机械工程控制
机械工程控制基础第八版课程标准 杨叔子课程标准

机械工程控制基础第八版课程标准杨叔子课程标准机械工程控制是机械工程领域中至关重要的一个学科,它涉及到机械系统的运动、力学特性以及控制方法等方面。
为了使学生更好地学习和掌握机械工程控制基础知识,我们编写了本《机械工程控制基础第八版课程标准杨叔子课程标准》文档,旨在帮助学生系统地学习机械工程控制的基本概念、原理和应用。
2. 课程目标本课程旨在培养学生对机械工程控制的基本理论和方法的理解与应用能力,具体目标如下:2.1 理解机械系统运动学和动力学的基本原理;2.2 掌握机械系统的模型建立与分析方法;2.3 熟悉机械系统的传感器与执行器的特性及应用;2.4 理解控制系统的基本组成与结构;2.5 学会运用控制理论与方法进行机械系统的控制设计与仿真。
3. 教学内容本课程的教学内容包括以下几个方面:3.1 机械系统的运动学与动力学3.1.1 坐标系与描述方法3.1.2 运动参数的定义与表示3.1.3 运动学分析方法3.1.4 动力学分析方法3.2 机械系统的模型建立与分析3.2.1 机械系统的受力分析3.2.2 机械系统的运动方程建立3.2.3 机械系统的状态空间表示3.3 机械系统的传感器与执行器3.3.1 传感器的分类与原理3.3.2 传感器的特性与应用3.3.3 执行器的分类与原理3.3.4 执行器的特性与应用3.4 控制系统的基本组成与结构3.4.1 反馈控制系统的基本概念3.4.2 控制器的种类与性能指标3.4.3 控制系统的闭环与开环结构3.5 控制理论与方法的应用3.5.1 PID控制器的设计与调节3.5.2 状态空间方法的应用3.5.3 多变量控制系统的设计与分析4. 教学方法为了更好地达到课程目标,我们将采用以下教学方法:4.1 理论讲授:通过教师讲解、演示和案例分析,系统地讲解机械工程控制的基本概念和原理。
4.2 实验演示:通过实验演示,让学生亲自操作和实践,提高对机械系统控制的理解和应用能力。
机械工程控制课程设计

机械工程控制课程设计一、课程目标知识目标:1. 让学生掌握机械工程控制的基本理论,包括控制系统的数学模型、传递函数、稳定性分析等;2. 使学生了解控制系统的常见类型,如位置控制、速度控制、温度控制等,并掌握其工作原理;3. 引导学生掌握控制系统设计的基本方法,包括模拟控制、数字控制及现代控制技术。
技能目标:1. 培养学生运用控制理论分析实际问题的能力,能对简单控制系统进行数学建模;2. 培养学生设计控制系统并进行仿真实验的能力,提高实际操作技能;3. 培养学生运用控制系统工具软件,如MATLAB/Simulink等,进行控制系统设计与分析。
情感态度价值观目标:1. 激发学生对机械工程控制领域的兴趣,培养其探索精神;2. 培养学生具有团队合作意识,能在小组合作中发挥个人作用,共同完成任务;3. 引导学生认识到机械工程控制技术在国家经济建设和国防事业中的重要作用,树立社会责任感和使命感。
本课程针对高年级本科生,具有一定的专业基础知识和实践能力。
课程性质为专业选修课,旨在提高学生理论联系实际的能力,注重实践操作和创新能力培养。
通过本课程的学习,使学生能够在实际工程问题中运用控制理论,为我国机械工程领域培养具有创新精神和实践能力的优秀人才。
二、教学内容1. 控制系统概述:介绍控制系统的基本概念、发展历程、分类及应用领域,使学生建立控制系统整体认识。
教材章节:第1章 控制系统导论2. 控制系统的数学模型:讲解控制系统的微分方程、差分方程、传递函数等数学描述方法。
教材章节:第2章 控制系统的数学模型3. 控制系统的稳定性分析:介绍稳定性概念,分析线性系统的稳定性判据,如劳斯-赫尔维茨准则等。
教材章节:第3章 控制系统的稳定性分析4. 控制系统设计:讲解PID控制、状态反馈控制、最优控制等设计方法,培养学生控制系统设计能力。
教材章节:第4章 控制系统设计5. 控制系统仿真:介绍MATLAB/Simulink软件在控制系统仿真中的应用,使学生掌握仿真实验方法。
机械工程控制基础

机械工程控制基础一、控制基础概述控制是指对一种现象或过程进行指定的调节或管理。
