MTU20V8000M71型高速柴油机研发介绍
MTU4000系列柴油机共轨式喷射系统工作原理与故障分析

MTU4000 系列柴油机共轨式喷射系统工作原理与故障分析摘要:本文主要描述了MTU4000系列柴油机共轨式喷射系统的工作原理,就其在日常运行中柴油机出现的突然降速或自动熄火等故障做了分析,同时说明了这些故障的处理措施。
关键词:共轨式喷射系统分析措施MTU4000系列柴油机于1997年初推出,是全球极少数装有电子监控管理系统MDEC的柴油发动机,是世界首家应用共轨式喷射系统技术的大型柴油机。
共轨式喷射系统的运用代替了传统的波许泵系统,使发动机在极低的转速下也可得到高的喷油压力。
通过精确控制喷油定时、喷油量及喷油压力,改善了燃烧与排放,降低能耗及燃油系统零件受力。
1.MTU4000系列柴油机共轨式喷射系统工作原理MTU4000系列柴油机共轨式喷射系统主要有高压泵、共轨管、喷油器和电子控制装置(ECS-发动机控制系统),它把燃油的高压产生与喷射的定时、定量完全分开,其工作原理如图:整个系统由高压泵、蓄压器(公共油轨)、喷油嘴和电子控制装置组成。
高压泵是一个多缸径向柱塞泵,由柴油机通过齿轮机构传动,它将燃油供入各缸共同的、位于柴油机两侧的公共油轨中,油轨中压力可达120Mpa左右,这相当于在普通系统上的160Mpa-180Mpa的喷射压力。
每个气缸盖上装一个由电磁阀控制的喷油器,由高压油管将共用油管与喷油器相连通。
高压燃油在油轨中蓄势待发,一旦某一喷油嘴接通,燃油即进入喷油嘴喷入气缸。
油轨中燃油压力及喷油嘴开、闭的时刻决定了各缸的喷油量,这些都是电子装置控制。
电子装置通过装于油轨前的压力传感器感知系统中的压力。
而燃油是通过一节流阀进入高压泵的,在电子装置的控制下,通过对流量的节流实现对压力的调整。
喷油嘴则具有控制喷油开始、停止,从而控制喷油量以及调整着火延迟期喷油量等多项功能,这种喷油嘴如图所示,通过一个电磁阀使针阀上方泄压,然后由燃油压力把针阀打开。
着火延迟内的喷油量通过调节阀的开启速度加以控制,当控制阀泄流后,一个附加的液压阀开始动作,使针阀快速关闭,这种辅助(喷油嘴能分别调整开启、关闭的特性)动作极其精确。
12V240ZJ型柴油机设计及试验研究.

中南大学
硕士学位论文
12V240ZJ型柴油机设计及试验研究
姓名:***
申请学位级别:硕士
专业:机械设计及理论
指导教师:***
20050501
中南大学工程硕:L学位论文第二章12V240ZJ型柴油机设计及开发试验
机此处的惯性质量问题。
(7)采用了球墨铸铁机体结构。
(8)采用了大流量的机油泵和水泵,保证了机油和水的供给量,并为进一步提高强化指标留有储备。
图2-1示出了12V240ZJ型柴油机的外形照片。
图2-112V240ZJ型柴油机照片
2.1.2主要性能参数
(1)UIC标定功率:
(2)柴油机标定转速:
(3)循环方式及增压特性:
(4)喷射特性:
式喷油器
(5)气缸数、气缸排列和气缸夹角(6)气缸直径×活塞行程:
(7)压缩比:
(8)曲轴转向(面对输出端):
(9)发火次序
气缸编号(面对输出端):
从左列输出端起,编号A1~A62200kw
1000r/min
四冲程、脉冲增压、增压空气中间冷却直喷式燃烧室、单体柱塞泵、小压力室
12缸、V型、V型夹角50。
240mm×275mm
12.5
顺时针
从右列输出端起,编号BlaB6。
此时发。
219507257_某船MTU956V20型主柴油机故障原因分析

作者简介:孙现有(1983-),男,工程师。
主要从事舰船修理质量监督工作。
杨晓威(1988-),男,高级工程师,主要从事船舶与海洋工程轮机设计研发及项目管理工作。
收稿日期:2023-04-04某船MTU956V20型主柴油机故障原因分析孙现有1,杨晓威2(1.海装驻广州地区某军事代表室 广州510656;2.广州船舶及海洋工程设计研究院;广州510250)摘 要:本文针对某型主推进柴油机完成修理后在台架试验中发生连杆轴承烧蚀故障,详细对故障原因进行排查和分析,提出针对性质量改进措施。
关键词:柴油机;活塞冷却油压;连杆轴瓦;润滑;质量改进中图分类号:U664.12 文献标识码:AFailure Cause Analysis Of A Ship's MTU956V20 Main Diesel EngineSUN Xianyou 1, YANG Xiaowei 2( 1.The Military Representative Office of the Naval Department in Guangzhou, Guangzhou 510656;2.Guangzhou Marine Engineering Corporation,Guangzhou 510250 )Abstract: With regards to the ablative failure of connecting rod bearing occurred in the bench test after completion of the repair of a type of main propulsion diesel engine, this paper investigates and analyzes in detail the fault cause, and puts forward some measures for improving the quality.Key words: Diesel Engine; Piston Cooling Oil Pressure; Connecting Rod Bearing; Lubrication; Quality Improvement1 前言MTU956V20型柴油机是四冲程、单作用、水冷、V 型60°、直接喷射、废气涡轮增压、增压空气中间冷却、不可逆转、额定转速1 455 r/min、压缩空气起动的柴油机。
德国MTU发动机冷却系统剖析

GT-COOL 分为前、后处理两个模块。前处理模块包括搭建冷却系统所需的所有模型, 可以模拟空气侧、冷却水侧、发动机机油/传动箱机油冷却器,以及其它流体系统。主要作 用是搭建冷却系统一维仿真模型,根据冷却系各组成部件的结构参数和运行参数进行参数设 置,并对冷却系统进行模拟计算。GT-COOL 的后处理由 GT-POST 完成,GT-POST 是一个 功能强大的数据分析工具,可以显示、查看、处理由前处理模块计算的数据结果,可以对冷
德国 MTU 发动机冷却系统剖析 The Analysis of German MTU engine cooling system
乔国辉 高晗 徐宇工 (北京交通大学机电学院)
摘要:本文对德国 MTU890 柴油机冷却系统用 GT—COOL 软件建立了仿真计算模型,并
对冷却系统中的换热和流动过程进行了模拟运算。建立的模型可以预测发动机冷却系统的压 力、温度分布及压力损失等。
-40 -30 -20 -10 0 10 20 30 40 50 60
环境温度(℃)
图 4 不同环境温度下发动机出口水温
4.利用模拟计算结果进行实际工程选型
选型设计不同于它的工程设计,选型设计注重的是部件参数与冷却系统的总体匹配;工
程设计则要使部件的具体结构、性能及其可靠性乃至工艺等满足多方面的工程要求。选型设
4
用同样的方法来确定其它的参数。
3.4 发动机冷却系统多参数多方案优化匹配仿真与分析研究
中国主要船用柴油机制造厂家

1、上海中船三井造船柴油机有限公司CSSC-MES Diesel Co., Ltd. (CMD) (T)公司简介上海中船三井造船柴油机有限公司(英文名称:CSSC-MES Diesel Co.,Ltd.英文简称:CMD)是由中国船舶工业集团公司、中国船舶工业股份有限公司和日本三井造船株式会社共同投资组建的一家船用大功率低速柴油机制造企业。
公司位于上海临港新城重装备产业区内,占地近40万平方米,南临洋山深水港,北靠浦东国际航空港,区位优势非常明显。
公司总投资超过28亿元,分两期建设,一期工程投资达14亿元,目前注册资本7.06亿元。
公司拥有大型数控装备和现代化重型测试设备,并引进曼恩和瓦锡兰专利技术,主要生产气缸直径600mm以上的船用大功率低速柴油机。
2008年,公司已形成100万马力的柴油机年生产能力;2009年一期项目完工后,公司将形成170万马力的柴油机年生产能力;公司全面建成后将形成超过300万马力的柴油机年生产能力,必将成为中国船用低速柴油机制造领域的核心和中坚力量。
截至目前,公司累计交付柴油机突破200万马力,并于2008年7月成功制造中国首台世界最大缸径柴油机CMD-MAN B&W 8K98MC。
2008年,公司通过了上海市高新技术企业认定和ISO9001:2000质量管理体系认证。
/EnHome.aspx2、南车资阳机车有限公司始CSR ZiYang Locomotive Co., Ltd. (CSR) (F)公司简介中国南车旗下的南车资阳机车有限公司始建于1966年,是由铁道部兴建并培育壮大的中国西部唯一的机车制造企业。
公司是四川省重大装备八大产品链重点企业,四川省“大集团、大企业”重点培育企业之一,在我国重大装备制造自主创新和西部大开发中发挥着重要作用。
公司累计新造各型机车数量居国内第二,出口到亚洲、非洲、美洲的16个国家,是土库曼斯坦、越南最大的机车供应商。
