温区均匀性测量的原理真空热处理炉恒温区均匀性的测定装置:测温热电偶、补偿导线、检测仪表(如温度巡检仪)、测温架等组成。 #详情查看#【盛阳工业炉:回火炉】 真空回火炉加热过程中的注意事项: 1、要避免热处理产品,尤其足铜、铝、锌、锡、铅等与电加热元件接触,无论是细粉、熔液或蒸汽等,防止在电加热体表面侵蚀形成“麻坑”,截面变小,后过热而烧断。 2、测试炉温均匀性时,应注意测温触点的定位捆绑方式,以及离加热元件的远近。 箱式电阻炉炉内经常(至少每月)用毛刷、扫帚或压缩空气、吸尘器等清洁炉膛和搁砖,要防止炉内氧化皮等杂质掉在电热元件上,发生短路,甚至烧坏搁砖。底板、坩埚、炉罐等耐热钢构件每使用一段时间,好吊起敲击,清除其氧化皮。氧化铁皮等杂质如不及时清除,就会熔融与耐火砖发生反应,使炉丝熔化。

炉温均匀性测试作业指导书

有限公司 热处理炉均匀性测试作业指导书 编制: 审核: 批准: 实施时间:

1、目的: 生产中使用的热处理炉TUS(温度均匀性)和使用仪表及热电偶满足公司生产需要以及符合客户需求特制定本作业指导书。 2、范围: 本作业指导书适用于公司热处理炉产品所使用的热处理炉温度均匀性测试。 3、职责 4.1 公司热处理工程师根据客户要求负责热处理工艺编制和最终确认。4.2 技术部与生产部门按照产品热处理工艺选择需要的热处理设备,设备的仪表类型也必须经过国家法定检定机构校检并符合客户要求。 4.3由公司热处理工程师主持相关技术人员对热处理炉进行TUS测试。4、热处理温度均匀性 热处理炉内工作区温度达到稳定化后相对于设定点温度的变化,工作区内任两点的温度偏差不应超过热处理工艺对温均匀性的要求(一般情况下用于正火的热处理炉温度均匀性:±14℃,回火热处理炉温度均匀性±8℃)。 热处理炉等级与温度均匀性范围要求: 5、温度均匀性测试(TUS) 进行TUS时,如果客户没有特别指出热处理炉的装载状态,一般情况下在满载情况下进行测试,装载的产品必须是依据公司工艺文件进行热处理的产品。当下一次进行TUS时也必须是和前一次测试时的装载状态且产

品与上一次相同。 5.2 温度均匀性测试(TUS)步骤 5.2.1通常情况下,在进行TUS时热处理炉必须是室温状态下;如果热处理炉刚进行过生产有一定温度(例如:此时炉内温度是500℃),则下一次进行TUS测试也必须和此次情况相同(500℃)。 5.2.2 热电偶(传感器)的处理。 TUS测试进行之前,热电偶测量端必须用直径不超过13mm(0.5英寸)并且不超过待热处理产品的最薄处、与产品材料一致的长60mm,内部加工出与热电偶直径一样大小深40mm圆孔的圆棒,置于热电偶测量端进行保护。 5.2.3 测量点的选择与位置图 5.2.3.1测量点及热电偶的选择 本公司热处理炉温度均匀性测试,采用10点进行测量,9 TUS+1控温热电偶。如下图所附。

炉温测试板制作及曲线测试规范(20200517094721)

炉温测试板制作及曲线测试规范 1、目的: 规范SMT炉温测试方法,为炉温设定、测试、分析提供标准,确保产品质量。为炉温曲线的 制作、确认和跟踪过程的一致性提供准确的作业指导; 2、范围: 本规范适用于公司PCBA部SMT车间所有炉温设定、测试、分析及监控。 3.定义: 3.1升温阶段:也叫预热区,从室温到120度,用以将PCBA从环境温度提升到所要求的活性 温度;升温斜率不能超过3°C度/s;升温太快会造成元件损伤、会出现锡球现象,升 温太慢锡膏会感温过度从而没有足够的时间达到活性温度;通常时间控制在60S左右; 3.2恒温阶段:也叫活性区或浸润区,用以将PCBA从活性温度提升到所要求的回流温度; 一是允许不同质量的元件在温度上同质;二是允许助焊剂活化,锡膏中挥发性物质得到 有利挥发,一般普遍的锡膏活性温度是120-150度,时间在60-120S之间,升温斜率一 般控制在1度/S左右;PCBA上所有元件要达到熔锡的过程,不同金属成份的锡膏熔点 不同,无铅锡膏(SN96/AG3.5/CU0.5)熔点一般在217-220度,有铅(SN63/PB37)一 般在183度含银(SN62/PB36/AG2)为179度; 3.3回流阶段:也叫峰值区或最后升温区,这个区将锡膏在活性温度提升到所推荐的峰值温 度,加热从熔化到液体状态的过程;活性温度总是比熔点低,而峰值温度总在熔点之上, 典型的峰值温度范围是(SN63/PB37)从205-230度;无铅(SN96/AG3.5/CU0.5)从235-250 度;此段温度设定太高会使升温斜率超过2-5度/S,或达到比所推荐的峰值高,这种情 况会使PCB脱层、卷曲、元件损坏等;峰值温度:PCBA在焊接过程中所达到的最高温度; 3.4冷却阶段:理想的冷却曲线一般和回流曲线成镜像,越是达到镜像关系,焊点达到的固 态结构越紧密,焊点的质量就越高,结合完整性就越好,一般降温斜率控制在4度/S; 4、职责: 4.1 工程部 4.1.1工程师制定炉温测试分析标准,炉温测试员按此标准测试、分析监控炉温。 4.1.2 指导工艺技术员如何制作温度曲线图; 4.1.3 定义热电偶在PCB上的测试点,特别是对一些关键的元件定位; 4.1.4基于客户要求和公司内部标准来定义温度曲线的运行频率;