在机械工程中,控制是指通过对机械系统中的运动、力学等参数进行监测和调节,以满足特定的工作要求。
机械工程中的控制可以分为开环控制和闭环控制两种。
开环控制是指在控制过程中没有对系统输出进行反馈存储的控制方法,也就是说,输出信号与输入信号之间不存在反馈关系。
这种控制方法不适合对系统精度和稳定性要求较高的场合。
而闭环控制则是在系统输出信号与输入信号之间进行反馈控制,以提高系统的精度和稳定性,使系统能够更好地满足要求。
## 二、控制基础理论控制基础理论主要包括控制对象、控制流程、控制算法、控制器等方面。
其中控制对象是进行控制的主要对象,其性能决定了整个控制系统的性能。
控制流程是指对控制对象进行控制的具体过程。
控制算法是指根据控制流程,运用特定的算法对控制对象进行实时调节,以达到控制要求的方法。
另外,控制器是指控制系统的核心部件,其主要功能是对输入信号进行处理和调节,以使输出信号满足要求。
在机械工程中,常见的控制器有比例控制器、积分控制器和微分控制器等。
三、控制技术的应用控制技术在机械工程中的应用较为广泛,主要应用于机床、起重设备、自动化生产线、机器人等领域。
在机床中,常用的控制技术有数控技术和伺服控制技术。
在起重设备中,常用的控制技术有电控制技术和液压伺服控制技术。
在自动化生产线中,常用的控制技术有PLC控制技术和DCS控制技术。
而在机器人领域,控制技术则是重中之重,常用的技术有轨迹规划控制技术和变形控制技术等。
四、控制工程的发展趋势随着科学技术的不断发展,机械工程控制技术也取得了长足的进步。
现在,智能化、高精度、高速度和高可靠性已成为机械工程控制技术的主要发展方向。
同时,控制工程技术还应紧密地与信息技术、计算机技术、通信技术等相关领域结合,以推动控制工程技术的不断发展。
在未来,随着机器人技术的进一步发展,机器人控制技术也将更加成熟。
机械工程控制基础

机械工程控制基础机械工程控制基础是机械工程中非常重要的一部分,它涉及到机械工程中的各种控制系统,包括机械控制系统、电气控制系统、液压控制系统、气动控制系统等。
机械工程控制基础是机械工程师必须掌握的基本知识,它对于机械工程的设计、制造、维护和改进都有着重要的作用。
机械控制系统是机械工程中最基本的控制系统之一,它主要是通过机械元件来实现对机械运动的控制。
机械控制系统的主要组成部分包括传动机构、运动控制机构、传感器和执行机构等。
传动机构是机械控制系统中最基本的部分,它主要是通过传动装置来实现机械运动的传递和转换。
运动控制机构是机械控制系统中的核心部分,它主要是通过控制机构来实现机械运动的控制。
传感器是机械控制系统中的重要部分,它主要是通过感应机构来实现机械运动的检测和反馈。
执行机构是机械控制系统中的最终部分,它主要是通过执行机构来实现机械运动的执行。
电气控制系统是机械工程中另一个重要的控制系统,它主要是通过电气元件来实现对机械运动的控制。
电气控制系统的主要组成部分包括电源、控制器、执行机构和传感器等。
电源是电气控制系统中最基本的部分,它主要是通过电源来提供电能。
控制器是电气控制系统中的核心部分,它主要是通过控制器来实现电气信号的控制。
执行机构是电气控制系统中的最终部分,它主要是通过执行机构来实现电气信号的执行。
传感器是电气控制系统中的重要部分,它主要是通过感应机构来实现电气信号的检测和反馈。
液压控制系统是机械工程中另一个重要的控制系统,它主要是通过液压元件来实现对机械运动的控制。
液压控制系统的主要组成部分包括液压泵、液压阀、执行机构和传感器等。
液压泵是液压控制系统中最基本的部分,它主要是通过液压泵来提供液压能。
液压阀是液压控制系统中的核心部分,它主要是通过液压阀来实现液压信号的控制。
执行机构是液压控制系统中的最终部分,它主要是通过执行机构来实现液压信号的执行。
传感器是液压控制系统中的重要部分,它主要是通过感应机构来实现液压信号的检测和反馈。
机械工程控制基础试卷及答案

第1页(共9页)《机械工程控制基础》试卷(A 卷)一、填空题(每空1分, 共20分)1.对控制系统的基本要求是 系统的稳定性 、 响应的快速性 、 响应的准确性 。