公司生产的发动机应用到机车、船舶、发电领域,是工程船舶成套设备和大功率燃气机知名供应商。
MTU 柴油机20V_4000_R43技术规范(英文)

Technical SpecificationMTU Diesel engine20V 4000 R43 diesel electricIllustration 20V 4000 R432,700 kW at 1,800 rpmEU 26/2004 Stage IIIaRail-PM 20080123Approved by: Engels M1I Signed:Engels Compiled by: Tröstler M1I 20.03.2008TröstlerSigned:Name Dept. Date SignatureSignatures are available for inspection on original documents and are available on request.Remarks / Amendments Version DateNew document 1.0 20.03.2008AppendixesNo.No./Drawing Document/Drawing DocumentEngine installation drawing XZ 528 00 00 00 49Diagrams: - Coolant To be compiled- Fuel To be compiled- Lube oil To be compiledDrawing: resilient damping mount 001 237 70 12Drawing: fuel pre-filter 0020922901/87Acoustic data: 20V 4000 R43L; 2700 kW 734 361e, 734 355e, 734 363eStandard Maintenance Schedule, diesel engine To be compiledFluids and Lubricants Specifications A00161Note: All drawings and data are provisional; subject to change in the interests of technical progressThis technical specification is not subject of technical change serviceTable of contentsstructure (4)I ObjectII Advantages of MTU diesel engines (5)1Common Rail injection system (5)2Turbocharger (6)3Electronics system (6)4Service and connection block (6)5Engine characteristics (6)6Environmental compatibility (6)description (8)III Engine1General (8)1.1Regulations and standards (8)1.2Fluids and lubricants (8)1.3Diesel engine load profile (8)2Technical data (preliminary, subject to changes) (9)2.1Performance as per MTU sales program (9)2.2Conditions on site (9)2.3Performance on site (9)2.4Basic design (9)2.5Engine operating conditions (10)2.6Operating data (10)3Performance map 20V 4000 R43 (12)IV Scope of supply (14)1Engine configuration (14)1.1Engine system (14)1.2Starting system (14)1.3Lube oil system (14)1.4Fuel system (15)1.5Cooling system (19)1.6Combustion air system (22)1.7Exhaust system (23)1.8Mounting (24)1.9Power transmission (25)1.10PTOs (26)2Electronics (27)2.1Power line for PowerModul, Rail application (27)2.2Features (28)2.3System configuration (28)2.4Scope of supply – Electronics (28)2.5Overview over units and assemblies (30)2.6DC/DC-converter (39)2.7System cables (39)2.8Optional automation functions (40)2.9Fuel consumption display for diesel engine (being developed) (41)2.10Fan control for hydraulic engine cooler (41)2.11Fan control for electric engine cooler (41)2.12Fuel pump control (41)2.13Traction (42)2.14Systems for auxiliary units (being developed) (44)2.15Diagnostic and maintenance support (45)2.16Online customer service diagnosis (46)3MTU PowerModule: Weight (47)I Object structureThis technical specification describes the technical equipment and scope of supply for the diesel-electric MTU diesel engine.Key scope of supply:II Advantages of MTU diesel enginesInnovative, modular technology provide the following benefits for rail vehicles:• Cutting-edge technology such as the Common Rail injection system and an electronic governor means that theturbocharged 20V 4000 R43 diesel engine with charge-air cooling meets the EU Stage IIIa emissions specifi-cations, has a low overall weight and delivers low fuel consumption.• EU Stage IIIa exhaust emission standards will be met by means of techniques inside diesel engine only, ex-haust aftertreatment is not necessary.• Injection, turbocharging and electronic regulation are key competences of MTU. They are designed and pro-duced for the PowerModul at our own production facilities.1 Common Rail injection systemElectronically controlled Common Rail injection system with high-pressure pump, pressure accumulator (Rail) and indi-vidual injectors.