数学建模初等模型
数学建模之初等模型

情形3
p1 p2 , 说明当对A 不公平时,给B 单 n1 n2 1 位增加1席,对A 不公平。
计算对A 的相对不公平值
r A (n 1 ,n 2 1 ) p 1n p 1 2 ( p n 2 2 (n 1 2 ) 1 ) p 1 (p n 2 2 n 11 ) 1
若 r B (n 1 1 ,n 2 ) r A (n 1 ,n 2 1 ),
取 r 4 参 m /s ,I 3 数 6 2 c/0 s , m p 1 0 .3 1 9 60
C 6 .9 5 1 4 0 (0 .8 sin 6c o 1 s.5 v)
v
可以看出:淋雨量与降雨的方向和行走的速度有关。
问题转化为给定 ,如何选择 v使得 C最小。
情形1 90
C6.95 1 04(0.81.5) v
结果表明:淋雨量是速度的减函数,当速度尽可能大时 淋雨量达到最小。 假设你以6米/秒的速度在雨中猛跑,则计算得
C 1.3 1 1 4 0 m 31.1升 3
情形2 60
C 6 .9 1 5 4 [ 0 1 .5 (0 .43 3 )/v ]
结果表明:淋雨量是速度的减函数,当速度尽可能大时 淋雨量达到最小。 假设你以6米/秒的速度在雨中猛跑,则计算得
你在雨中行度 走 v的 6米 /每 最秒 大, 速则计算 你在雨中 16行 秒 7 走 , 2分 了 即 47 秒。
从而可以计算被淋的雨水的总量为2.041(升)。 经仔细分析,可知你在雨中只跑了2分47 秒,但被淋了 2 升的雨水,大约有4 酒瓶的水量。这是不可思议的。 表明:用此模型描述雨中行走的淋雨量不符合实际。
C t (I/36 ) 0 .0 S 1 0 (米 3 ) 1(D 0 /v ) I/36 S ( 00升
数学建模第二章 初等模型

第二章 初等模型如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模的目的时,我们基本上可以用初等数学的方法来构造和求解模型。
通过下面的几个实例我们能够看到,用很简单的数学方法就可以解决一些有趣的实际问题。
需要强调的是,衡量一个模型的优劣完全在于它的应用效果,而不是它看它采用了多么高深的数学方法。
进一步说,对于某个实际问题我们如果能够用初等方法和所谓的高等方法建立了两个模型,而它们的应用效果相差无几的话,那么受人们欢迎并采用的,一定是前者而非后者。
§2.1公平的席位分配设有A 、B 两个单位,各有人数1p 、2p 个,现在要求按人数选出q 个代表召开一次代表会议。
那么怎样分配这q 个席位呢?一般的方法是令:q p p p q 211*1+= q p p p q 212*2+= (2.1)若*1q ,*2q 恰好是两个整数,就以*1q ,*2q 分别作为A ,B 两个单位的席位数,即可以获得一个完全合理的分配方案。
当*1q ,*2q 不是两个整数时,那么怎样分配才合理呢?下面我们就来讨论这个问题。
首先给出一种自然的想法,也就是通常所执行的方法。
即由(2.1)式计算出的*1q ,*2q ,用][*i i q q =表示*i q 的整数部分。
当*1q -1q >*2q -2q 时,则用1q +1与2q 分别作为A ,B 两个单位的席位数;当*2q -2q >*1q -1q 时,则用1q 与2q +1分别作为A ,B 两个单位的席位数;而当*2q -2q =*1q -1q 时,就只能由A ,B 两个单位协商来确定那多余的一个席位了。
这个方法的优点是简单、方便,并被很多人所接受,同时也容易推广到m (m >2)个单位的席位分配问题。
但是这个分配方案是存在弊病的,它有明显的不合理性。
例1 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲乙丙三系分别应占有10、6、4个席位。
几种初等数学模型方法

简单的几何模型
数学模型中有一种几何模型,这类模型 的建立往往通过初等方法来实现。
数学建模中几种简单的数学方法 实验观测、抽象分析、鸽笼原理、 估算方法、奇偶校验法、转化处理
黄冈职业技术学院
1 观测实验和抽象分析
欧拉多面体问题: 一般凸多面体的面数 F、顶点数V和边数E之间有何关系?
