互通式立交设计实例

互通式立交设计实例
互通式立交设计实例

2.7.17.2 延安路-南北高架立交

1.立交概况

1)立交等级

延安路-南北高架立交位于成都路、延安路交叉口,是市中心的重要交通节点。延安路是横穿上海市中心城区高架系统东西向的交通主干道,东接延安路隧道复线与浦东陆家嘴地区相连,西至虹桥国际机场和沪青平高速公路。南北高架是一条纵贯市中心区南北向的城市主干道,往南穿越黄浦江与浦东济阳快速路连接,往北至南北高架延伸线,与彭浦工业区和宝钢地区连接。延安路-南北高架立交不仅是连接这两条干道的交通枢纽,而且是上海市高架系统“申”字型骨架的中心点。因此,该立交是市区高架系统中最重要的交通枢纽工程之一,它的建成将为高架系统安全、畅通、快速运行起到极其重要的作用。根据立交所处的地理位置、相交道路的等级和在路网中的重要性,立交等级确定为互通式立交1级。

2)设计标准

立交主线设计车速为60km/h,匝道为30km/h;主线净空为5.2m,主线最小半径为1000m;匝道净空为4.5m,匝道最小半径为55m;主线最大纵坡为4.16%,匝道最大纵坡为5.5%。

3)选型依据

(1)用地条件

南北高架与延安路高架轴线间呈斜交72度,规划红线均控制在65m范围内,交叉口规划半径仅为80m。立交四周建筑物稠密,有8层高的浦东大楼,多幢5层楼新工房,其余大多为2至3层的老式砖房,在交叉口西南象限紧贴红线有2幢24层新建高层建筑,立交占地很小,设计条件极为苛刻,立交方案的取舍受地形约束较大。

(2)交通量预测

根据上海市交研所提供的交通流量预测资料,该立交远期2020年立交高峰小时流量为12683pcu/h,南北高架与延安路高架的交通比重2020年为54:45,南北高架流量略大于延安路高架流量。南北高架的直行流量占进口总流量的58%,延安路高架的直行流量占进口总流量的53%,因此首先应保证该节点直行车流的流量。

(3)设计原则

该节点为高架系统的中心,应为各个方向的交通提供互通、便利、安全的条件;在不破坏立交总体造型、不增加桥下净空的前提下设置人行设施,以确保行人安全通行。由于该立交地处闹市中心,它不仅是一项交通设施,也应成为市中心区的建筑景点和公共绿地;同时考虑到该地区位于市中心黄金地段,建筑密度大,土地价值高,立交方案应尽量减少拆迁量和用地。

4)立交总体布置

根据上海市总体规划,结合交通发展需求及特殊设计环境,立交形式曾作过多方案比选,最终选择了全定向型互通式立交方案。总体布置为:第一层为地面道路,第二层为东西向延安路高架主线,与延安路隧道连接纵向起伏高差较小,第三层为南北高架转向延安路高架的左、右转匝道,第四层为延安路高架转向南北高架的左、右转匝道,顶层为南北高架。下图为建成的延安路-南北高架定向型互通式立交。

2.特点分析

该立交的特点是:

1)保证了主车流快速、便捷通过该节点,高架之间通过8条互不干扰的定向匝

道连接,线形流畅,路线短捷,无交织,通行能力大,能满足远期交通发展

的需求。

2)该立交占地少,拆迁量较小,为了节约用地,使左转匝道不作迂回转弯,而是设置在道路中心交点的左侧,虽然增加了立交的高度,但用地仅为12.7ha。

3)考虑到中央部位层次多,墩柱集中,为使地面行车不受墩柱的阻碍和影响司机的视距,在中央设置了一根独柱墩,承托起2条直行和4条左转的车道,以减少墩柱,使整个立交结构紧凑,确保地面行车的顺畅。此方案的造型有

“一柱擎天”的感觉,气势宏伟,景观效果很好。

3.运用后评价

该立交基本满足设计通行能力要求,但由于该节点是两条高架的交汇点,转向流量非常强大,随着交通流量的增加,转向流量往往影响直行流量的通行。建议以后在考虑类似立交的设计中,注意分、合流点车道数平衡和立交区间直行车道与主线车道保持基本车道数连续的问题,必要时在分、合流处主线增加辅助车道。