• Optimum control of:Beginning of injection (BOI) Injection amount Injection pressure• Significant reduction in particulate emissions• Low fuel consumption across the entire performance map • No mechanical adjustments needed• Outstanding acceleration and instantaneous load characteristics • Extremely reliable2Turbocharger2 MTU turbochargers; optimized for railway application by means of in-house development and manufacturing•optimum operating•optimum efficiency•optimized for rail application•high power in high altitudes and temperatures3Electronics systemElectronic control and monitoring system (in-house development and manufacturing) with integrated safety and test sys-tem. Load-profile recorder. Expandable via peripheral interface modules. Pluggable connectors. Laptop access to data.•Maintenance-free•Optimum operating characteristics•Safety functions•Straightforward, fast connection to external systems•CAN-bus capability4Service and connection blockInterfaces for coolant and service components located at PTO end. Integrated accessories (e.g. filters).•Straightforward maintenance•Fast, simple connection of supply lines•Excellent accessibility5Engine characteristics•Constant power up to 40°C intake air temperature and 400m above sea level or 30°C intake air temperature and 1,500m above sea level•Unrestricted partial load operation6Environmental compatibility•Meets EU 26/2004 IIIa•Low particulate emissions•Low noise and vibration levels•Low resource consumption (fluid and lubricant manufacture)Diesel engine 20V 4000 R43illustration Note: ExemplaryIII Engine description1GeneralEngine model 20V 4000 R43Exhaust emissions EU 26 / 2004 Stage IIIa1.1Regulations and standardsThe regulations and standards listed in the appendix will be applied in the development and production of the MTU scope of supply:1. DIN ISO /DIN EN / DIN standards2. EN / ISO standards3. IEC standards4. VDE and VDI regulations5. UIC datasheets6. BN rail standards, TL technical delivery standards and DS publications (DB AG only)7. Accident-prevention regulations8. Fire-prevention and safety-at-work regulations1.2Fluids and lubricantsOnly fluids and lubricants which are approved by MTU may be used to operate the PowerModul. The valid Fluids and Lubricants Specifications A001061/30 contain lists of all approved fluids and lubricants.1.3Diesel engine load profileThe load profile given below is stipulated as the contractual basis for operation of the PowerModul in rail applications. Where the load profile is changed, the maintenance intervals to be observed for the PowerModul must be adapted accord-ingly.Load referred to fuel stop power [%] % of operating timeLoad element 1 100 10Load element 2 90 15Load element 3 75 15Load element 4 < 15 60Number of load changes max. 8 per hourTBO (Time Between Overhauls) 30,000 operating hoursTBO can be influenced by the following (amongst other factors:•Cold starts below stated temperature (not permissible with regard to warranty)•Load profile deviations•Number of load changes per hour2Technical data (preliminary, subject to changes)2.1Performance as per MTU sales programEngine power (ISO 3046)1 2,700 kWEngine speed 1,800 rpmAmbient air temperature 25 °CCharge-air coolant temperature (upstream of intercooler) 45 °CWorking altitude 100 m abovesea levelOperation without power reduction, up to:Max. intake air temperature 40 °CMax. charge-air coolant temperature 60 °CMax. working altitude 400 m abovesea levelAlternative operation without power reduction, up to:Max. intake air temperature 30 °CMax. charge-air coolant temperature 50 °Cabovem Max. working altitude 1,500sea level2.2Conditions on siteMin. engine compartment temperature during operation -25 °C-25 °CMin. operating temperature for electronic components (in loco-sideswitch cabinet)Min. intake air temperature -25 °C°CprojectatMax. ambient air temperature specifiedMin. working altitude specified at project m abovesea levelMax. working altitude specified at project m abovesea level2.3Performance on siteEngine power (ISO 3046) specified at project kWEngine speed 1,800 rpmAt max. charge-air coolant temperature (upstream of intercooler) specified at project °C2.4Basic design16 cylinders90° Vee4-stroke dieselDual-circuit liquid coolingDirect