炉温均匀性测试作业指导书

炉温均匀性测试作 业指导书

有限公司 热处理炉均匀性测试作业指导书 编制: 审核: 批准: 实施时间:

1、目的: 生产中使用的热处理炉TUS(温度均匀性)和使用仪表及热电偶满足公司生产需要以及符合客户需求特制定本作业指导书。 2、范围: 本作业指导书适用于公司热处理炉产品所使用的热处理炉温度均匀性测试。 3、职责 4.1 公司热处理工程师根据客户要求负责热处理工艺编制和最终确认。 4.2 技术部与生产部门按照产品热处理工艺选择需要的热处理设备,设备的仪表类型也必须经过国家法定检定机构校检并符合客户要求。 4.3由公司热处理工程师主持相关技术人员对热处理炉进行TUS测试。 4、热处理温度均匀性 热处理炉内工作区温度达到稳定化后相对于设定点温度的变化,工作区内任两点的温度偏差不应超过热处理工艺对温均匀性的要求(一般情况下用于正火的热处理炉温度均匀性:±14℃,回火热处理炉温度均匀性±8℃)。 热处理炉等级与温度均匀性范围要求: 5、温度均匀性测试(TUS)

进行TUS时,如果客户没有特别指出热处理炉的装载状态,一般情况下在满载情况下进行测试,装载的产品必须是依据公司工艺文件进行热处理的产品。当下一次进行TUS时也必须是和前一次测试时的装载状态且产品与上一次相同。 5.1 温度均匀性测试的设备: 5.2 温度均匀性测试(TUS)步骤 5.2.1一般情况下,在进行TUS时热处理炉必须是室温状态下;如果热处理炉刚进行过生产有一定温度(例如:此时炉内温度是500℃),则下一次进行TUS测试也必须和此次情况相同(500℃)。 5.2.2 热电偶(传感器)的处理。 TUS测试进行之前,热电偶测量端必须用直径不超过13mm(0.5英寸)而且不超过待热处理产品的最薄处、与产品材料一致的长60mm,内部加工出与热电偶直径一样大小深40mm圆孔的圆棒,置于热电偶测量端进行保护。 5.2.3 测量点的选择与位置图 5.2.3.1测量点及热电偶的选择 本公司热处理炉温度均匀性测试,采用10点进行测量,9 TUS+1控

波峰焊炉温曲线测试操作规程

波峰焊炉温曲线测试操作规程

Q/HX X/XX-XXXX-XX/XX-XXXX 波峰焊炉温曲线测试操作规程

2014年12月01日发布2014年12月05日实施

1.1.为规范产品波峰焊接制程,确保产品焊接的可靠性。对波峰炉温进行监控,以提高产品质量。 适用范围: 公司所有经波峰焊接产品之炉温曲线测量。 作业时间: 3.1新产品试流时须进行测试;波峰现有3条线体, 周一和周五每条线各测试一次,因炉温测试仪器需与 车间共用,需与SMT车间错开测试时间。 测温板的制作 公司波峰焊接产品,全部都是放在载具上过炉,故测试放在载具上的PCB板DIP插件焊点的温度曲线。 选取测试点 一般选取三个及以上的焊点进行测试。焊点位置按照如下要求选取: 4.1.1波峰非焊接面DIP焊点,用于测试过炉时PCB 锡反面的温度。 4.1.2引脚密集、焊盘孔小的DIP器件。