2.7.17.3 外环线-蘊川路立交

1. 立交概况

1)立交等级

蕴川路立交位于外环线北段的泰和路和上海市的南北向轴线南北高架北延伸蕴川路的交叉口上,是一个城市快速路和主干路相交的枢纽级立交。同时,也是一个地铁、公交、非机动车等不同出行方式相汇集的公交枢纽。立交设计关注交通功能的完善,体现“以人为本,公交优先”的设计理念。

2)设计标准

外环线为快速路,规划红线宽100m,设计车速80km/h,东西向;蕴川路按城市主干道设计,规划红线50m,设计车速60km/h,南北走向;匝道和辅道的设计车速为40km/h。桥梁设计荷载为汽车-超20级;挂车-120、特-300验算。

最大纵坡:外环线1.3%,蕴川路3.6%,匝道5%

匝道平曲线半径:Rmin=55m,Rmax=350m,一般R=150~350m

3)选型依据

(1)现状条件

本交叉口位于浦西宝山区顾村和杨行交界处,地势平坦地面标高在2~5m。规划地铁一号线北延伸线沿蕴川路中心线以高架形式穿越立交,并在立交中心以南300m设置地铁车站。东西向外环线现有道路是泰和路为机、非混行单幅路,路幅宽12~20m,机动车道宽7~14m,南北向蕴川路现状亦为机、非混行单幅路,路幅宽25~30m,机动车道宽14m。

立交周边为城市外围的城市化地区,现状人口较为密集,周边企业、仓库和居民区较多。附近已经建成四个居住小区,在交叉口西南侧约200m有共富新村,建筑面积约42万m2;在交叉口西北侧约550m有天馨花园,建筑面积约60万m2;在交叉口西侧2.75km和1.60km,分别有泰和新城,建筑面积约50万m2和天极花园,建筑面积约8万m2。

立交范围内的道路有西侧的联泰路(现状宽约15m),北侧的规划水产路(现状无路),南侧的共富路(宽约15m),立交内的河流有外环线上的杨盛河、蕴川路上的黄宅河和南、北黄泥塘。杨盛河为规划7级航道,余无通航要求。

另外,经过立交的公交线路有9条,其中蕴川路(南北向)行驶的5条,泰和路(东西向)1条,西南向行驶的2条,东南向行驶的1条。

(2)交通量预测

根据预测交通量,蕴川路交叉口2020年其外环线最大单向直行高峰小时交通量为3353pcu/h,蕴川路最大单向直行高峰小时交通量为3092pcu/h。除直行交通外,转向交通的主流向为北向东左转,高峰小时交通量为1234pcu/h;和南向西左转,高峰小时交通量为602pcu/h;而东向南左转和西向北左转高峰小时交通量分别为429pcu/h和402pcu/h,交通量均较小。

(3)设计原则

蕴川路立交是快速路和主干路相交的立交,立交型式应符合相应标准。

地铁一号线北延线沿蕴川路中心穿越本立交并于蕴川路交叉口以南300m设置高架地铁车站。立交方案在保证主要交通顺畅时应充分考虑地铁与公交的换乘和大量客流的疏散,便捷,将高架地铁车站移至外环线与蘊川路交点处,构成地铁与公交换乘枢纽。

根据宝山区规划富锦路以南为城市化地区,蕴川路交叉口附近已发展为城市化地区,人口密集、客流量较大,立交设计应考虑非机动车和行人的便捷通行。

4)立交总体布置

根据交叉口的交通量特点,在多方案比选的基础上,采用了部分定向型全互通式立交方案,立交占地33.14公顷。该立交共分三层,第一层为下沉式非机动车和公交车通道,并利用立交空地布置公交换乘广场和非机动车停车场;第二层为外环线,上跨公交和非机动车通道;第三层为蕴川路双幅高架和位于中间的地铁高架,二者均从第三层上跨外环线。北向东和南向西左转(主要交通)迂回定向匝道均为从第三层上跨外环线后下穿蕴川路和地铁高架。东向南和西向北左转(次要流向)匝道采用苜蓿叶状环形匝道连接外环线和蕴川路。地铁车站设置在立交的中心,即车站沿蕴川路方向跨越外环线,车站仍采用高架三层侧式站台,车站长190m。