injectionTurbocharging with external charge-air cooling (2 turbochargers, 1 intercooler)Wet, exchangeable cylinder liners1 UIC rated power is fuel stop power (ICFN) in accordance with ISO 3046 and is effectively available at engine PTOflange.Piston cooling2 inlet and 2 exhaust valves per cylinderDry exhaust manifoldElectronically controlled “Common Rail“ injection system Electronic MTU engine managementBoreStrokeSwept volume per cylinderTotal displacementCompression ratioDirection of rotation (viewed from driving end) Flywheel housing1702104.7776.317.5CCVSAE 00 flangemmmmltrsltrsMin. starting temperature (engine coolant)Min. starting temperature (engine coolant) - emergency start without pre-heating2Min. air temp. with pre-heating HT/LT-system + 4010- 25°C°C°CTotal weight with standard equipmentDry / wetClearance gauge (length x width x height); without accessories10040 / 10765 3065 x 1565 x 2080kgmm2.5Engine operating conditionsCoolant additive AntifreezeMax. fuel temperature 55 °C Min. temp., eng. compartment during operation 0 °C Max. temp. eng. compartment during operation + 70 °C 2.6Operating dataConsumptionSpecific fuel consumption (tolerance as per ISO 3046)Atratedpower 211 g/kWh Optimum value on performance map 196 g/kWh Lube oil consumption (after approx. 100 hrs runtime), average 0.3 % of fuelconsumptionCapacitiesLube oil system (standard oil system)Total on initial filling 380 ltrsDipstick marks, min. / max. 260 / 380 ltrsEngine oil change quantity, max. 300 ltrs Cooling systemEnginecoolant 290 ltrs Charge-aircoolant 70 ltrsHeat to be dissipatedHeat dissipated in engine coolant and oil (HT) 1540 kW Heat dissipated in charge-air (LT) 290 kW Radiated and convected heat, engine3 60 kW2 Cold-start shortens TBO3 Components on engine which conduct exhaust gas - insulated; forced air convection 2.0 m/sCooling system (engine coolant)Volumetric flow through high-temperature cooler 100 m³/h Coolant temperature at engine outlet 103 °C Permiss. pressure loss in HT cooling system outside engine, min./max. 0.85 / 1.00 bar gCooling system (charge-air coolant)Volumetric flow through low-pressure cooler 38 m³/h Coolant temperature upstream of intercooler (at 40°C ambient temp.) 45 °C Permiss. pressure loss in LT cooling system outside engine min./max. 0.55 / 0.70 bar gFuel systemFuel feed quantity, max. 19 l/min Fuel pressure at engine infeed connection, min. / max. perm. -0.3 / +1.5 bar g Fuel return quantity, max. 7 l/min Fuel pressure at engine return connection, max. perm. 0.5 bar gCombustion air systemCombustion air quantity 4.2 m³/s Intake depression, design / max. perm. 25 / 35 mbar gExhaust systemExhaust flow rate 10.0 m³/s600 °C Exhaust temperature downstream of engine, max. in DBR/MCRperformance diagramUnder standard peripheral conditions630 °C Exhaust temperature downstream of engine, max. in DBR/MCRperformance diagramUnder maximum-admissible peripheral conditionsExhaust back pressure, design / max. permissible 30 / 85 mbar g Exhaust back pressure, max. permissible with power duration 150 mbar gStarting system Electricstarter Voltage 24 V Power 2 x 7,5 kW Note: All data provided are provisional and for information only.3Performance map 20V 4000 R43Exhaust limit values in acc. EU 26/2004 Stage IIIa(Test Regulation: ISO 8178-4, cycle F)preliminaryKey:c Specific fuel consumptionConsumption data (g/kWh), tolerance: +5 % in acc. with ISO 3046. Fuel in acc. with DIN EN 590 with a net calorific value of at least 42800 kJ/kg.Including all pumps required for engine operationDiagram: 20V 4000 R43 with standard equipmentNote:Measurements and dimensions vary according to equipment status (with usual manufacturing tolerances).IV Scope of supply1Engine configuration1.1Engine systemBasic engine•Liquid-cooled, four-stroke diesel engine, CCW-rotation (viewed from driving end) with direct injection, turbo-charging and internal charge-air cooling, 2 MTU turbochargers, dry exhaust manifolds•Crankcase with oil