2.已知f(t)=t+1,对其进行拉氏变换L[f(t)]= 1/s2+1/s 或者(1+s )/s2 。
3.二阶系统的极点分别为s1=−0.5,s2=−4, 系统增益为2, 则其传递函数G(S)= 2/(s+0.5)(s+_4)4.零频幅值A(0)表示当频率 接近于零时, 闭 环系统输出的幅值与输入幅值之比。
5、工程控制论实质上是研究工程技术中广义系统的动力学问题, 机械工程控制就是研究系统、输入、输出三者之间的动态关系。
6、系统的频率特性求取有三种方法: 根据系统响应求取、用试验方法求取和将传递函数中的s 换为 jw 来求取。
8、微分环节的控制作用主要有 使输出提前 、 增加系统的阻尼 、 强化噪声 。
9、二阶系统的传递函数为 , 其中 为系统的 无阻尼固有频率 , 当 时为 欠阻尼 系统。
在阻尼比ξ<0.707时, 幅频特性出现峰值, 称谐振峰值, 此时的频率称谐振频率ωr = 。
10、一般称能够用相同形式的数学模型来描述的物理系统成为相似系统。
11.对自动控制系统按照输出变化规律分为自动调节系统、随动系统、程序控制系统。
12.对积分环节而言, 其相频特性∠G(jw)=-900。
二、名词解释(每个4分, 共20分)1.闭环系统: 当一个系统以所需的方框图表示而存在反馈回路时, 称之为闭环系统。
2、系统稳定性:指系统在干扰作用下偏离平衡位置, 当干扰撤除后, 系统自动回到平衡位置的能力。
3.频率特性: 对于线性定常系统, 若输入为谐波信号, 那么稳态输出一定是同频率的谐波信号, 输出输入的幅值之比及输出输入相位业班级: 姓名: 学号:……………密………………………………封………………………………线…………………………第2页(共9页)之差统称为频率特性。
机械工程控制基础

机械工程控制基础机械工程控制基础是机械工程中非常重要的一部分,涉及到机械工程中各种机器的控制、调整和维护等问题。
机械工程控制基础也包括了机械设计、机械加工和机械维护等方面的知识。
下面将从基础概念、控制系统组成、控制模式和控制环节四个方面来介绍机械工程控制基础。
一、基础概念机械工程控制是通过对机器、设备和系统的控制和调节,使其满足特定的工作要求,保证设备稳定运行,并能对设备的使用进行优化,提高生产效率。
机械工程控制的关键技术是使用电子、仪表和计算机等技术手段,对机械设备和系统进行控制和优化。
二、控制系统组成机械工程控制系统通常由三个部分组成:检测部件、执行部件和控制部件。
1. 检测部件是用来检测控制对象运行状态的传感器和检测器等,如温度传感器、压力传感器、速度检测器等。
2. 执行部件是用来控制控制对象的执行器和驱动器等,如电动机、气缸、伺服电机等。
3. 控制部件则是用来处理检测到的数据,计算出控制指令并送到执行部件,实现对控制对象的控制。
三、控制模式机械工程控制模式通常有三种:开环控制、闭环控制和单自由度控制。
1. 开环控制是一种没有反馈控制的控制方法,控制信号只由输入端产生,不考虑输出端的反馈对控制信号的影响。
开环控制适用于对输出准确性要求不高、对象本身有稳定性和协调性的机械系统。
2. 闭环控制是一种有反馈控制的控制方法,通过检测目标物理量,将实际控制量与给定控制量进行比较,产生偏差,再依照比例、积分、微分控制等方法来调整控制量。
闭环控制适用于对输出准确性要求较高、对象自身性质不稳定、环境变化大或对干扰敏感的机械系统。
3. 单自由度控制是一种对单个目标变量进行控制的控制方式,通过测量系统的某个关键物理量进行控制。
单自由度控制适用于只需要对单个变量进行控制,如升降台、旋转台等。
四、控制环节机械工程控制环节主要有以下几个:1. 检测和传感器:检测和传感器是机械控制中非常重要的一环,它可以实时监测装置的工作情况以及运行时的状态,对于数据的采集、分析和处理等过程起到了很关键的作用。
机械工程控制基础实验报告

机械工程控制基础实验报告一、实验目的机械工程控制基础实验是机械工程专业的重要实践环节,通过实验可以加深对机械工程控制理论的理解,掌握控制系统的基本分析和设计方法。
本次实验的主要目的包括:1、熟悉典型控制系统的组成和工作原理。