外环线路段单向机动车为四车道,左、右转交通分流后,直行最大单向交通量为3353pcu/h,故布置为机动车单向三车道。蕴川路路段单向机动车远期为四车道,

近期为三车道,左、右转交通分流后,直行最大单向交通量为3092pcu/h,交通量较大。为使直行车流行驶顺适,以及便于和蕴川路远期方案相接,蕴川路左、右转交通分流后,机动车单向仍布置三车道。交通主流向北向东左转、东向北右转、南向西左转和西向南右转匝道均采用双车道匝道;东向南左转、南向东右转、西向北左转和北向西右转均采用单车道匝道。

立交简图详见下图:

通过通行能力分析,该方案能较好地满足交通运输发展的要求,除北进口路段在2016年饱和外,其它路段的饱和年限均在2020年之后。

2.特点分析

该方案整体布局紧凑、平面线形流畅、交通功能齐全,主次流分明。另外,地铁高架和蕴川路跨线桥位于同一层面,节省了空间资源,简化了立交设计和布置;采用半下沉式非机动车、公交车通道、公交换乘广场和非机动车停车场设计,降低了立交的整体高度和占地面积,降低了造价。

(1)地铁站位

方案设计时,将规划高架地铁车站从立交南侧约300m移到立交中心,车站的二层站厅设置了天桥,连接站厅和地面。这样,均衡了地铁车站在菱角南北两侧的服务范围,方便了立交四周乘在地铁、公交和出租车、非机动车不同客运形式之间的换乘;形成了不同客运形式相汇集的公交枢纽模式。

(2)公交布置

利用立交的东南和西北角的环行匝道内大片空地,布置了公交终点站和过路站,有效地缩短了通常立交附近乘客换乘的饶行距离,方便了乘客在公交和公交、公交和地铁、公交和非机动车之间的换乘。

(3)停车场

利用立交内东北和西南角以及南侧和北侧的空地,布置非机动车停车场,方便立交四周的居民采用“PARK&RIDE”方式骑车到立交换乘地铁或公交车,避免了非机动车长距离骑行入城,增强了地铁、公交的吸引力和服务半径。

3.运用后评价

蕴川路立交设计中,较为注重了“以人为本,公交优先”的设计理念,对如何协调交通和公交的关系和将道路立交、轨道交通、公交枢纽融合为一个综合交通枢纽等方面进行了较大胆的尝试,其效果有待于在地铁、公交等各项设施完善后并经实际运营来进行检验。

2.7.17.4 真北路-武宁路立交

1.立交概况

1)立交等级

真北路立交位于真北路和曹安路交叉口,同时又是沪宁高速公路上海的出入口。真北路是本市西北地区仅有的二条干道之一,又是市区通向外省市公路的主要联系通道,它是位于内环线和外环线之间城市辅助环的一部分。曹安路是嘉定、安亭地区以及江苏省出入上海市区312国道的入城干道,又是曹杨新村、真如地区居民出行的主要道路,非机动车流量较大。根据交通功能和地理位置分析,该节点应建全互通式立交。

2)设计标准

沪宁高架主线为城市快速路,设计车速为80km/h;真北路为城市Ⅰ级主干路,设计车速为60km/h;园环转盘设计车速为35km/h,转盘半径为55m,最小交织长度45 m;匝道设计车速为35km/h,最大纵坡5%。

荷载标准:桥涵为汽车-超20级,挂-120;地面为BZZ-100。

建筑限界:转盘下净空4.0m,高架(交叉口)净空5.0m。

3)选型依据

(1)交通特点

上海位于长江三角洲的东端,特殊的地理位置决定了上海市对外联系的公路干线集中分布在西北、西南向,以放射状向江浙二省辐射。曹安公路和沪宁高速是对外的主要放射性联系干线,入城交通起讫点位于本工程研究的节点,立交交通互通功能较强。

(2)路网要求

内环、外环和辅环与几条主要对外联系干线,逐渐形成放射状和环状相结合的城市骨干交通路网系统。为了保证内环线在武宁路交叉口能起到疏解、分配市中心区的交通,要限制沪宁高速、曹安公路(312国道)的直行交通直接驶入该交叉口,必须在内环线以外对沪宁高速公路、曹安公路交通进行分流,使左右转交通畅通,达到放射状公路的疏解和分流交通作用。