pan and bolted flywheel housing (SAE 00-flange); 4-valve individual cylinder heads with "Rotocap" valve rotation unit•Fuel delivery pump; fuel duplex filter; fuel hand pump; Common Rail HP fuel system, electronically con-trolled injection and cylinder cut-out independent of load•Lube oil circulation pump; lube oil heat exchanger; multi-stage lube oil filter with centifugal oil filter; coolant circulation pumps for HT and NT circuit; oil filler neck with integrated dipstick; oil drain valve •Gear train for PTOs; vibration damper (in compliance with torsional vibration calculation); with optional PTO •Engine shutdown via electronic engine management; electronic engine control unit (ECU)1.2Starting system1.2.1Electric starting system•Two electric sliding-gear starters each with 24 VDC; 7,5 kW; 2-pole1.3Lube oil system•Oil pan•Combined oil filler neck and dipstick on left side of engine (located at inspection port cover)1.4Fuel system1.4.1Fuel pre-filter•One SEPAR filter SWK-2000/40MS; pre-filter with water separator for throughput quantity up to 40l/min (2400 l/h); installation in locomotive parallel•Straightforward filter changeDiagram: Fuel pre-filterPressure loss in mbar1.4.2 Electric fuel pumpPump dataMaterial to be pumped Diesel fuel Fluid temperature 20 °C (max. 45 °C)Speed 1500 rpm Pressure increase 1 bar Volumetric flow (min.) 5 dm³/min (0.3 m³/h)Motor data Rated voltage 24 VDC Power input 70 W Protection Class IP 54Unit dataWeight (approx.)14 kg Min. ambient temperature -25°C at max. fuel viscosity of 45 mm²/s and max. operating pressure 2 bar Paint finish Standard RAL 6011Diagram: Electric fuel pumpNote: Subject to technical change1.4.3 Flexible connections1.4.3.1Fuel connections• Set of flexible connections (hoses) for fuel connection (loose):Fuel supply: Hose DN 25 x 730 mm Fuel return: Hose DN 20 x 630 mm1.5Cooling system•Connections for Coolant inlet/outlet (HT) with companion flange•Connections for charge-air coolant inlet/outlet (LT) with companion flange •Coolant thermostat for HT and LT systems, fitted on engine•Connections on engine for coolant venting/expansion linesDiagram: Engine coolant / charge-air coolant systemNote: Data subject to project-specific change; preheating not taken into account1.5.1Coolant preheating•Coolant preheating for HT circuit incl. heater, circulation pump and separate fuel filter1.5.1.1Fuel fired preheating unit (supplied loose)Characteristics•Control unit and carrier plate form an assembly – plug-in cables also for control unit•Temperature sensor in coolant outlet ensures timely shutdown at low throughput•Resetable temperature limiter, i.e. no replacement of parts required following overheating•Easily accessible and maintenance-friendly due to side-mounted fuel line and CO2 setting•Plug-in connections for sensor lines resulting in simple installation and removal; located at the side of the burner head•Fuel filter with integrated electric heating and temperature sensor for fuel preheatingTechnical data Heating unit Thermo 350Type HP diffuser Fuel Diesel fuel Heating power 35 kW Current draw (without circulation pump) 140 W Fuel consumption 3.7 l/hr Rated voltage 24 VDCSetting CO2 value 10.5 ±0.5 Vol % Perm. ambient temperature during operation -40 … +85 °C Perm. operating pressure 0.4 … 2.0 bar Heat transmitter capacity 1.8 liters Dimensions (L x W x H) 610 x 246 x 220 mmWeight 19.0 kg Circulation pump U 4852 Volumetric flow (at 0.4 bar) 6000 l/hr Rated voltage 24 VDC Current draw 209 W Dimensions (L x W x H) 284 x 115 x 110 mmWeight 3.0 kgDiagram: Fuel-fired preheating unitNote:Subject to technical change1.6Combustion air system•Set of connecting pieces at turbochargers (for connection of hoses)•Outside diameter: 250 mm1.6.1Air filter•Set (8 pcs) dry air filter elements with housings and pre-separators (supplied loose) Drawing: Air filter1.7Exhaust system1.7.1Horizontal exhaust configuration•Horizontal exhaust configuration•The exhaust manifold, the