曲线参数标准设定(SAC-3JS温区) 5.1.1锡膏型号:Define Your Own Spec。熔点:183 波峰炉:SAC-3JS(2温区) 5.1.2 预热段温度110—145℃预热时间:30—60s 回流段温度 183℃以上回流时间:2—5s 最高温度:233--255℃ 曲线参数标准设定(MWSI温区) 5.2.1锡膏型号:Define Your Own Spec。熔点:183 波峰炉:MWSI温区(3温区) 5.2.2预热段温110—145℃预热时间:40—60s 回流段温度 183℃以上回流时间:2—5s 最高温度:233--255℃ 曲线参数标准设定(MPS-400B温区) 5.3.1锡膏型号:Define Your Own Spec。熔点:183 波峰炉:选择性波峰焊MPS-400B(4温区) 5.3.2 预热段温度110-145℃预热时间:40—60s

放射性同位素的检测方法和仪器

放射性同位素的检测方法和仪器 核辐射与物质间的相互作用是核辐射检测方法的物理基础。放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为检测器。 一.核辐射的检测方法 使用相关核辐射检测仪器是检测核辐射的重要方法,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。对人体进行核辐射检查,主要先做物理性检测,如果发现检测指标异常,再进行生理性检测。主要采取以下方法: (一)使用核辐射在线测厚仪 核辐射在线测厚仪是利用物质对射线的吸收程度或核辐射散射与物质厚度有关的原理进行工作的。 (二)使用核辐射物位计 不同介质对γ射线的吸收能力是不同的,固体吸收能力最强,液体次之,气体最弱。若核辐射源和被测介质一定,

则被测介质高度与穿过被测介质后的射线强度将被探测器将穿过被测介质的I值检测出来,并通过仪表显示H值。 (三)使用核辐射流量计 测量气体流量时,通常需将敏感元件插在被测气流中,这样会引起压差损失,若气体具有腐蚀性又会损坏敏感元件,应用核辐射测量流量即可避免上述问题。 (四)使用核辐射探伤 放射源放在被测管道内,沿着平行管道焊缝与探测器同步移动。当管道焊缝质量存在问题时,穿过管道的γ射线会产生突变,探测器将接到的信号经过放大,然后送入记录仪记录下来。 二.核辐射的检测仪器 检测核辐射有各种不同的仪器,一般将检测器分为两大类:一是“径迹型”检测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能粒子物理研究领域。二是“信号型”检测器,包括电离计数器,正比计数器,盖革计数管,闪烁计数器,半导体计数器和契伦科夫计数器等,这些信号型检测器在低能核物理、辐射化学、生物学、生物化学和分子生物学以及地质学等领域越来越得到广泛地应用。放射性运输从业人员所使用的检测器基本上属于“信号型”检测器。 “信号型”检测器包括电离型检测器、闪烁检测器和闪

电回火炉技术要求

附件: xxxxx有限公司一期完善工程——电回 火炉设备 技 术 要 求

1项目综述 1.1项目及设备名称 项目名称:xxxxx有限公司一期完善工程 设备名称:电回火炉 1.2项目背景 xxxxx有限公司热处理车间,拟新建2台电回火炉为调质生产配套,用于各种锻件淬火后的回火热处理。 1.3项目地址 项目地址位于xxxxx有限公司施工现场。 2投标总体要求 (1)本项目采用总承包方式,投标方负责电回火炉的设计、制造、运输、安装和调试,所提供的设备应达到国内先进水平,并具有经济可靠的特点。 (2)投标方对其提供的技术、供货设备的质量、性能和消耗指标完全负责。投标方应列出近5年的类似产品的业绩。 (3)投标方除报投标总价外,还应按炉体钢结构、机械设备、耐火材料、加热系统、循环降温系统、电气控制系统、备品备件、施工安装、设计、调试编程及培训、工程管理、技术服务和运输等费用进行分项报价,同时对所提供的成套设备的组成和功能、技术参数进行详细技术描述,提供外购件供货厂家等,不按要求进行分项报价可能导致废标。 (4)本招标文件所提出的仅为最低的技术要求,并未包括所有的技术细节及要求。 (5)投标方应具备相应的企业资质,所提供的设备应符合国家相应的技术规范和标准,并具有先进性、可靠性、完整性,投标设备要求技术成熟、运行经济、性能可靠、维护方便的特点。