(3)进入真北路交叉口的交通量分析

真北路交叉口外形是较典型的十字交叉,但从交通工程角度看,则是属五叉路口,它的西侧一分为二,由沪宁高速公路高架和曹安公路(312国道)组成。交通流量预测表明,真北路-武宁路交叉口流量比沪宁高速-外环线交叉口交通量要大得多。

若按沪宁高速公路直行交通立体化,高架以简单立交形式跨真北路西侧二匝道下地包括左右转弯,上下匝道等交叉口所有交通流均在地面以平面交叉的方式组织交通,这样强大的转向交通会影响地面道路的通行能力,增加堵塞交通的程度。况且附近居民点集中,人流、非机动车流对机动车的干扰大,要组织好地面交通,管理难度很大。

(4)建立交以解决沪宁高速公路、曹安路交通进城的交通问题

外环线立交至内环线间距为6.55km,在外环立交处强制疏解交通,限制部分直行车辆行驶,迫其左右转向,则将会造成被疏解的车流饶行距离过场,实际上降低了沪宁高速的服务水平,而在真北路上建一个交通功能较完善的互通立交,并辅以行政手段,限制部分车辆通过立交直接进入市区较为有利。此交叉口距内环线3.11km,在放射和环线组合路网结构中,被疏解的左右车辆饶行距离较短,较可行。

(5)规划红线预留的控制用地只宜建环行互通立交

由于种种原因和条件限制,沪宁高速公路、曹安路与真北路交叉口规划预留用地半径仅70m,交叉口附近的真北路规划红线为55m,曹安路规划红线为60~70m。要在这有限的地域内设计互通式全立交,经多方案比选,只宜建环型立交用地最省。结合本地区人流、非机动车较多的实际情况,推荐采用城市四层式环型立交方案。

4)立交总体布置

(1)交通流量分析

根据上海市城市综合交通规划研究所提供的交通量资料,预测1995年真北路、曹安路、沪宁高速公路互通出口交通量为49921pcu/d,2000年为62030pcu/h,2010年为89520pcu/d。沪宁高速和曹安公路交通量的比重从1995年的50:50,2000年的60:40,到2020年的72:28。沪宁高速入城直行占77.4%,右转占12.3%,左转占10.3%;

曹安公路入城直行占79%,右转占14.2%,左转占 6.8%;真北路由北往南直行占49.8%,右转占23.5%,其中至曹安公路为3.8%,至沪宁高速占19.7%,左转占26.7%。真北路由南往北直行占36.5%,右转占28.9%,左转占34.6%,其中曹安公路占13.5%,沪宁高速占21.1%。曹安路由东向西直行为77.3%,其中至曹安公路占28.7%,至沪宁高速占48.6%,右转占13%,左转占9.7%。由此可见,沪宁高速公路和曹安公路是以直行车辆为主,二条路的平均直行车辆为77.9%,相对来说,真北路左右转车辆占相当大的比例,其左转车分别为34.6%和26.7%,但真北路的总交通量小于沪宁高速公路和曹安路的交通量。

(2)立交总体布置

环行互通式立交为四层式,分别描述如下:

底层为曹安路地面道路,横向道路为真北路,环下地面道路主要供非机动车通行,远期非机动车减少,环上机动车流趋于饱和时,地面环岛可吸引部分机动车流,以延长服务年限。

二层为园环转盘,为沪宁高速公路、曹安路及真北路的左右转通道,转盘车道宽11.0m,与转盘相连有五对匝道,其中四对匝道与地面道路相接,一对匝道与沪宁高速公路高架相连接,匝道宽7.5m,净宽为6.5m。

三层为沪宁高速公路跨转盘的直行高架通道,并于大渡河路口以西280m处落地,沪宁高架在真北路以西标准段宽为四车道共21.75m,真北路以东为六车道,宽度.26.25m。

四层为真北路跨沪宁高架的直行高架通道,高架宽18m,四车道。

该立交简图如下:

真北路-武宁路立交鸟瞰图

2.特点分析

该立交占地少,结构紧凑,经过精心设计,满足了交通流互通的要求。环道提供的服务水平较高,最大断面饱和度为0.58,为沪宁高速和曹安路方向的转向车辆提供了条件,缓解了直行车辆对武宁路的交通压力。