黄冈职业技术学院
五面体图形
F=5,V=5,E=8
F= 5,V= 6,E=9
黄冈职业技术学院
六面体图形
F=6,V=8,E=12
F=6,V=6,E=10
黄冈职业技术学院
七面体图形
F=7,V=7,E=12
F=7,V=10,E=15
黄冈职业技术学院
观察法、抽象分析的说明
(1)用观察、归纳法发现数学定理(建立模 型)是一种重要而常用方法。数学需要观察, 还需要实验(欧拉)。 (2)观察法得到的结果需要严格证明,否 则猜想会铸成错误。例如17世纪费马(16012n 1655)对公式 f 2 1
分别简化为
( x1 x3 ) , ( x2 x4 ) , ( x3 x1 ) , ( x4 x2 ) .
第三次操作后得到的 4 枚棋子可表示为
( x1 x3 ) ( x2 x4 ) , ( x2 x4 ) ( x3 x1 ) , ( x3 x1 ) ( x4 x2 ) , ( x4 x2 ) ( x1 x3 )
黄冈职业技术学院
奇偶检验法的思考题
思考题1 设一所监狱有64间囚室,其排列 类似8×8棋盘,看守长告诉关押在一个 角落里的囚犯,只要他能够不重复地通 过每间囚室到达对角的囚室(所有相邻 囚室间都有门相通),他将被释放 。问 囚犯能获得自由吗?如果囚室为8×9的 排列共72间,将会出现什么情况?
数学建模之初等模型

且
tn (n 1)T
S
0 n
(n
1)( L
D)
另外,汽车不会永远加速前进。我们设汽车在加速到某个给定速度 v*
后匀速前进,则加速的时间是
t* v * / a tn
综合上面的分析得到
Sn (0)
Sn
(t
)
Sn
(0)
Sn
(0)
a 2
(t
a 2
(tn
L1 v
L2 v
t2
(ni
1)d v
~ti
Li v
Li1 v
ti1
(ni 1)d v
~ti
Li v
Li1 v
ti1
向左疏散的总时间 Tl (x) 就是最后一个人离开的时间。 如果共l个房间,则
Tl (x) ~tl (xd l1 Li ) / v i 1
其中x是第i个 房间向左疏散的人数。 类似可以求出向右疏散的总时间Tr (nl 1 x) 。 求x使得
Tl (x) Tr (nl 1 x)
即得到疏散方案。
思考题: (1)对多层的楼房的疏散问题应如何分析? (2)疏散时人与人之间的间距多大较好?
先考虑向左疏散的人用了多少时间。
设疏散队列中人与人间隔是d,行进速度v,房宽为 L1, L2,, Lm 。第i个 房间第一个人到门口的时间tis为 ,则第k个房间的人向左疏散的时间为
1
v
k i1
Li
nkd
tk
s
k l
问题:多个教室的学生可能出现重叠!
数学建模初等模型

数学建模初等模型
数学建模是将现实世界的问题抽象化为数学模型,并利用数学方法和技巧来分析和解决这些问题的过程。
在数学建模中,初等模型是指使用基本的数学概念和方法来描述和解决问题的模型。
常见的初等模型包括线性模型、指数模型、对数模型、多项式模型等。
线性模型是最简单的初等模型之一,它假设变量之间的关系是线性的,可以用直线来表示。
指数模型描述的是变量之间的指数关系,对数模型则描述的是变量之间的对数关系。
多项式模型可以用多项式函数来描述变量之间的关系。
使用初等模型进行数学建模时,我们需要确定问题中的关键变量和它们之间的关系,然后建立数学方程或函数来表示这些关系。
通过对这些方程或函数进行求解和分析,我们可以得到问题的解答或结论。
初等模型的优点是简单易懂,容易理解和应用。
它适用于一些简单的实际问题,例如人口增长、物体运动、投资收益等。
但初等模型也有一些限制,它对问题的描述和解决方法有一定的限制性,不能很好地处理复杂的问题。
总之,初等模型是数学建模中的一种简单模型,通过使用基本的数学
概念和方法来描述和解决问题。
它易于理解和应用,适用于一些简单的实际问题。
但在处理复杂问题时,可能需要借助更高级的数学模型和技巧来进行建模和分析。
浙江大学数学建模——初等模型(杨起帆)

若设k=0.05并仍设 t=4秒,则可求 得h≈73.6米。
进一步深入考虑
多测几次,取平均
听到回将声e-再kt用按泰跑勒表公,式计展算开得并到令的k时→间值0+中包,含即了可 反应时间
不妨设得平出均前反面应不时考间虑为空0气.1阻秒力,时假的如结仍果设。t=4秒,扣除反
应时间后应 为3.9秒,代入 式①,求得h≈69.9米。
汇合点即可p必求位出于P点此的圆坐上标。和
θ2 的值。
y(ta1)nxb(护卫舰的路线本方模程型)虽简单,但分析
y(ta2n )xb(航母的路线方极程清)晰且易于实际应用
§2.2 双层玻璃的功效
