七年级数学上册第四章一元一次方程4.3用一元一次方程解决问题怎样灵活应用方程的解解题?素材苏科版讲解

合集下载

4.3用一元一次方程解决问题(第3课时比例与图形问题)(教学课件)-七年级数学上册(苏科版2024)

4.3用一元一次方程解决问题(第3课时比例与图形问题)(教学课件)-七年级数学上册(苏科版2024)
幻方游戏的要求;
(2)如图③,请在三个空白方格中填上适当的数,以满足幻方游
戏的要求;
(3)如图④,试求幻方中 m , n 的值.
解:由题意得13-12+ m =-7+28+ n ,
所以 n = m -20.
由题图④最下面一行与最右边一行的和相等,
可得-7+28+ n = m -2+ n ,
解得 m =23.
(3 n +1)


个基础

(2)在上面的图案中,能否找到一个由2 023个基础图形组成的图
案?如果能,说明是第几个图案;如果不能,说明理由.
解:能.由(1)得第 n 个图案由(3 n +1)个基础图形组成,
根据题意,得3 n +1=2 023,解得 n =674.
所以能找到一个由2 023个基础图形组成的图案,
解:设三角形三个角的大小分别为2x,3x,5x
根据题意,得
解得,
所以,
2+3+5=180°
=18°
2=36°,3=54°,5=90°
三角形的三个角的大小分别为:36°,54°,90°
答:这个三角形是直角三角形。
课本例题
例5 用黑白两色棋子按如图所示方式摆图形,依此规律,图形中黑
色棋子的个数有可能是50吗?
大小相同的小长方形(空白部分),其中 AB =5 cm, BC =9 cm,请
认真观察思考并解答下列问题:
(1)求小长方形的长和宽;
解:设小长方形的长为 x cm,
则由图易知宽为(5- x ) cm,
由题意得 x +3(5- x )=9,解得 x =3.5-3=2(cm).
所以小长方形的长为3 cm,宽为2 cm.
苏科版(2024) 七年级数学上册

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

学校七年级数学教案课题4.3用一元一次方程解决问题(3)课型新授课编号时间主备复备审核教学目标1.会利用公式或找规律列方程解决实际问题,通过结合实际问题,创造有趣的情境,提高学习兴趣.2.能够根据实际问题中的数量关系列方程解决问题,培养数学建模能力,分析问题、解决问题的能力.教学重难点重点:会利用公式或找规律列方程解决实际问题.难点:能够根据实际问题中的数量关系列方程解决问题.教学环节教学过程师生活动个人复备知学1.揭示课题2.揭示目标课上板书课题;学生齐读目标.预学阅读课本P125、126 页,完成课本练习T1根据预学情况给各小组评分.互学如图,小明将一个正方形纸片剪去一个宽为4的长条后,再从剩下的长方形纸片上剪去一个宽为5的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积是多少?图形的公式构建等量关系.导学例1:已知三角形三个角的度数之比为2:3:5,判断这个三角形的形状.例2:用黑白两色棋子按如图所示的方式摆图形,依次规律,图形中黑色棋子的个数有可能是50吗?例3:制作一张桌子要用1个桌面和4条桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?利用三角形内角和定理得到等量关系.引导学生从“数”和“形”两个方面找规律,注意理解为什么不可能.小组交流.检学1.宋代数学家杨辉称幻方为纵横图,传说最早出现的幻方是夏禹时代的“洛书”,杨辉在他的著作《续占摘奇算法》中总结了“洛书”的构造,在如图所示的三阶幻方中,每行,每列、每条对角线上的三个数之和都相等,则m+n的值是()A.7 B.1 C.2(1)(2)2.如图,涂色部分是正方形,图中最大的长方形的周长是厘米.独立完成,课堂交流.总结谈谈你这一节课有哪些收获.各抒己见.课后作业板书设计教后记。

用一元一次方程解决实际问题( 工程问题、行程问题与球赛积分问题)(课件)七年级数学上册(苏教版)

用一元一次方程解决实际问题( 工程问题、行程问题与球赛积分问题)(课件)七年级数学上册(苏教版)
7x+7×1=21,解得x=2
答:赢一场积2分
情景引入(球赛积分问题)
喜欢体育的同学经常观看各种不同类别的球赛,但是你们知道它们的计分规则吗?以及比赛
是如何计算积分吗?我们将学习如何用方程解决球赛积分问题。
问题五:用式子表示总积分与胜负场积分之间的数量关系?
问题六:某队的胜场总积分能等于它的负场总积分吗?
【详解】设火车车身长为米,依题意得:
4.5 × 800 = 3400 + ,解得: = 200,
答:这列火车车身长200米.
一辆货车从甲地运送货物到乙地,速度为a千米/小时,然后空车按原路返回时
速度为b千米/小时,求货车从送货到返回原地的平均速度.
2
2