另外,转盘的防撞栏杆采用了通透的钢护栏设计,提供了较好的视线条件,避免了转盘交织给车辆带来的交通隐患。

3.运用后评价

该立交通过几年的交通运行,基本满足了目前的交通需求。

4.立交的改建

随着上海市中心城路网结构的调整和完善,中环线工程已列入“十五”期间重大基础设施建设项目,而武宁路立交为中环线上的重要立交节点,要求按照中环线功能进行立交的改建,实现中环线和武宁路-沪宁高速公路入城段间交通的有效衔接。这里,可以从三个方面来理解有效衔接。第一,必须实现快速系统间的交通快速方便转换。第二,必须实现中环线地面交通和武宁路地面交通同沪宁高速公路入城段高架交通间方便转换。第三,必须实现地面道路系统间交通的转换。

我们认为:①沪宁高速公路由西而来的车辆必须经由本立交方便的分流到中环线快速路或地面道路;②中环线快速系统由南和由北而来的车辆必须经由本立交方便的驶入沪宁高速公路;③武宁路高架(规划中要实施2车道驶出上海的高架)由内环分流的由东向西的车辆必须经由本立交方便的进入中环线快速路和沪宁高速公路入城段;④现状真北路由南而来、由北而来的地面交通和武宁路-曹安路地面交通通过真北路武宁路立交第二层环形转盘来沟通,这一功能在本立交的改造过程必须得到保留,并通过本立交的改建得到进一步加强。

本立交属于两快速系统间的大型立交,在功能定位上,首先,应尽可能保证立交功能的完善、避免立交功能的缺失;其次,必须力求避免出现交织段,如果出现交织段,也应尽可能增加交织长度。

综上所述,本立交功能定位为:功能完善的大型枢纽性互通立交,可方便快捷

的为各种交通(快速系统间、地面系统间、快速系统和地面系统间)转换提供良好交通条件,使入境交通能及时分流,出境交通方便快捷的驶出。

由于中环线在功能定位上,具有分流内环线交通流量,减少内环线及中心城区的交通压力的作用,并且随着中心城区的不断外移,中心城区的交通会有更多的流量从内环转移到中环。基于这一认识,武宁路由东而来分流到中环的车辆必须分别设置左转和右转定向匝道及时方便的转移到中环线快速系统,同时对于中环线高架

新建2车道武宁路高架(沟通由东向西直行快速交通)。为便于匝道的布置,中环线(原真北路跨线桥)原桥柱升高位于第四层(沟通南北快速交通),另加两根立柱,改建为双向8车道高架道路。A匝道从沪宁高速公路入城段高架(万镇路口)开口

设减速车道驶出爬高,向南右转前行,而后并入中环线高架;B匝道从A匝道在西南象限分流而出,从第三层下穿中环线高架,左转上跨武宁路跨线桥,继续北行并入中环线高架;C匝道从中环线高架分流而出,直接右转并入沪宁高速公路入城段高架入口匝道,然后进入沪宁高速公路入城段高架;D匝道从中环线高架分流而出,在第四层北行上跨B匝道、武宁路跨线桥,而后下穿中环线高架,最后和C匝道合流;E匝道从武宁路高架(规划中)分流而出,西行分别下穿B匝道、D匝道、中环线高架,在第四层左转上跨武宁路跨线桥,继续南行上跨B匝道,然后前行下坡和A匝道合流;F匝道从E匝道分流而出,右转和B匝道合流,北行并入中环线高架。

本方案具有立交功能齐全,线形结构紧凑,占地少,交通条件好,行驶方向明确,立交层次低等优点。完全符合“交通功能全,无交织段,快出慢进”的设计原则。

在这里,需要特别说明的是:为什么要升高原真北路跨线桥而不保留上部结构?第一,原真北路跨线桥设计车速为60km/h,桥面顶点标高约25.7m左右,竖曲线半径为1800m,该竖曲线半径不能满足设计车速为80km/h的规范规定(凸曲线一般最小值为4500m,极限最小值3000m)。从纵断面线形方面来看,无法保证车辆以80km/h速度安全行驶,必须对跨线桥进行改造。第二,原真北路跨线桥只有双向4车道,无法满足双向8车道的要求,必须对跨线桥进行改造。本方案利用原真北路跨线桥墩、桥柱,在现有桥柱左右两侧再各加一个桥柱,同时升高桥柱,桥面拓宽为30.5m,满足双向8车道的建设规模要求。第三,真北路跨线桥适当抬高后,对于匝道的布设带来了极大的方便,降低了匝道的设计纵坡,降低了立交的整体高度。