在寒冷的北方, 许多住房的 玻璃窗都是双层 玻璃的,现在我们来建立一个简单 的数学模 型,研究一不下妨双可层以玻提璃出到以底下有假多设:大的功效。 比较两座其1他、条设件室完内热全量相的同流的失房是屋热,传导它们 的 差异仅仅在引 流窗起。户的不,同不。存在户内外的空气对
A(0,b)
θ1
x2 (y b )2 a 2[x2 (y-b )2]
O B(0,-b)
θ2 护卫舰
可化为:
X
x2ya a2 2 1 1b2
4a2b2 (a21)2
令: ha21b,r 2ab a21 a21
则上式可简记成 :
x2(y-h)2r2
解得: Ta1 2 k1(lk1kl2)d/(T k12d)T2
k1T1(12 k1 ldk k1 2 ldk )T 21 dT2 k1d2T 1k 1lT2 k2d
f(h)
室 外
T2
室1 0.9内
类似有
k1
T1 T2 2d
数学建模第二章初等模型

市场稳定问题
在市场经济下,当商品“供不应求”时,价格逐渐长升高,经营者会 觉得有利可图而加大生产量。然而,一旦生产量达到使市场“供过于求”, 价格立即会下跌,生产者会立即减产以避免损失,这样又极有可能造成又 一轮新的供不应求。我们关心的问题是:如此循环,市场上的商品的数量 与价格是否会趋于稳定? 所谓“需求”,指在一定条件下,消费者愿意购买并且有支付能力购 买的商品量。设p表示商品价格,q表示商品量,假设商品量q主要取决于 商品价格p,则称函数 q=f(p) 为需求函数。 需求函数q=f(p)一般是单调减少函数。因q=f(p)为单调减少函数,所 以存在反函数p=f-1(q),我们也称它为需求函数,见下图。
a, b 模型求解:我们来求步长
(1) 由图
为何值,使式 (4) 最小。
所表示,重心离开 B 点上升到最高点所需时间为
t
b 2v
(5)
1 2 gb2 h gt 2 2 8v
由
(1),(2),(3)
及
(5)
式,
(4)
式化成
2 (a b)bmg 1 W m, v2 2 2 8v
又完成一个大步所需时间为
跑步时如何节省能量
• 问题的提出:我们每个人都有跑步的经历, 有人会因此而疲惫不堪,但是有谁会想:怎 样跑步能使我们消耗的能量最少? • 模型假设:为解决上述问题,我们做下述假 设:
(1 )跑步所花费的时间分成两部分:第一部分为两 条腿同时离地的时间;在第二部分时间内一条腿 或两条腿同时落地。这样,人体重心的运动轨迹 如图(1)。
a b v
,因此单位时间内消耗的能量为
2 W bmg m, v3 P a b 8v 2(a b) v
(6)
数学建模初等模型

2
K k1k 2 k3
2
2 3
) 3 KB 3
2 3
显然,K越大则成绩越好,故可用 L LB 比赛成绩的优劣。
来比较选手
模型4(O’ Carroll公式)
经验公式的主要依据是比例关系,其假设条件非常粗糙,可 信度不大,因而大多数人认为它不能令人信服。1967年,O’ Carroll基于动物学和统计分析得出了一个现在被广泛使用的 公式。O’ Carroll模型的假设条件是: (1) L=k1Aa, a<1 k越大成绩越好。因而建议 1 (2) A=k2lb, b<2 根据的大小 L L(B 35) 3 (3) B-Bo =k3l3 来比 较选手成绩的优劣。 假设(1)、(2)是解剖学中的统计规律,在假设 (3)中O’ Carroll将体重划分成两部分:B=B0+B1,B0为非肌肉重量。
假定空气阻力不计,可以直接利用自由落体运动的公式
h
1 2
gt
2
来计算。例如, 设t=4秒,g=9.81米/秒2,则可求得h≈78.5 米。
我学过微积分,我可以做 得更好,呵呵。
除去地球吸引力外,对石块下落影响最大的当 属空气阻 力。根据流体力学知识,此时可设空气阻力正比于石块下 落的速度,阻力系 数K为常数,因而,由牛顿第二定律可 得: dv F m mg Kv dt g kt 令k=K/m,解得 v ce
根据三条假设可
得L=k(B-B0)β,k和β为两个常数,
1 3 故有: k (B 35) L
β
1 3
ab 3
2 3
此外,根据统计结果,他 得出B0≈35公斤, β
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1032 632 342 96.4, Q2 94.5, Q3 96.3 第20席 Q1 1011 67 3 4 1032 80.4, Q2 , Q3 同上 第21席 Q1 1112
Q值方法 分配结果
Q1最大,第20席给甲系 Q3最大,第 21席给丙系
甲系11席,乙系6席,丙系4席
进一步深入考虑
①
若设k=0.05并仍设 t=4秒,则可求 得h≈73.6米。 多测几次,取平均 值 听到回声再按跑表,计算得到的时间中包含了 将e-kt用泰勒公式展开并 令k→ 0+ ,即可 反应时间 得出前面不考虑空气阻力时的结果。 不妨设平均反应时间 为0.1秒 ,假如仍 设t=4秒,扣除反 应时间后应 为3.9秒,代入 式①,求得h≈69.9米。 再一步深入考虑