(6)投标方应对所投标的设备及技术性能做出详细的描述,凡技术要求中对设备的技术参数未列出的,均需投标方报出。 (7)本项目为交钥匙工程。 3设计依据 3.1工件条件 代表钢种:718、42CrMo、34CrNiMo6; 代表规格:1400mm*600mm*6000mm(宽×厚×长); 最大单重:42吨。 3.2炉型及相关工艺条件 3.2.1电回火炉基本设计参数 (1) 电回火炉数量:2台 (2) 装炉量:150t (3) 有效加热区尺寸(长×宽×高):8m×2.5m×1.9m (4) 炉内膛尺寸(长×宽×高):≥8500×3600×2900(mm) (5) 台车面尺寸(长×宽):8500×2800(mm) (6) 工作温度范围:250~680℃(最高700 ℃) (7) 型式:台车自行走式 注:装炉量不包括垫铁重量,有效尺寸不包括垫铁所占空间。 3.2.2工艺条件 (1) 升温速度:20-60℃/h;加热冷却过程均可控。 (2) 炉温均匀性(保温期):≤±5℃。 (3) 炉子控温精度:±1℃。

放射性同位素的检测方法和仪器

放射性同位素的检测方 法和仪器 Revised as of 23 November 2020

放射性同位素的检测方法和仪器 核辐射与物质间的相互作用是核辐射检测方法的物理基础。放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为检测器。 一.核辐射的检测方法 使用相关核辐射检测仪器是检测核辐射的重要方法,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。对人体进行核辐射检查,主要先做物理性检测,如果发现检测指标异常,再进行生理性检测。主要采取以下方法: (一)使用核辐射在线测厚仪 核辐射在线测厚仪是利用物质对射线的吸收程度或核辐射散射与物质厚度有关的原理进行工作的。 (二)使用核辐射物位计

不同介质对γ射线的吸收能力是不同的,固体吸收能力最强,液体次之,气体最弱。若核辐射源和被测介质一定,则被测介质高度与穿过被测介质后的射线强度将被探测器将穿过被测介质的I值检测出来,并通过仪表显示H值。 (三)使用核辐射流量计 测量气体流量时,通常需将敏感元件插在被测气流中,这样会引起压差损失,若气体具有腐蚀性又会损坏敏感元件,应用核辐射测量流量即可避免上述问题。 (四)使用核辐射探伤 放射源放在被测管道内,沿着平行管道焊缝与探测器同步移动。当管道焊缝质量存在问题时,穿过管道的γ射线会产生突变,探测器将接到的信号经过放大,然后送入记录仪记录下来。 二.核辐射的检测仪器 检测核辐射有各种不同的仪器,一般将检测器分为两大类:一是“径迹型”检测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能

SMT回流焊工艺知识

SMT回流焊工艺知识 Board/Sma ll Comp onen t ---------- Large Comp onen t 1、预热区:预热区的目的是使PCB和元器件预热,达到平衡,同时除去焊膏中的水份、溶剂,以防焊膏发生塌落和焊料飞溅。升温速率要控制在适当范围内(过快会产生热冲击,如:引起多层陶瓷电容器开裂、造成焊料飞溅,使在整个PCB勺非焊接区域形成焊料球以及焊料不足的焊点;过慢则助焊剂Flux活性作用),一般上升速率设定为1?3C /sec,最大升温速率为4C /sec ; 2、恒温区:指从120C升温至170C的区域。主要目的是使PCB上各元件的温度趋于均匀,尽量减少温差,保证在达到再流温度之前焊料能完全干燥,到保温区结束时,焊盘、锡膏球及元件引脚上的氧化物应被除去,整个电路板的温度达到均衡。过程时间约60?120秒,根据焊料的性质有所差异。 3、回流区:这一区域里的加热器的温度设置得最高,焊接峰值温度视所用锡膏的不同而不同,一般推荐为锡膏的熔点温度加20?40C。此时焊膏中的焊料开始熔化, 再次呈流动状态,替代液态焊剂润湿焊盘和元器件。也可以将该区域分为两个区,即熔融区和再流区。理想的温度典型的回流曲线 2 2

曲线是超过焊锡熔点的“尖端区”覆盖的面积最小且左右对称。 4、冷却区:用尽可能快的速度进行冷却,将有助于得到明亮的焊点并饱满的外形和低的接触角度。缓慢冷却会导致PAD的更多分解物进入锡中,产生灰暗毛糙的焊点,甚至引起沾锡不良和弱焊点结合力。降温速率一般为-4 C/sec以内,冷却至75C左右即可。 由于锡膏、机型与工艺要求不同,产品的炉温曲线也不尽相同。生产时必须定期用炉温测试仪测试炉温并记录存档。 炉温测试板的测试点必须合宜 每片测温板最多可以使用200 次