如果远期根据路网规划及交通发展需求,实施武宁路西向东方向高架。那么,实施G匝道和H匝道也是完全可行的。G匝道从中环线高架分流而出,直接右转并入武宁路由西向东方向高架;H匝道从中环线高架分流而出南行,跨越武宁路跨线桥,左转从第五层跨越中环线高架,和G匝道合流,然后进入武宁路由西向东方向高架。近期需对远期方案的用地进行控制。

(1)沪宁高速公路入城段节点设计

本节点设计包括A匝道出口设计和C匝道进口设计,方案构思描述如下。A匝

以下措施:第一,禁止沪宁高速公路入城段高架西行车辆在万镇路出口匝道落地,该方向车辆可通过武宁路地面道路匝道上第二层转盘,西行通过转盘在西面内侧匝道落地到曹安路;第二,万镇路出口匝道分流处沪宁高速公路入城段高架北侧拓宽为单向3车道。

(2)武宁路高架连接节点设计

武宁路高架设计车速80km/h,由东向西方向武宁路高架中心线同规划武宁路中心线一致,为单向2车道,该高架落坡于现状武宁路跨线桥前30m地面道路,进入沪宁高速公路入城段高架而驶离上海,同时保留该处地面道路通过外侧车道进入沪宁高速公路入城段高架。E,F匝道设计车速为40km/h,设计为单向2车道。E匝道从武宁路高架(规划中)分出,F匝道从E匝道分流而出。E匝道和武宁路高架的分流点位于大渡河路口以西30m,在分流点以东按规范规定设减速车道。

2.7.17.5 鲁班路立交改建

1.立交改建的原因

鲁班路立交位于南北高架南延伸线与内环高架的交点,是两条高架道路相交的节点,理应建成规模较高的全互通式立交。

南北高架道路在规划、设计时,由于当时卢浦越江工程方案未定,仅有大致走向,故在设计鲁班路全互通立交时,经多方案比较,鲁班路立交设计建设为环形互通立交。众所周知,环形立交在交通量适应能力方面以及交通通行秩序方面都存在一定缺陷。鲁班路立交南北和东西两个直行方向均设有直行跨线桥,圆环层主要用以各向转弯交通,其中右转交通不入环,环内主要是四个左转方向的交通交织运行。根据交通流量预测,鲁班路立交圆环在2013年和2023年四个左转交通量分别为高峰小时4164pcu/h和5056pcu/h,对这个直径125m、交织段长度50~55m的圆环是不可能承受的。因此要确保鲁班路越江工程交通能在内环线高架顺利沟通,必须对该立交做适当改建。

2.立交改建的方案

(1)改建原则

鲁班路立交的改建应该从既改善立交交通功能,又尽量不产生废弃工程、不增加过多征地拆迁为原则,考虑利用南北高架过江标高升高与现有圆环之间的空间,增设一些左转定向匝道,使个别左转交通从圆环层分离出来,从而减轻圆环的交通压力。

(2)交通分析

根据交通流量预测,四个左转交通中西向北交通大大高于其他三个方向,2013年和2023年分别占各自左转总量的60%和50%之多。因此设置西向北左转匝道后,圆环内的其余左转交通总量分别只剩1564pcu/h和2623pcu/h,只要在圆环内增加一些交通管理措施和有关设施是有可能通过的。

(3)改建方案

由于立交已建,内环线地面道路、高架以及圆环、匝道和南北高架分别位于一

至四层结构紧凑,周围又有四处已建和在建的高层建筑,因此设置左转定向匝道在展线和布墩方面是很困难的。本立交改建方案经过不断优化,确定利用原西入环匝道位置,将其改建升高(纵坡为5.5%),其后该匝道在南北高架主引桥与圆环层的中间穿过,再转向北接入南北高架。同时又在其匝道向右(向南)分出一条匝道保证右转功能。该方案匝道的设计车速35km/h,最小平曲线半径50m(因受圆环下变电站及电缆影响),全长约640m。

本方案在对周围建筑影响方面,消除了对24层住宅的影响,也避免了对圆环西南角的三幢高层住宅的影响,得到了有关主管部门的首肯,并通过了专家评审,目前该方案正在实施过程中。