2、掌握控制系统的数学模型建立方法。
3、学会使用实验设备对控制系统进行性能测试和分析。
4、培养动手能力和解决实际问题的能力。
二、实验设备本次实验所使用的设备主要包括:1、控制实验台:包括控制器、执行机构、传感器等组件,可搭建多种控制系统。
2、计算机:用于数据采集、处理和分析。
3、示波器:用于观测系统的输入输出信号。
三、实验原理1、控制系统的组成一个典型的控制系统通常由控制器、执行机构、被控对象和传感器组成。
控制器根据给定的输入信号和反馈信号,产生控制信号来驱动执行机构,从而改变被控对象的输出。
传感器则用于测量被控对象的输出,并将其反馈给控制器,形成闭环控制。
2、数学模型控制系统的数学模型是描述系统输入输出关系的数学表达式。
常见的数学模型有传递函数、状态空间方程等。
在实验中,我们通常通过对系统的物理原理进行分析,建立其数学模型。
3、系统性能指标控制系统的性能指标包括稳定性、准确性和快速性。
稳定性是指系统在受到扰动后能够恢复到平衡状态的能力;准确性是指系统输出与给定输入之间的偏差;快速性是指系统从初始状态到稳定状态的过渡过程时间。
四、实验内容1、一阶系统的时域响应搭建一阶系统的实验电路,输入阶跃信号,使用示波器观测系统的输出响应。
通过改变系统的参数,如时间常数,观察其对系统响应的影响。
记录不同参数下的响应曲线,并计算系统的上升时间、峰值时间和调整时间等性能指标。
2、二阶系统的时域响应搭建二阶系统的实验电路,输入阶跃信号,观测系统的输出响应。
改变系统的阻尼比和自然频率,研究其对系统响应的影响。
分析不同阻尼比下系统的超调量、振荡次数和调整时间等性能指标。
3、系统的频率特性测试使用扫频法测试系统的频率特性,绘制波特图和奈奎斯特图。
机械控制工程基础和自动控制原理的区别

机械控制工程基础和自动控制原理的区别在工程学领域,机械控制工程基础和自动控制原理是两个重要的概念。
虽然它们在某些方面具有相似性,但它们之间存在着本质的区别。
本文将详细探讨这两个概念的区别,帮助读者更好地理解它们。
一、机械控制工程基础1.定义:机械控制工程基础主要研究如何利用机械系统来实现预期的控制目标。
它关注于机械结构、传动装置、传感器、执行器等组件的设计、分析和优化。
2.研究内容:- 机械系统的建模与仿真:研究如何建立机械系统的数学模型,并通过仿真分析系统性能。
- 控制器设计:根据控制目标,设计合适的控制器,实现对机械系统的有效控制。
- 传感器与执行器:研究如何选择和应用传感器、执行器等组件,以满足控制系统的需求。
3.应用领域:机械控制工程基础广泛应用于工业机器人、汽车、航空航天、精密制造等领域。
二、自动控制原理1.定义:自动控制原理主要研究如何利用控制理论、方法和技术,实现系统的自动控制。
它关注于控制系统的稳定性、准确性和快速性。
2.研究内容:- 控制理论:研究控制系统的数学模型、稳定性、线性与非线性控制、最优控制等理论。
- 控制方法:研究PID控制、模糊控制、自适应控制、鲁棒控制等具体控制方法。
- 控制技术:研究如何将控制理论和方法应用于实际控制系统,实现预期的控制效果。
3.应用领域:自动控制原理广泛应用于电力系统、化工、冶金、生物医学、交通等领域。
三、区别1.研究对象:机械控制工程基础关注于机械系统本身,而自动控制原理关注于控制系统的整体性能。
2.研究内容:机械控制工程基础侧重于机械结构、传动装置、传感器、执行器等组件的设计和分析;自动控制原理侧重于控制理论、方法和技术的应用。
3.应用领域:虽然两者在某些领域有交叉,但机械控制工程基础主要应用于机械领域,而自动控制原理广泛应用于各种工业、农业、生物医学等领域。
4.目标:机械控制工程基础的目标是实现机械系统的精确控制,而自动控制原理的目标是实现控制系统的稳定性、准确性和快速性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械工程控制
工程控制论实质上是研究工程技术中的广义系统动力学问题。
具体分析来讲,它研究的是工程技术中的广义系统在一定的外界条件(即输入或激励,包括外加控制与外加干扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程,研究这一系统及输入、输出三者的关系。