计算 Qi
ni (ni 1)
, i 1,2, , m
11
该席给Q值最大的一方
Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
用Q值方法分配 第20席和第21席
17
常识:刹车距离与车速有关
问 题 分 析
10英里/小时(16公里/小时)车速下2秒钟行驶 29英尺( 9米) >>车身的平均长度15英尺(=4.6米) “2秒准则”与“10英里/小时加一车身”规则 不同 反 司机 制动系统 反应时间 应 状况 灵活性 距 车速 离 常数
刹 车 距 离
制 制动器作用力、车重、车速、道路、气候… … 动 最大制动力与车质量成正比, 常数 距 离 使汽车作匀减速运动。
P(x,y)
记v2/ v1=a通常a>1 则
2
| BP |2 a 2 | AP |2 即:
2 2 2 2
x ( y b) a [ x ( y - b) ]
可化为:
X
2 2 a 1 4 a b 2 x y 2 b 2 2 a 1 ( a 1 ) 2 2
a2 1 2ab 令: h 2 b, r 2 a 1 a 1
则上式可简记成 :
x ( y - h) r
2 2
y
y (tan 2 ) x b
汇合点 p必位于此圆上。 即可求出 P点的坐标和 θ2 的值。 (tan 1 ) x b(护卫舰的路线方程) 本模型虽简单,但分析 极清晰且易于实际应用 (航母的路线方程 ) 5
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
p1/n1– p2/n2=5 但后者对A的不公平 程度已大大降低!
8
“公平”分配方 法
将绝对度量改为相对度量
若 p1/n1> p2/n2 ,定义
p1 / n1 p2 / n2 rA (n1 , n2 ) ~ 对A的相对不公平度 p2 / n2
10
当 rB(n1+1, n2) < rA(n1, n2+1), 该席给A
rA, rB的定义
2 2 p2 p1 该席给A n2 (n2 1) n1(n1 1)
定义 Qi
2 pi
否则, 该席给B
ni (ni 1)
, i 1,2, 该席给Q值较大的一方
2 pi
推广到m方 分配席位
2.2 公平的席位分配
2.3 双层玻璃窗的功效 2.4 汽车刹车距离 2.5 崖高的估算
3
§2.1 舰 艇的会合
某航空母舰派其护卫舰去搜寻其跳伞的飞 行 员,护卫舰找到飞行员后,航母通知它尽快 返回与其汇合并通报了航母当前的航速与方 向,问护卫舰应怎样航行,才能与航母汇合。
4
Y 航母 A(0,b) θ1 θ2 O B(0,-b) 护卫舰
6
公平的席位分配
问 题
三个系学生共200名(甲系100,乙系60,丙系40),代表 会议共20席,按比例分配,三个系分别为10,6,4席。 现因学生转系,三系人数为103, 63, 34, 问20席如何分配。 若增加为21席,又如何分配。
系别 学生 比例
20席的分配 结果 10 6 4 10.3 6.3 3.4
d
l
d
室 外 T2
Q1
墙 室 内 T1 室 外 T2
2d
热传导定律
T Qk d
Q2
墙
13
建模 记双层玻璃窗传导的热量Q1
Ta~内层玻璃的外侧温度
Tb~外层玻璃的内侧温度
k1~玻璃的热传导系数
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙
k2~空气的热传导系数
T1 Ta Ta Tb Tb T2 Q1 k1 k2 k1 d l d
21席的分配
比 例 加 惯 例
人数 (%) 比例 甲 乙 丙 103 51.5 63 34 31.5 17.0
总和 200
100.0
20.0
20
对 比例 结果 丙 10.815 11 系 6.615 7 公 3.570 3 平 吗 21.000 21
7
“公平”分配方 法 人数 席位
A方 B方 p1 p2 n1 n2
2
d t1v kv
19
模 型 d t1v kv
参数估计
2
• 反应时间 t1的经验估计值为0.75秒
• 利用交通部门提供的一组实际数据拟合 k
实际刹车距离 (英尺) 42(44) 73.5(78) 计算刹车距离 (英尺) 39.0 76.6 刹车时间 (秒) 1.5 1.8
车速 (英里/小时) (英尺/秒) 20 30 29.3 44.0
2)若 p1/(n1+1)< p2/n2 , 应计算rB(n1+1, n2) 3)若 p1/n1> p2/(n2+1), 应计算rA(n1, n2+1) 问: p1/n1<p2/(n2+1) 是否会出现? 否!