+

【详解】解:设甲乙两地的路程为S千米,+ =
可得:6 + 15 − 3 = 27,
解得: = 4,
15 − 12 = 3,
答:该队平了3场,
利用一元一次方程解决实际问题-球赛积分问题
校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某
队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x场,则
可列方程为__________________.
【详解】
8场比赛不败,说明这8场比赛中只有赢或平局。
根据题意得:3x+(8-x)=18,
利用一元一次方程解决实际问题-球赛积分问题
某电台组织知识竞赛,共设道选择题,各题分值相同,每题必答,下面
记录了个参赛者的得分情况。参赛者得分,它答对了__________道题.
【详解】
参赛

答对题数
分析:1)如果某队胜m场,总场次为 14 场,则负 14-m 场;

七年级数学上第4章一元一次方程4.3用一元一次方程解决问题6打折销售问题授课苏科

七年级数学上第4章一元一次方程4.3用一元一次方程解决问题6打折销售问题授课苏科

【中考·牡丹江】某种商品每件的进价为120元,标价 6
为180元.为了拓展销路,商店准备打折销售.若使 利润率为20%,则商店应打____8____折.
【点拨】设商店打 x 折,则 180×1x0-120=120×20%, 解得 x=8.
7 【中考·山西】2020年5月份,省城太原开展了“活 力太原·乐购晋阳”消费暖心活动,本次活动中的家 电消费券单笔交易满600元立减128元(每次只能使 用一张).某品牌电饭煲按进价提高50%后标价, 若按标价的八折销售,某顾客购买该电饭煲时,使 用一张家电消费券后,又付现金568元.求该电饭 煲的进价.
(3)王老师元旦打算消费3 000元购买自己想要的商品, 她有三种打算:①到百盛和武商各消费1 500元;②全 到百盛去消费;③全到武商去消费.假设王老师需要 的商品百盛和武商都有,如果你是王老师,你会如何 选择?
解:①1 000+(1 500-1 000×0.9)÷0.6=2 000(元), 1 500÷0.8=1875(元), 2 000+1 875=3875(元); ②1 000+(3 000-1 000×0.9)÷0.6=4 500(元); ③3 000÷0.8=3 750(元). 因为4 500>3 875>3 750, 所以选择第②种打算.
(1)王老师想到百盛买一件标价为1 800元的衣服,她应该付 多少钱?
解:1 000×0.9+(1 800-1 000)×0.6=1 380(元). 答:她应该付1 380元.
(2)当我们购买多少钱的商品时,在两个商场所花的钱相同?
解:一次购物不超过500元,在两个商场都不享受优惠; 一次购物超过1 000元,设当我们购买x元的商品时,在两个 商场所花的钱相同,根据题意,得 1 000×0.9+0.6(x-1 000)=0.8x. 解得x=1 500. 综上所述,当我们购买不超过500元或购买1 500元的商品时, 在两个商场所花的钱相同.

苏科版初中数学七年级上册4.3.3 用一元一次方程解决问题 教案

苏科版初中数学七年级上册4.3.3 用一元一次方程解决问题 教案

课题4.3用一元一次方程解决问题(3)班级姓名一、学习目标:1.进一步理解方程的概念,进一步感受方程作为刻画客观世界有效模型的意义。

2.经历运用方程解决实际问题的过程,应用线段图法帮助寻找相等关系。

二、温故知新:用一元一次方程解应用题的步骤:,,。

三、新课探索:例1、小明和小亮同时沿400m的环形跑道朝同一方向练习赛跑.已知小明的速度是120m/分,小亮的速度是200m/分.(1)如果他们在同一地点出发,小亮经过多少分钟后与小明第一次相遇?(2)如果小亮与小明相遇后立即转身沿相反方向跑,那么经过多少分钟后两人再次相遇?练习:1.甲、乙两人练习赛跑,甲每秒钟跑8米,乙每秒钟跑6米。