由以上的分析可知,就系统及其输入、输出三者之间的动态关系而言,工程控制论所研究的大概包含以下五种:
1、系统分析问题。
2、最优控制问题。
3、最有设计问题。
4、滤波与预测问题。
5、系统识别或系统辨别问题。
然而,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。
自动控制技术的研究有利于将人类从复杂、危险、繁琐的劳动环境中解放出来并大大提高控制效率。
自动控制是工程科
学的一个分支。
它涉及利用反馈原理的对动态系统的自动影响,以使得输出值接近我们想要的值。
从方法的角度看,它以数学的系统理论为基础。
基础的结论是由诺伯特·维纳,鲁道夫·卡尔曼提出的。
自动控制系统的基本要求: 稳、快、准(稳:稳定性; 快:快速性; 准:准确性)
1.稳定性
由于惯性,各参数配合不当→振荡→失去工作能力。
【要求:输出量偏离给定输入量的初始值应随时间增长渐趋于0。
】
2.快速性
消除偏差过程的快慢程度,常用调整时间t来衡量。
t:指被控量达到稳态值的95%(或98%)所需的时间。
表现:响应速度→输入信号加入后,输出量跟随输入量变化的迅速程度,主要取决于系统的惯量及阻力作用的强弱等。
3.准确性
稳态误差(精度):调整结束后,期望实际差。
要求:输出量尽量接近或复现输入量,从一个稳态→另一个稳态。
对同一个系统,输入信号变化规律不同,稳态精度也不同。
经典力学控制模型如下例题;
控制系统的中心思想、三要素、研究对象。
(中心思想:通过信息的传递、加工处理和反馈来进行控制。
三要素:信息、反馈与控制。
研究对象:研究控制系统及其输入、输出三者之间的动态关系。
)
1、对控制系统反馈的情况分类
开环控制系统:当系统的输出量对系统没有控制作用,系统没有反馈回路时,该系统称开环控制系统。
特点:结构简单,不存在稳定性问题,抗干扰性能差,控制精度低。
b、闭环控制系统:当系统的输出量对系统有控制作用时
即系统存在反馈回路时,该系统称闭环控制系统。
2、按输出的变化规律分类;自动调节系统、随动系统、
程序控制系统。
现在考察两个十分熟悉的例子;
质量-阻尼-弹簧单自由度系统(一)
对上图一所示的系统而言,质块m受外力f(t)的作用,质块的位移为Y(t),则系统的动力学方式为
质量-阻尼-弹簧单自由系统(二)
对于图二系统而言,支座受位移X(t)的作用,质块位移为Y(t),则系统的动力学方程式为:
以上我们介绍了控制系统,那么接下来来说说它与电的运用实现的机电一体化从而实现自动控制。
如图三是一个电热水器,为了保持想要的温度,由温控开关接通或断开电加热器的电源。
在使用热水的同时并补充冷水。
电热水器图(三)
在电热水系统中,水箱为被控对象。
水的实际温度是被控量或者称为系统的输出量。
当输入量为用户希望的温度即给定值等于水箱内的散热的温度时,水温经测温原件检测,并将实际水温转化为电信号,并与温控开关预先设定的信号相对比得到的偏差为0,此时电加热不工作,水箱的温度保持给定值;当偏差不为0时,则温控开关工作,直到升到给定的温度。
系统控制方框图如图四所示。
系统控制方框图(四)
热水器只是机械控制工程在某些方面的一小部分应用,目前,高技术中的计算机集成制造、网络化制造、虚拟制造和智能制造的研究,这些正是现代制造工艺概念的集中反映,也是控制理论的重大进展。
而在机械制造领域中应用控制理论最活跃的有以下几个方面。
(1)、在机械制造自动化方面。
现代生产向机械制造过程的自
动化提出越来越多的、越来越高的要求:一是所采用的生产设备与控制系统越来越复杂;二是所要求的技术经济指标越来越高。
(2)、在对加工过程的研究方面。
现代生产效率越来越高,加
工的精度也是越来越高。
(3)、在产品与设备的设计方面。
同上述两点密切相关,正以
突破而且还在不断突破以往的设计经验、试凑设计、类比设计的束缚。
(4)、在动态过程或参数的测试方面。
总之,控制理论、计算机技术、尤其是信息技术,同机械制造技术的结合,始终将人作为制造的主体。