turbochargers and all other components with surface temperatures in excess of 200°C are dry-insulated. Slight occurrence of hot-spots is possible.1.7.1.1Exhaust compensators•One compensator per turbocharger, secured on turbocharger with V-band•Incl. installation materials (V-band, seals) for connection on locomotive1.7.1.2Companion flange•Drawing of companion flanges for connection of exhaust pipework downstream of expansion tube1.8 Mounting 1.8.1 Engine mounts• Engine carriers and resilient engine mounts (6-point mounting)1.8.2Alternator mounts• Set of resilient elements (supplied separately) for flange-mounted generator • Alternator mountings designed for generator weights up to 5500 kgDiagram: Engine mounting brackets and resilient damping mounts1 Protective cap2 Central buffer3 Nut4 Height-adjuster nut5 Damping mount6 Engine mounting bracket7 Check groove1.9Power transmission1.9.1Coupling•Diaphragm coupling for engine/generator connection1.10PTOs1.10.1Installation and driving components for hydrostatic pump•Installed on side-PTO on the right-hand side of KGS (= free end)•For a driving speed of 1.41 x nEngine•Max. useable torque: 500 Nm•Max. perm. moment of inertia of coupling + additional masses + pump: < 0.2 kgm² •Example for hydrostatic pump T17/PL•Hydrostatic pump (customer-furnished equipment) mounted on aux. PTO Diagram: Hydrostatic pump installation (Example)2 Electronics2.1Power line for PowerModul, Rail applicationPower line stands for innovative cutting-edge MTU technology and offers solutions both for rail vehicle manufacturers as well as for companies specializing in rail vehicle conversion. A modular product line offers convincing solutions for all rail applications with diesel-driven traction systems based on MTU 4000 R43 engines.MTU as a system supplier of complete PowerModules for rail applications can provide tailor-made solutions for the re-quirements in question. Specific customer requests can be implemented. Our individual and modular Power line solutions provide the perfect solution for all demands. E. g.:•Diesel engine – Control and monitoring system with interface to central vehicle computer•Traction generator - (optional, being developed) Automation incl. interface to central vehicle computer (power transmission = diesel-electric or diesel-hydraulic)•Auxiliary generator - (optional, being developed) Automation incl. interface to central vehicle computer•Diagnostic management – Feature incl. interface to central vehicle computerThe versatile interface with the rail vehicle control system meets all requirements for newbuilds as well as for repowering.2.2FeaturesThe engine control system has the following outstanding features:•Modular system which can be adapted to match the various requirements of the rail vehicle control system •Latest electronic diesel engine injection system, “Common Rail”•ISO 9001•CE-certification•EMC-tested devices•Device communication via redundant MTU CAN-bus•CANopen Interface•Special functions for diesel electric rail vehicles•Straightforward adaptation to rail vehicle control systems on newbuilds and repowered vehicles•Key requirements of the following standards are met:•EN 50155•EN 50121-3-2•EN 5510•EN 50126•EN 501282.3System configuration•Supply voltage 24 VDC•Isolated, redundant MTU CAN bus interface2.4Scope of supply – Electronics2.4.1Mounted on diesel engine•Engine governor “ADEC” (Advanced Diesel Engine Controller)•POM (Power Output Module)2.4.2Components supplied separately•Connection interface (PAU)•MTU system cable for ECU (MTU supplies pre-made system cable with connector on one side in a standard length of 10 m for the connection of engine governor ADEC to the electronics switch cabinet) •FCD (fault code display)•Display•Instruments2.5 Overview over units and assemblies 2.5.1Engine governor “ADEC” (Advanced Diesel Engine Controller)Features• Engine-mounted• Governor developed and produced by MTU •Functions for rail applications and safety