若甲让乙先跑100米,甲多少秒可追上乙?练习:2. 甲、乙两地相距160km,一人骑自行车从甲地出发,速度为20km/h;另一人骑摩托车从乙城出发,速度是自行车速度的3倍,两人同时出发,相向而行,经过多少时间相遇?例2、轮船从甲地顺流而行9h到达乙地,原路返回11h才能到达甲地,已知水流速度为2km/h,求:轮船在静水中的速度及甲乙两地的距离?练习:3.王超从甲地到乙地,如果每小时走9千米,在规定时间内到达乙地还差4千米;如果每小时走12千米,则比规定时间早到20分钟。

求规定的时间和甲乙两地的距离.例3、甲、乙两人同时以每小时4km的速度从A地出发到B地办事,走了2.5km时,甲要回去取一份文件,他以每小时6km的速度往回走,取了文件后以同样的速度追赶乙,结果他们同时到达B地,已知甲取文件时在办公室里耽误了15min,求A、B两地的距离。

四、随堂检测:1.甲、乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑5米那么甲追上乙需()A.15秒B.13秒C.10秒D.9秒2.一只船顺流航行速度为a km/h,逆流航行速度为b km/h(a>b>0),则水流的速度为________km/h.3.我国铁路第五次大面积提速,如果沪宁线列车时速由每小时120千米提高到每小时160千米,从上海到南京的时间减少37.5分钟,上海到南京的铁路线有__________千米。

苏科版数学七年级上册《第四章 一元一次方程应用题》类型归纳及练习及答案

苏科版数学七年级上册《第四章 一元一次方程应用题》类型归纳及练习及答案

苏科版数学七年级上册《第四章一元一次方程应用题》类型归纳及练习及答案一元一次方程应用题归类(典型例题、练)一、列方程解应用题的一般步骤(解题思路)1) 审题:仔细审题,理解题意,找到能够表示问题含义的等量关系。

2) 设定未知数:根据问题,巧妙地设定未知数。

3) 列出方程:设定未知数后,表示相关的含有字母的表达式,然后利用已知等量关系列出方程。

4) 解方程:解决所列方程,求出未知数的值。

5) 检验并写出答案:检验所求出的未知数是否是方程的解,是否符合实际情况,检验后写出答案(注意单位统一和书写规范)。

第一类:与数字、比例有关的问题:例1.比例分配问题:设其中一部分为x,利用已知比例,写出相应的代数式。

常用等量关系:各部分之和=总量。

甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?例2.数字问题:1.要搞清楚数字的表示方法:一个三位数,一般可以设百位数字为a,十位数字为b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,1≤b≤9,1≤c≤9),则这个三位数表示为:100a+10b+c。

2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n-1表示。

1) 有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

2) 一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。

第二类:与日历、调配有关的问题:例3.日历问题:探索日历问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题。

在日历上,三个相邻数(列)的和为54,求这三天分别是几号?变式:将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)1.3.5.7.911.13.15.17.1921.23.25.27.2931.33.35.37.391.若将十字框上下左右平移,但一定要框住数列中的5个数,设中间的数为a,则十字框框住的5个数字之和为5a。

4.3_用一元一次方程解决问题(1)

解:设21英寸彩电销售了x台。 x+7x+4x=360 12x=360 x=30 25英寸彩电:7×30=210 29英寸彩电:4×30=120 答:21英寸,25英寸,29英寸彩电 分别销售了30台,210台和120台
课堂练习
2.某学生寄了2封信和一些明信片,一 共花了5.6元.已知每封信的邮费为1.2 元,每张明信片的邮费为0.8元.他寄 了多少张明信片? 解:设他寄了x张明信片 2×1.2+0.8x=5.6 2.4+0.8x=5.6 0.8x=3.2 x=4 答:他寄了4张明信片
一张桌子有一张桌面和四条桌腿,做一张桌 面需要木料0.03 m3,做一条桌腿需要木料 0.002 m3.用3.8 m3木材可做多少张这样的桌 子(不计木材加工时的损耗)?
0.03x x张桌面所需木料是 _________m3 0.002x x条桌腿所需面料是 _________m3
; ;
4×0.002x 4x条桌腿所需面料是 ___________ m3。
课堂练习 3.一本书封面的周长为68 cm,长比宽多 6 cm.这本书封面的长和宽分别是多少?
1 4.某人从甲地到乙地,全程的 乘车,全程 2 1 的 乘船,最后又步行4km到达乙地.甲、乙 3 两地的路程是多少?
x张桌面面料 + 4x条桌腿面料=3.8m3
0.03x+4×0.002x=3.8 可得方程:___________________
用一元一次方程解决问题 解:设共做了x张桌子. 根据题意.得 0.03x+4×0.002x=3.8. 解这个方程.得 x=100. 答:共做了100张桌子.
课堂练习 1.某商店今年共销售21英寸(54 cm)、25 英寸(64 cm)、29英寸(74 cm)3种彩电360 台,它们的销售数量的比是1︰7︰4.这3 种彩电各销售了多少台?