AMS2750E热处理炉炉温均匀性检测报告样本

TestReport 检 测 报 告

测量详细信息 热处理炉炉温均匀性检测报告 报告编号:Name of furnace 热处理炉型号 Furnace model 热处理炉编号 Furnace number 热处理炉制造单位 Furnace manufacturer 炉子级别 Class 炉子测量周期 Instrument type 炉子仪表类型 Use temperature 热处理炉使用温度 Measurement period 热处理炉测温点/℃ Measuring point/℃ 炉温均匀性要求/℃ Uniformity/℃ 负载状况Load condition 气氛 Atmosphere 符合标准 Meet the standards 热处理炉名称 Report number: Heat treatment furnace temperature uniformity test report Measure detailed information 测量仪表名称Instrument number 测量仪表编号Instrument model 测量仪表型号Name of instrument 测量仪表校准日期Sensor name 测量传感器名称Valid period to 测量仪表有效期至Calibration date Correction factor 修正系数Sensor model 测量传感器型号测量传感器校准日期Valid period to 测量传感器有效期至Calibration date Sampling interval 采样间隔测量开始时间End time 测量结束时间Start time 第1页,共18页热处理炉有效加热区尺寸 Effective heating zone size of furnace

库房温湿度均匀性验证方案

. 确认方案编号: 项目负责人: 验证类别:厂房设施验证 确认领导小组审查汇签:

1.主题容 本方案规定了我公司库房温湿度均匀性验证的围、方法及标准。 2.适用围 本方案适用于我公司库房温湿度均匀性的验证。 3.实施确认人员及职责 4.简介 4.1.概述:我公司库房包括有原辅料常温库、原辅料阴凉库、成品常温库、成品阴凉库、包材库、外 包材库、液体药品库、特殊药品库等,根据GMP要求结合产品自身对温湿度的要求公司对相应库房安装辅助设施,以便能控制并维持该库房的环境温湿度以达到规定要求(各库房具体温湿度要求见下表)。为保证温湿度计在该房间记录的温湿度值是最具有代表性的,拟对该房间进行温湿度均匀性验证。 4.2.验证依据 5.验证依据《确认与验证管理规程》 通过本次验证确定我公司库房温湿度分布均匀性,以确定温湿度计的最佳摆放位置。 6.变更和偏差处理 确认过程中如果出现偏差和变更,应立即通知确认与验证小组并对偏差和变更进行详细记录(参见偏差处理单,变更处理单),分析偏差产生的根本原因并提出解决方法。所有偏差和变更得到有效处理后,确

认方可进入下一步骤。偏差处理单和变更处理单经过批准后其原件必须附在验证报告中。 变更和偏差处理记录 □本次确认无变更和偏差情况□本次确认发生变更和偏差差情况

检查人/日期:复核人/日期: 7.验证容 7.1.验证前准备 7.1.1.文件准备 7.1.2.现场备《留样管理规程》、《稳定性试验管理规程》、《库房温湿度均匀性验证方案》及相关的验证记录,并填写验证文件准备确认表。 验证文件准备确认表 检查人/日期:复核人/日期: 7.1.3.验证用主要仪器准备 7.1.3.1.准备经校验合格并处于校验有效期的温湿度计,并在每个阶段或验证周期开始前对仪器确认,要求经过校验,并在校验有校期,填写《验证主要仪器确认表》,见下表。 验证主要仪器确认表

恒温恒湿箱的温度均匀度需达到的标准及测试范围

恒温恒湿箱的温度均匀度需达到的标准及测试范围 恒温恒湿箱测试LED,化工,塑料,仪器仪表,元器件等产品,在温湿度的条件下,其产品的性能,以检测产品的可靠性和使用性能。适合电子、塑胶制品、电器、仪表、食品、车辆、金属、化学、建材、医疗等制品检测质量之用。本机专门测试各种材料耐热、耐寒、耐干、耐湿的性能。本机可选择中文或英文液晶显示触控式屏幕画面,操作简单,程序编辑容易。可显示完整的系统操作状况相关数据、执行及设定程序曲线。运转中发生异常状况,屏幕即刻自动显示故障原因及提供排除故障方。 恒温恒湿箱的温度均匀度是该设备的重要技术指标,该指标直接影响试验的结果,该指标是恒温恒湿箱的主要性能指标,宝元通生产的恒温恒湿箱完全符合国家相关标准。 恒温恒湿箱技术参数及试验标准: 技术参数: 2. 性能指標 2.1.測試環境條件环境温度:+5℃~+35℃相对湿度≤85%RH 2.2.測試方法GB/T5170.2-2008 温度试验设备 GB/T5170.5-2008 湿热试验设备 2.3溫度範圍-40℃~+150℃ 2.4温度波动度≤0.5℃(注:如按GB/T5170.2-1996表示,波动度为≤±0.25℃)2.5温度偏差优于± 2℃ 2.6温度均匀度±2℃ 2.7升降温速率升温时间:+20℃~+150℃ ≤45min(带载) 降温时间:+20℃~- 40℃ ≤70min(带载) 试验标准: 1.GB11158 高温试验箱技术条件 2. GB10589-89 低温试验箱技术条件 3. GB10592-89 高低温试验箱技术条件 4. GB/T10586-89 湿热试验箱技术条件 5. GB/T2423.1-2001 低温试验箱试验方法 6. GB/T2423.2-2001 高温试验箱试验方法 7. GB/T2423.3-93 湿热试验箱试验方法 恒温恒湿箱相关试验测试记录(该记录仅供参考)