functionsBasic functions• Engine speed regulation •Engine monitoring¾ Temperatures ¾ Pressures ¾ Speeds¾ Injection quantity ¾ Levels•Engine control (e.g. start/stop)¾ Start/stop run ¾ Sensor monitoring ¾ Actuator monitoring•Safety functions (see also load limitation, stop…)¾ Starter interlock¾ Engine emergency shutdown ¾Load limitation•Diagnostic management functions, see also¾Cold-start counter¾Load profile recorder¾Operating hour counter¾Fault recorderSensors and actuators of the engine control unitPressure sensorsCrankcase air pressureFuel pressure downstream of filter Lube oil pressureHP fuelCharge-air pressureSpeed sensorsCamshaft speedCrankshaft speed Temperature sensors Charge-air temperature Coolant temperature Intake-air temperature Fuel temperature Lube oil temperature ActuatorsFuel injectorsLevelLeak-off fuel levelInput signal Type UseEngine start Binary Signal from rail vehicle control to start engineEngine stop Binary Signal from rail vehicle control to stop engineCylinder cut-out, OFF Binary Signal from rail vehicle control to deactivate cylinder cut-out Override Binary Signal from rail vehicle control to switch off safety system Target speed (4 mA … 20 mA) Ana-logueSignal from rail vehicle control to select engine speed Starter ON Binary Triggering of starter/starter alternatorInterfaces•Redundant CAN interface to MTU automation•Discrete signals to rail vehicle automation interface (RAI)2.5.2POM (Power Output Module)The power output module is an automation unit for the control of starter and alternator and is supplied with 24 V DC.Features•Comprises engine wiring for starter and alternator to POMMain functions•Starter control•Basic alternator excitationInterfaces•MTU CAN between POM and ADEC•Battery interface via POM (voltage supply and charging voltage)2.5.3PAU (Power Automation Unit)The PAU consists of a pre-defined wiring and connection plate. PAU is an interface unit for locomotive control.2.5.3.1FunctionInterfaces/CAN busUseSignal TypeInterface Connection of dialog unitRedundant CAN bus CAN Communication with further units2.5.3.2LocationThe PAU is installed in the locomotive switch cabinet.2.5.3.3FunctionThe SAM is an I/O extension of the ADEC and has the following channels:Input signals Type UseBrakes BinaryBrakespeedsetpoint signal from railcar controllerSpeed up (Up-key) Binary Engine speed increase signal from railcar controllerSpeed down (Down-key) Binary Engine speed decrease signal from railcar controllerOverspeed test Binary Overspeed test activation signal from railcar controllerAlarm Reset Binary Signal from Alarm Reset buttonLamp test Binary Signal from Lamp Test buttonControl lever position (bit 0) Binary Engine speed setpoint signal from railcar controllerControl lever position (bit 1) Binary Engine speed setpoint signal from railcar controllerControl lever position (bit 2) Binary Engine speed setpoint signal from railcar controllerControl lever position (bit 3) Binary Engine speed setpoint signal from railcar controllerCoolant level low Binary Signal from level switch in expansion tank of external cooling system Test BinaryForServiceGenerator power request Binary Signal from railcar controller requesting high railcar power generatoroutputForced engine idle Binary Signal from railcar controller requesting forced engine idleCharge-air coolant level low Binary Signal from level switch in expansion tank of external cooling system Turbocharger switch interlock Binary Signal of transmission control during gear shiftingOutput signal Type UseRed alarm(Combined alarm, given when majorfault is found)Binary Activation of a signal lamp on the driver's consoleYellow alarm(Combined alarm, given when minorfault is found)Binary Activation of a signal lamp on the driver's consoleEngine running Binary Activation of operating hour counterat n > 300 rpmEngine speed Ana-logue Activation of gauges, 0 VDC … 10 VDC; corresponds to 0 rpm…2000 rpmEngine load Ana-logueSignal for rail vehicle controller for generator load controlLube oil pressure Ana-logue Activation of gauges, 0 VDC ... 