初中数学七年级上册《4.3一元一次方程的应用》第四课时——教案

初中数学七年级上册《4.3 一元一次方程的应用4》教案教学目标一、知识与技能1.通过分析复杂问题中的已知量和末知量之间的相等关系,可借助于表格分析数量关系,从而建立方程模型解决实际问题;2.体会由于设未知数的不同,所列方程的复杂程度就不同。

因此设未知数要有选择.二、过程与方法经历从生活中发现数学问题,体会数学与现实生活的联系,培养自主探索能力并体验成功.三、情感态度和价值观在独立思考的基础上,积极参与对数学问题的讨论,并敢于表现自己,丰富学习数学的成功体验,激发对空间与图形的好奇心.教学重点用图表分析问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.教学难点用图表分析数量关系较为复杂的应用题,从多角度思考问题,寻找等量关系.教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备练习本;课时安排1课时教学过程一、导入新课师:请同学们观看一组有关“希望工程”的图片,然后请同学们谈谈你的所见所感。

生:(说一说自己搜索的有关“希望工程”的知识及观看图片的感想)师:讲解“希望工程”的作用和意义,引入课题二、新课学习某文艺团体为“希望工程”募捐组织了一次义演,售出1000张票,筹得票款6950元。

学生票5元/张,成人票8元/张。

问:售出成人和学生票各多少张?想一想,议一议1.说出题目中有哪些已知数量?他们表示什么意义?2.上面的问题中包含哪些等量关系3.根据题目中所给条件,你能求出那些量??请自提出问题并解答解答:(1)题目中的已知数量有:售出1000张票,提具体意义是指售出的学生票和成人票共1000张:筹得票款6950元,既包括学生票款,也包括成人票款,阅读卡片图可知成人票和学生票的单价分别是8元/张、5元/张(2)这个问题包含着下面两个等量关系:成人票数+学生票数=1000张(1)成人票款+学生票款=6950元(2)可以提出并解答的问题有:售出成人票和学生票各多少张?筹得成人票款和学生票款各多少?解法一:设售出的学生票为x张,填写下表列方程解应用题,并考虑还有没有另外的解题方法?解:设售出学生票为x张,则成人票为(1000-x)张,由题意得:5x+8(1000-x)=6950解得:x=3501000-350=650(张)答:售出学生票350张,成人票650张解法2:设所得学生票款为y元,填写下表:根据相等关系成人票数+学生票数=1000张,列方程得:y 5+69508y=1000解方程得:y=17501750÷5=3501000-350=650因此,售出学生票350张,成人票650张反思升华:1.请大家回忆一下,在解决问题的过程中,你遇到了哪些困难,你是如何克服的?2.在两种解法中,题目中的两个等量关系分别起了什么作用?看看这两种解法哪一种较为简单?你从中学到了什么?三、结论总结本节课你有什么感受和收获?1.通过对“希望工程”了解,我们要更加珍惜自己的学习时间,尽力去帮助那些贫困地区的失学儿童。

苏科版数学七年级上册4.3《用一元一次方程解决问题》(第1课时)说课稿

苏科版数学七年级上册4.3《用一元一次方程解决问题》(第1课时)说课稿一. 教材分析《苏科版数学七年级上册4.3《用一元一次方程解决问题》(第1课时)》这一节内容,是在学生学习了代数基本概念、一元一次方程的解法的基础上,进一步引导学生学会用一元一次方程解决实际问题。

通过本节课的学习,使学生能运用一元一次方程解决生活中的简单问题,培养学生的数学应用意识,提高学生解决实际问题的能力。

二. 学情分析七年级的学生已经掌握了代数基本概念和一元一次方程的解法,对用代数式表示实际问题已有一定的认识,具备了一定的解决问题的能力。

但学生在生活中运用数学知识解决问题的经验还不够丰富,因此在教学中,要注意引导学生将实际问题转化为数学问题,培养学生运用一元一次方程解决实际问题的能力。

三. 说教学目标1.知识与技能目标:使学生掌握用一元一次方程解决实际问题的基本方法,培养学生解决实际问题的能力。

2.过程与方法目标:通过自主学习、合作交流,培养学生提出问题、分析问题、解决问题的能力。

3.情感态度与价值观目标:培养学生热爱数学的情感,体验数学在生活中的应用价值,增强学生学习数学的兴趣。

四. 说教学重难点1.教学重点:使学生掌握用一元一次方程解决实际问题的基本方法。

2.教学难点:如何引导学生将实际问题转化为数学问题,如何找出等量关系,列出方程。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在实践中掌握知识,提高解决问题的能力。