鲁班路立交改建方案如下图:

互通式立交设计实例-2

2.7.17.2 延安路-南北高架立交 1.立交概况 1)立交等级 延安路-南北高架立交位于成都路、延安路交叉口,是市中心的重要交通节点。延安路是横穿上海市中心城区高架系统东西向的交通主干道,东接延安路隧道复线与浦东陆家嘴地区相连,西至虹桥国际机场和沪青平高速公路。南北高架是一条纵贯市中心区南北向的城市主干道,往南穿越黄浦江与浦东济阳快速路连接,往北至南北高架延伸线,与彭浦工业区和宝钢地区连接。延安路-南北高架立交不仅是连接这两条干道的交通枢纽,而且是上海市高架系统“申”字型骨架的中心点。因此,该立交是市区高架系统中最重要的交通枢纽工程之一,它的建成将为高架系统安全、畅通、快速运行起到极其重要的作用。根据立交所处的地理位置、相交道路的等级和在路网中的重要性,立交等级确定为互通式立交1级。 2)设计标准 立交主线设计车速为60km/h,匝道为30km/h;主线净空为5.2m,主线最小半径为1000m;匝道净空为4.5m,匝道最小半径为55m;主线最大纵坡为4.16%,匝道最大纵坡为5.5%。 3)选型依据 (1)用地条件 南北高架与延安路高架轴线间呈斜交72度,规划红线均控制在65m范围内,交叉口规划半径仅为80m。立交四周建筑物稠密,有8层高的浦东大楼,多幢5层楼新工房,其余大多为2至3层的老式砖房,在交叉口西南象限紧贴红线有2幢24层新建高层建筑,立交占地很小,设计条件极为苛刻,立交方案的取舍受地形约束较大。 (2)交通量预测 根据上海市交研所提供的交通流量预测资料,该立交远期2020年立交高峰小时流量为12683pcu/h,南北高架与延安路高架的交通比重2020年为54:45,南北高架流量略大于延安路高架流量。南北高架的直行流量占进口总流量的58%,延安路高架的直行流量占进口总流量的53%,因此首先应保证该节点直行车流的流量。

立交桥设计

城市道路立交桥设计 摘要: 从预测交通量分析出发,结合互通式立交功能、构造物等建设条件,对互通式立交型式进行方案综合比选,从而推荐出功能完善、与结构造物衔接良好、造价较低的互通方案。 关键词: 互通式立交方案选型设计预测交通量 0引言 随着道路建设的发展和交通的需要,城市人口的急剧增加使车辆日益增多,平面交叉的道口造成车辆堵塞和拥挤,许多大中城市的交通要道和高速公路上兴建了一大批立交桥,用空间分隔的方法消除道路平面交叉车流的冲突,使两条交叉道路的直行车辆畅通无阻城市环线和高速公路网的联结也必须通过大型互通式立交进行分流和引导,保证交通的畅通城市立交桥已成为现代化城市的重要标志为保证交通互不干扰,而在道路铁路交叉处建造的桥梁广泛应用于高速公路和城市道路中的交通繁忙地段从此,城市交通开始从平地走向立体。 1 概述 科学大道-西三环互通式立交工程位于郑州市西三环、北三环及西三环延长线与科学大道的交叉 处。现状为三路平面交叉见下图。北三环、西三环及西三环延长线规划为城市快速路,科学大道规划为城市交通性主干道。 该立交作为郑州市快速路网与地方城市道路衔接转换的重要节点立交,同时也是城市快速路与城市主干路相交的重要节点立交。该立交的建设不仅为沟通高新西区与环城快速路提供了最便捷的通道,同时可以贯彻落实郑州中心城区快速路系统总体规划思路。

立交桥待建地图 航拍立交桥待建路段远照

航拍立交桥待建路段近照 2 地形地物地貌图 该互通立交工程场地地貌单元为黄河冲积平原,场地地形整体平坦,地面高程为98m 107m左右。本立交桥址勘探期间,在场地内及其附近未发现对工程有影响的不良地质作用,如塌陷、采空区、地面沉降、地裂等;也不存在影响地基稳定性的不良地