提高连续式控制气氛热处理炉炉温均匀性

!工艺与装备# 提高连续式控制气氛热处理炉炉温均匀性 钟原,邓力生,李维攀 (福建省永安轴承有限责任公司,福建永安366000) 摘要:通过对炉温均匀性检测,查明热处理炉炉温均匀性差的原因,采用各种方法提高炉温均匀性,提高热处理质量控制水平。 关键词:热处理炉;炉温均匀性;检测 中图分类号:TG155.14文献标识码:B文章编号:1000-3762(2002)08-0017-02 热处理炉设计、制造水平和运行、维护状况以及气氛应用方式是影响炉温均匀性的关键因素,在新热处理炉正式投产前或热处理炉使用中炉况发生变化时,有必要采取适当的措施提高炉温均匀性,提高工艺执行准确率和工件热处理质量。本文以两台连续式控制气氛热处理炉炉温均匀性改造为例作简要的介绍。 1无马弗托辊式网带炉炉温均匀性的提高 一条新添置的控制气氛无马弗托辊式网带炉热处理生产线,淬火炉额定功率160kW,网带宽800mm、排料宽度600mm、排料高度80mm、有效加热区长5700mm,网带运行采用辊棒托送、炉内回带,加热采用数字PI D调节、电辐射管变压器低压供电,分四区控制,气氛采用N2+H2+甲醇滴注,炉内分区及测温点、进气口位置如图1a所示。 生产线经冷、热炉调试,全线运行平稳,唯淬火炉炉温均匀性达不到技术协议要求,技术协议规定炉温均匀性为同一截面温差[5e、均温保温区纵向温差[15e。按如下规范检测炉温均匀性:空载,?、ò、ó、?区仪表设定温度均为850e并已达到热稳定状态,气氛关闭与气氛导通分别进行测量,气氛导通时?、ò、?区甲醇流量分别为80、50和30ml P min(甲醇流量为实际生产时最大控制流量),?区氮氢气(90%N2+10% H2)流量为6m3P h,用5支铠装热电偶在网带炉工作空间内同一横断面(600mm宽@80mm高)上同时测量左下、左中上、中下、右中上、右下5点温度,从?区起始点至网带末端(落料口)止5700 mm长度上各横断面炉温平均值如图2曲线c、d 所示。 收稿日期:2001-11-27 作者简介:钟原(1968-),男(汉族),福建永安轴承有限责任公司技术中心主任助理,工程师,工学学士,多年从 事热处理设备技改工作。 图1网带炉分区及测温点、进气口位置示意图 (其中:(a)为改造前状态,(b)为改造后状态) 图2改造前网带炉内各横断面炉温平均值示意图(其中:c为气氛关闭时状态,d为气氛导通时状态) 由图2可见,炉内纵向温差严重超标,扣除?区升温段后,气氛关闭时各横断面炉温平均值最高885e,最低846e,同一横断面最大温差7e,气氛导通时各横断面炉温平均值最高891e,最低821e,同一横断面最大温差达25e以上(?、ò区甲醇进口处),特别是ò区甲醇滴注口已处于淬火炉中部,对工件加热影响大,必须加以改造。鉴于ò、?区热电偶不合格,首先消除其影响因素。换上合格的热电偶后进行检测,发现炉内纵向温差仍严重超标,扣除?区升温段后,气氛关闭时各横断面炉温平均值最高873e(?区邻近ò ISSN1000-3762 C N41-1148P TH 轴承 Bearing 2002年第8期 2002,No.8 17~18、47

电阻加热炉炉温均匀性差的原因及解决办法.

电阻加热炉炉温均匀性差的原因及解决办法 2017-07-04 第36卷2011年 第9期9 月 Vol.36No.9 HEATTREATMENTOFMETALS September2011 电阻加热炉炉温均匀性差的原因及解决办法 张西军 (陕西宝鸡钛业股份有限公司锻造厂,陕西宝鸡721014)Causeofabnormaltemperatureuniformityofresistanceheating furnaceanditsimprovement ZHANGXi-jun (ForgeFactory,BaojiTitaniumIndustryCo.,Ltd., BaojiShaanxi721014,China) 中图分类号:TG155.1 文献标志码:B 文章编号:0254-6051(2011)09-0112-02 某集团公司锻造厂使用的加热炉主要有台车式电 阻炉和箱式电阻炉。产品要求工业4级炉的均温性必须保证在±10℃以内。为此,对所有的锻造加热炉要定期进行炉温均匀性测试,以保证合格产品。 通过电流加热。到底是发热体断损还是线路问题需进