2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,辅助教学。

六. 说教学过程1.导入新课:通过生活中的实际问题,引导学生思考如何用数学知识解决问题,从而引入本节课的内容。

2.自主学习:让学生自主探究一元一次方程解决实际问题的步骤,总结方法。

3.合作交流:学生分组讨论,分享解题方法,互相学习,互相启发。

4.启发引导:教师通过提问、设疑,引导学生找出实际问题中的等量关系,列出方程。

初中数学苏科版七年级上册第四章一元一次方程4.3用一元一次方程解决问题(7)

用一元一次方程解决问题(1)一、情境引入数学实验室:准备一本月历,两人一组做游戏:(1)在月历的同一行上任意圈出相邻的5个数,并把这5个数的和告诉同学,让同学求出这5个数;(2)在月历上任意找1个数以及它的上、下、左、右的4个数,把这5个数的和告诉同学,让同学求出这5个数.二、问题解决问题1 一张桌子有一张桌面和四条桌腿,做一张桌面需要木料 m3,做一条桌腿需要木料 m3.用 m3木材可做多少张这样的桌子(不计木材加工时的损耗)?通过问题1的研究,你能概括出用一元一次方程解决问题的一般思路吗?三、思维拓展某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按元收费;如果超过15立方米,超过部分按每立方米元收费,其余仍按每立方米元计算.另外,每立方米加收..污水处理费1元.若某户一月份共支付水费元,求该户一月份用水量.四、课堂练习1.某商店今年共销售21英寸(54 cm)、25英寸(64 cm)、29英寸(74 cm)3种彩电360台,它们的销售数量的比是1∶7∶4.这3种彩电各销售了多少台?2.某学生寄了2封信和一些明信片,一共用了元.已知每封信的邮费为元,每张明信片的邮费为元.他寄了多少张明信片?3.一本书封面的周长为68 cm ,长比宽多6 cm .这本书封面的长和宽分别是多少?4.某人从甲地到乙地,全程的12 乘车,全程的13乘船,最后又步行4 km 到达乙地.甲、乙两地的路程是多少?用一元一次方程解决问题(2)一、问题引入问题2 小丽在水果店花18元买了苹果和橘子共6kg ,已知苹果每千克元,橘子每千克元,小丽买了苹果和橘子各多少?思考1:(1)找出问题中的已知数量,并填入下表;(2)设小丽买了x kg苹果,根据表格分析问题中的等量关系,列出方程.二、议一议:在问题2中,如果设橘子买了x千克,可以列出怎样的方程?三、数学运用例1 学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析:等量关系是:.例2 某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:课堂巩固1.期中考试后,班主任为了奖励学习进步的12名同学,让班长去买了12件奖品,其中笔记本每本3元,圆珠笔每支4元,共用了43元.班长买了几本笔记本和几支圆珠笔?2.甲、乙两个仓库共有粮食60t,甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.两个仓库原来各有多少粮食?3.某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女学生人数就占全组人数的2,求这个课外活动小组的人数.34.两枝一样高的蜡烛,同时点燃后,第一支蜡烛每小时缩短8cm,第二支蜡烛每小时缩短6cm,2h后第二支蜡烛的高度是第一支蜡烛的倍,求这两支蜡烛原来的高度.用一元一次方程解决问题(3)例题讲解:问题3 某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?说明:请学生尝试分析问题中的等量关系.思考1:如何把问题中的等量关系的分析过程直观地展示出来?设该小组共有x人.(1)如果每人做5个“中国结”,那么共做了个,比计划个.课堂练习:1、将一堆糖果分给幼儿园某班的小朋友,如果每人分2颗,那么就多8颗,如果每人分3颗,那么就少12颗,这个班共有多少名小朋友?2、七年级(2)班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张,问:(1)这个班共有多少名学生?(2)展出的邮票共有多少张?3、某汽车队运送一批货物,每辆汽车装4t还剩下8t未装,每辆汽车装就恰好装完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档