10 VDC; corresponds to 0 bar (10)barCoolant temperature Ana-logue Activation of gauges, 0 VDC … 10 VDC; corresponds to 0 °C … 150 °C24 VDC – For power supply of gaugesAlarm:"Engine overspeed"Binary Activation of a signal lamp on the driver's consoleWarning:"Coolant temperature too high"Binary Activation of a signal lamp on the driver's consoleAlarm:"Coolant temperature too high"Binary Activation of a signal lamp on the driver's consoleAlarm:"Coolant level too low","Charge air coolant level too low"Binary Activation of a signal lamp on the driver's consoleWarning:"Charge-air temperature too high"Binary Activation of a signal lamp on the driver's consoleAlarm"Charge-air temperature too high”Binary Activation of a signal lamp on the driver's consoleAlarm:"Lube oil pressure too low"Binary Activation of a signal lamp on the driver's consoleBinary Activation of a signal lamp on the driver's consoleAlarm:"Lube oil temperature too high"Binary Activation of a signal lamp on the driver's consoleAlarm:"Crankcase pressure too high"Binary Activation of a signal lamp on the driver's consoleWarning:"Fuel pressure too low"Binary Activation of a signal lamp on the driver's consoleMessage:"Preheating temperature too low"Fuel delivery pump ON Binary Signal for fuel delivery pump controlPriming system ON Binary Signal for priming system controlHorn (alarm) Binary Signal for alarm lamp controlGenerator load ON Binary Signal for rail vehicle controller to release high generator output forrail vehicle supplyControl of fan valve in cooling systemFan 1 Binary/PWMControl of fan valve in cooling systemFan 2 Binary/PWMBlind 1 Binary Control of blind 1 valve in cooling systemBlind 2 Binary Control of blind 2 valve in cooling systemCAN busUseSignal TypeFor communication and data transmission with ADECCAN bus redundant CAN 1CAN 2Redundant CANopen interfaceStandard CANopen bus interface between PAU and central rail vehicle controller as per CAN CiA definitions (DSP 423).。
DF11G型机车小柴油机MTU柴油机使用及故障判断与处理

DF11G型机车MTU柴油机使用及故障判断与处理随着社会主义经济建设的飞速发展和铁路跨越式改革的不断深化,铁道部开行点到点的直通品牌列车,为了扩充运能,部分车次取消了空调发电车,改变了供电的模式,由机车直接向列车提供电源。
我们知道列车的供电状况,直接影响到铁路的服务水平和旅客旅行的舒适程度,稍有疏忽就将影响铁路系统的声誉,所以机车新增设备MTU12V183TB12G型辅助柴油机的正常工作成为机务系统的关注焦点。
虽然这款柴油机驰名中外、性能稳定,但在实际工作过程中也难免发生一些常见的小故障。
这些小的故障往往是可以预防和及时排除的。
但是我们要对整个柴油机的工作原理及性能指标深入了解,以便于我们在实际工作过程中能够正确的使用,对故障及时的进行判断、排除。
MTU辅助柴油机部分DF11G型机车上使用的是:MTU12V183TB12G型柴油机;它最大功率:416KW;汽缸直径:128mm;活塞冲程:142mm;气阀间隙:进0.40mm,排:0.60mm;发火顺序见资料;柴油机正常启动水温20度,此型柴油机设计最低启动温度为0度以上,但我们出于爱护柴油机角度出发,也同样执行20度启动的要求,0度启动被用于紧急启动的方式;柴油机机油压力2公斤以上;柴油机空转600转时机油压力应在0.6公斤以上;柴油机冷却水温正常使用范围应是70~90度,超于96度时柴油机报警,超过100度柴油机将卸载、停机;柴油机机油的正常工作温度应在75~100度范围内;柴油机转速设定为1500转/分;柴油机温度在40度以上时方可加载;柴油机的风扇散热动作值:当T1≥60度T2≥90度时风扇全速工作,T1≥50度T2≥85度时风扇低速工作。
在掌握了以上的基础知识后,便可以对发生的一些案例进行分析了。
一、柴油机飞车:这款MTU柴油机曾经发生过类似飞车现象,但未对柴油机造成损伤。
这是因为此型柴油机为高速柴油机,如功率设定为600KW时,其满负荷下转速最大可上调至1800转/分,我们DF11G型机车上使用的MTU柴油机设定转速为1500转/分,功率设定为416KW,超速停机设定为1750转/分时动作,当柴油机超速动作时,其柴油机实际转速并没有超出此型柴油机转速最大单位值,所以在机车检测记录或机车实际运用当中,发现柴油机超速但未造成损失的原因就是如此。
关于柴油机连杆设计

第一章绪论1.1 课题的意义及主要工作1.1.1 课题的背景和意义近百年来,柴油机因其功率范围大、效率高、能耗低,在各型民用船舶和中小型舰艇推进装置中确立了其主导地位。
新材料、新工艺、新技术的不断开发使用,为柴油机注入了新的活力,使其在动力机械,尤其在船舶动力方面依然发挥着无法替代的作用。
据统计,在 2000吨以上的船舶中,柴油机作为动力的超过 95%,预计这一情况仍将持续下[]1去。
受油价的影响,以及一些柴油机的缺点(比如烟度和噪声)被一一克服,现在在乘用车市场,柴油动力开始渐渐显示其独特魅力。
但是,由于受各种因素的影响,我国的柴油机研究还是落后于世界先进水平。
经历多年的市场实践,国内柴油发动机生产企业已不再满足于凭借引进产品获得市场上的暂时领先,而认识到核心技术是最关键的,只有通过引进、消化、吸收的途径,自己掌握了核心技术,企业才会有发展后劲并获得可持续发展的条件。
随着我国造船事业的进一步发展,作为船舶配套中最重要的一个环节,柴油机技术的发展瓶颈已日益凸显。
因此,必须研发具有我国自主知识产权的柴油机,以提高我国船舶制造的国产率。
发动机是船舶的心脏,而发动机连杆则是承受强烈冲击力和动态应力最高的动力学负荷部件,其在工作中承受着急剧变化的动载荷,再加上连杆的高频摆动产生的惯性力,会使连杆杆身发生形变,轻则会影响曲柄连杆机构的正常工作,使机械效率下降。
重则会破坏活塞的密封性能,使排放恶化,甚至造成活塞拉缸、拉瓦,使发动机无法正常工作。
因此对其刚度和强度提出了很高的要求。
以往,连杆的的制造以铸造法和锻造法为主;20世纪80年代以来,由于采用粉末锻造法大批量生产的粉锻连杆具有力学性能优、尺寸精度高、质量较轻及质量偏差很小等特点,因而相继在发达国家快速发展,逐渐取代铸造和锻造连杆[]2。
而高密度烧结法制造连杆也快速发展,并具有良好的力学性能。
1.1.2 主要工作本课题的工作可以分为三大部分。
第一部分为连杆的结构和基本尺寸的设计过程;第二部分为运用UG对所设计的连杆进行三维建模装配;第三部分为柴油机连杆的有限元分析及强度校核。