一步检查。但可以确认的是,此加热炉有故障,必须处理。 2)炉门或台车密封不严。由于装出料的原因,炉门和炉门框之间经常有相对运动,势必就有磨损。而且耐大多数的炉门与炉门框的密封是靠耐火材料密封的,火材料的强度又不是太大。台车炉由于工作在装出料时,需要台车做进、出运动,同样有一个密封磨损问题。同时还有液压密封机构有无故障等。另外箱式电阻加 由于驾驶装、出料机人员热炉的装出料依靠装出料机, 素质问题,对于炉门框的耐火材料碰撞也在所难免,所以造成炉门密封不严,使得热量损失,影响炉膛均温性。 此类故障,只要细心,仔细观察,很容易发现。 3)控制方面的原因。电阻加热炉温度控制的核心是温控仪。温控仪接收从热电偶采集的炉膛内的温 比较炉膛内的实际温度与工艺要求的设定温度信号, 度,温控仪自动调整输出功率的百分数,正常时温控仪 不能设定功率输出的上下限。例如当炉膛内的温度为500℃,工艺设定温度为950℃时,温控仪的功率输出应该为100%,即每相的电流约为该区功率数的1.5倍。只有在接近950℃时,温控仪的输出才逐渐降低90%、80%……10%等。保温阶段功率的输出为间歇输出。而一旦发现温控仪在正常加热,每区三相电流 就应检查温控仪的功率设定。表的输出摆角统一减小, 4)电阻加热炉自身故障。电阻加热炉自身故障主要表现在两个方面:一是加热炉炉体自身的保温性 能较差,这只需要通过简单的观察和测量即可判定。一台加热炉,要求炉壳表面温度≤50℃,加热炉正常使用时,操作者的手摸到炉壳表面,感觉应该是比室温 不能烫手或不能触摸。也可以借助相关的稍热一点, 1电阻加热炉炉温均匀性检测 依据GB/T9452―2003《热处理炉有效加热区测 定方法》对加热炉的炉温均匀性进行了测试。在电阻炉的有效工作区内,用9点测温法测定电阻加热炉均温性。

炉温均匀性测试

FM-112 第1页 共9页 传感器位置示意图 仪表编号 Meter No. S5H805420 仪表校准日期 Calibration date of meter 测试传感器及仪表Testing sensor and meter 检测依据文件 Refer documents AMS2750E 2017 年 4月 4日 Conclusion: TUS calibration for the furnace according to AMS2750E, calibration sensors didn't fail during the calibration process; And the results meet class 2 (±6℃) requirements between 480 to 760℃, meet class 4 (±10℃) requirements between 760 to 1180℃; 炉门 测温位置的说明 Position explanation: TUS Rack was located in the central chamber of furnace, the distance from back is 180mm, on both sides of distance is 200mm。检测日期Date Tested 下次检测日期:Next Due Date: 检测人: 核检人: Tested by(Operator) Check by(HT Engineer)批准: Issued by(Quality Manager) 温 度 均 匀 性 检 测 记 录 TEST RECORD OF FURNACE TEMPERATURE UNIFORMITY(SUBSTITUTE FOR TEST REPORT) 使用单位 User Department : XXXXXXXXXXXXXX 设备编号 Device No. HTE1#报告编号 Report No. XXXXXX 传感器型号 Sensor model: N 仪表名称 Meter name : 无纸记录仪设备型号 Device Model: HR5072-14PSIG 气氛或盐浴的种类、成分The sort and component of atmosphere or salt bath : 真空(真空度3.1×10-5 Torr) 设备名称 Device name: 真空炉 是否加载 Whether or not loaded: 测试架 仪表类型 Instrumentation Type: B 炉子等级 Furnace Class: 480-760℃ 2级(±6℃); 760-1180℃ 4级(±10℃); 加载量 Load: 无 使用温度范围 Temperature Range: 2级 480-760℃ ; 4级 760-1180℃ ; 制造厂商 Manufacturer : Ipsen 传感器名称 Sensor name: 工业热电偶仪表型号 Meter model : DX2020-1-4-3Rev.0 2008.5.1