若rB(n1+1, n2) < rA(n1, n2+1), 则这席应给 A 若rB(n1+1, n2) >rA(n1, n2+1), 则这席应给 B
F m
令k=K/m,解得
v ce
dt
mg Kv
kt
g k
代入初始条件 v(0)=0,得c=-g/k,故有
g g kt v e k k g g kt 再积分一次,得: h t 2 e c k k
24
代入初始条 件h(0)=0,得到计算山崖高度的公式:
g g kt g g 1 kt g h t 2 e 2 (t e ) 2 k k k k k k
类似地定义 rB(n1,n2)
公平分配方案应 使 rA , rB 尽量小
将一次性的席位分配转化为动态的席位分配, 即 设A, B已分别有n1, n2 席,若增加1席,问应分给A, 还是B 不妨设分配开始时 p1/n1> p2/n2 ,即对A不公平
9
应讨论以下几种情况
初始 p1/n1> p2/n2
1)若 p1/(n1+1)> p2/n2 , d 等于反应距离 d1 与制动距离 d2 之和 2. 反应距离 d1与车速 v成正比 t1为反应时间 3. 刹车时使用最大制动力F, F作功等于汽车动能的改变; F d2= m v2/2 Fm
2
d d1 d 2
d1 t1v
且F与车的质量m成正比
d 2 kv
公平吗?
12
2.3
双层玻璃窗的功效
问 双层玻璃窗与同样多材料的单层 题 玻璃窗相比,减少多少热量损失 假 设 T1,T2不变,热传导过程处于稳态 建 模 Q ~单位时间单位面积传导的热量
T~温差, d~材料厚度, k~热传导系数 材料均匀,热传导系数为常数 热量传播只有传导,没有对流
室 内 T1
2.4
汽车刹车距离
美国的某些司机培训课程中的驾驶规则:
背 景 与 问 题
• 正常驾驶条件下, 车速每增10英里/小时, 后面与前车的距离应增一个车身的长度。
• 实现这个规则的简便办法是 “2秒准则” :
• 后车司机从前车经过某一标志开始默数 2秒钟后到达同一标志,而不管车速如何 判断 “2秒准则” 与 “车身”规则是否一 样; 建立数学模型,寻求更好的驾驶规则。
模型
d t1v kv2 0.75v 0.06v 2
车速 (英里/小时) 20 刹车时间 (秒) 1.5
30
40 50 60
1.8
2.1 2.5 3.0
70
80
3.6
4.3
车速(英里/小时)
“2秒准则”应修正为 “t 秒准 则”
0~10 10~40
40~60
60~80
t(秒)
1
2
3
4
Q1 Q2
l d
15
k1=410-3 ~8 10-3, k2=2.510-4, k1/k2=16 ~32 对Q1比Q2的减少量 Q1 1 , h 作最保守的估计,
取k1/k2 =16
Q2
8h 1
模型应用
Q1 1 l , h Q2 8h 1 d
Q1/Q2 0.06 0.03 0.02 0
21
§2.5 崖高的估算
假如你站在崖顶且身上带着一只具有跑表功 能的计算器,你也许会出于好奇心想用扔下 一块石头听回声的方法来估计山崖的高度, 假定你能准确地测定时间,你又怎样来推算 山崖的高度呢,请你分析一下这一问题。