库房温湿度均匀性验证方案

确认方案编号: 项目负责人: 验证类别:厂房设施验证

1. 主题内容 本方案规定了我公司库房温湿度均匀性验证的范围、方法及标准。 2. 适用范围 本方案适用于我公司库房温湿度均匀性的验证。 3. 实施确认人员及职责 4. 简介 4.1. 概述:我公司库房包括有原辅料常温库、原辅料阴凉库、成品常温库、成品阴凉库、内包材库、 外包材库、液体药品库、特殊药品库等,根据GMP 要求结合产品自身对温湿度的要求公司对相应库房安装辅助设施, 以便能控制并维持该库房内的环境温湿度以达到规定要求(各库房具体温湿度要求见下表)。为保证温湿度计在该房间内记录的温湿度值是最具有代表性的,拟对该房间进行温湿度均匀性验证。 4.2. 验证依据 5. 验证依据《确认与验证管理规程》 通过本次验证确定我公司库房温湿度分布均匀性,以确定温湿度计的最佳摆放位置。 6. 变更和偏差处理 确认过程中如果出现偏差和变更,应立即通知确认与验证小组并对偏差和变更进行详细记录(参见偏差处理单,变更处理单),分析偏差产生的根本原因并提出解决方法。所有偏差和变更得到有效处理后,确认方可进入下一步骤。偏差处理单和变更处理单经过批准后其原件必须附在验证报告中。 变更和偏差处理记录

检查人/日期:复核人/日期:7.验证内容 7.1.验证前准备 7.1.1.文件准备

7.1.2.现场备《留样管理规程》、《稳定性试验管理规程》、《库房温湿度均匀性验证方案》及相关的验证记录,并填写验证文件准备确认表。 检查人/日期:复核人/日期: 7.1.3.验证用主要仪器准备 7.1.3.1.准备经校验合格并处于校验有效期内的温湿度计,并在每个阶段或验证周期开始前对仪器确认,要求经过校验,并在校验有校期内,填写《验证主要仪器确认表》,见下表。 验证主要仪器确认表

调质线技术简述

热处理调质生产线技术简述 一、用途及技术规范 1.用途 该生产线主要用于锻件毛坯的调质处理,也可用于其它金属零件的调质处理。可通过改变生产线的流程实现调质工艺,调节生产的节拍及工艺参数,满足不同零件的热处理。 调质传动轴毛坯锻件:材质42CrMo、40CrH,45#等调质零件,典型工件:φ130×500mm,其重量≤30㎏/件;φ40×240mm,其重量≤4㎏/件。 2、概述 生产线采用推盘式结构(加热炉和回火炉),呈“一”字式或“U”布置,整条生产线配置可靠的机械传动装置,高质量、高精度的温度控制系统,模似屏显示生产线动作状态。二、生产线结构组成 1推盘式淬火加热炉系统1套 2淬火料盘翻转系统1套 3装料台及淬火料盘返回系统1套 4升降淬火装置1套 5淬火槽及循环系统1套 6回火加热炉系统1套 7回火料盘翻转系统1套 8回火料盘返回系统1套 9回火冷却系统1套 10温度及机械动作控制系统(含PLC)1套 11操作台4台 12动作状态模似屏1套 13液压站系统1套 四、主要技术参数 1.生产线 1.1电源380V,3P,50Hz 1.2工作节拍~10min(可调) 1.3生产率450Kg/h 1.4最大生产率500Kg/h 1.5生产线总电功率~360Kw 1.6液压系统额定压力10MPa

1.7轨道标高800mm 2.推杆式淬火加热炉 2.1额定温度950℃ 2.2额定功率180Kw 2.3料盘尺寸620×450×100 mm 2.4加热区数3区 2.5炉温均匀性≤±8℃(保温区同一截面) 2.6控温精度±1℃ 2.7料盘数量10个(炉内10件,炉外2件) 2.8料盘装量~90kg/盘 2.9推料节拍~10min(可调) 2.10工件加热、保温时间~100min(可调) 2.11上料方式人工 2.12出料方式采用淬火加热炉拉料机自动出炉 2.13料盘、滚轮、轨枕、导轨材质ZG3Cr18Mn12Si2N 2.14加热器0Cr21AL6Nb 电阻带 2.15炉表温升≤50℃ 2.16零件转移时间≤20秒(淬火零件从出炉后至入淬火介质时间)2.17淬火炉料盘返回方式采用人工电动葫芦回转方式 2.18淬火倾料台 淬火倾料台夹紧料盘方式夹紧机构采用液压夹紧机构 淬火倾料台倾斜方式倾料机构采用液压机构 2.19淬火倾料台导料槽设有缓冲装置 3.淬火槽及提升平台 3.1淬火时间~5min(可调) 3.2滴液时间~2min(可调) 3.3淬火槽容积~12m3 3.4提升平台减速机构升降 3.5搅拌方式1台泵强制循环 3.6循环淬火介质冷却方式(买方自备) 车间外大循环池喷淋散热或散热器 3.7淬火介质温度30~70℃带检测显示淬火槽淬火介质温度

相关文档
最新文档