丘陵地区城市快速路互通式立交设计体会--结合永九快速路与钟太快

丘陵地区城市快速路互通式立交设计体会--结合永九快速路与钟太快速路互通立交工程论述 发表时间:2018-08-23T13:45:40.880Z 来源:《防护工程》2018年第8期作者:黄枭 [导读] 快速路互通相对高速公路互通可更加灵活紧凑。此外城市快速路作为城市道路仍有地下管网需求,可引入服务带概念集中布置管网,并结合服务带设置碟形边沟贯彻海绵城市理念。 黄枭 济南市市政工程设计研究院(集团)有限责任公司广东省广州市 510640 摘要:城市快速路相对高速公路,有基本不需考虑收费系统,以及出入口间距及加减速车道控制指标相对较低等特点。针对地势起伏较大且农林用地限制因素较多的丘陵地区,快速路互通相对高速公路互通可更加灵活紧凑。此外城市快速路作为城市道路仍有地下管网需求,可引入服务带概念集中布置管网,并结合服务带设置碟形边沟贯彻海绵城市理念。 关键词:城市快速路;互通立交;丘陵地区;服务带;碟形边沟 引言:本文为某丘陵地区两条城市快速路之间互通式立交设计实例,目前已开工建设。文中结合城市快速路特点,介绍了该互通立交工程的设计思路及要点。并根据个人设计体会讨论了设施服务带及碟形排水边沟设置的特点。 一、项目背景 1.1地貌地质条件 项目位于广州知识城西北部,沿线丘陵相对高度20~60m,间夹山间冲沟、小盆地,现状用地以农田、鱼塘、菜地、果林为主,零星分布有村庄、厂房等。 根据钻探揭露,场区从上往下覆盖层主要为第四系人工填土层(Q4ml),包括(素填土和杂填土)、第四系冲积层(Q4al)、第四系坡积层(Q4dl) 、第四系残积层(Q3el)、基岩为燕山期四期(γ54)花岗岩。 1.2周边相关骨架交通简述 A、永九快速路 南北走向,红线宽度55米,规划断面双向十车道。北与新广从公路相交连接白云区、从化区,南接萝岗永和大道贯通整个黄埔区。 B、钟太快速路 东西走向,红线宽度45米,规划断面双向八车道。西接白云区新广从路可前往白云机场,向东贯穿知识城北部与北三环高速相交前往增城。 1.3与穗广深城际铁路的关系 根据搜集相关资料,穗莞深城际铁路规划线位在钟太快速的南侧。本互通方案设计过程中与穗莞深城际铁路设计方案进行了对接,明确穗广深高架上跨本工程并落实了布墩位置,避免了不必要的冲突。 二、总体方案及规模 永九快速线南起K15+000,北至K16+140,线路长1.14公里;钟太快速路段西起K1+160,东至K2+436.972,线路长1.28公里。立交范围内的永九快速路主线保持双向8车道,钟太快速路主线保持双向6车道。 立交范围内东北、西北、西南象限均为山体。可考虑利用现状地势布置匝道位置,增加匝道路基长度替代匝道桥以节约造价,路基纵断面尽量顺地势拉设,减少土石方量。同时考虑避免侵占南侧基本农田及北侧山林禁建区。 三、方案设计 2035年钟太快速路-永九快速线交叉口高峰小时流量预测表(pcu/h) 道路名称进口道交通量小计合计 钟太快速路(东)左转 338 3759 17034 直行 2762 右转 659 钟太快速路(西)左转 359 3912 直行 2758 右转 795 永九快速线(南)左转 397 4538 直行 3546 右转 595 永九快速线(北)左转 960 4825 直行 3587 右转 278 结合交通路网规划,对交通流量进行分析,南转西、西转北、东转南交通量较小,利用环形匝道实现其左转交通功能,由于左转匝道在相邻象限,存在交织,为不干扰主线和被交路的交通,在永九快速路南往北方向和钟太快速路东往西方向的外侧设置辅助车道,通过侧绿化带进行分隔,匝道直接连接辅助车道;北转东交通量较大,采用半定向匝道实现左转功能。 根据交通量需求,立交匝道采用单车道即可,但由于匝道长度均大于300m,因此匝道设计采用双车道匝道断面,立交出入口采用交通划线方式控制为一车道。 主要技术指标:加速车道长度160m,减速车道长度80m,渐变段长度50m。左转匝道最小平曲线半径R=45m,右转匝道最小平曲线半径R=60m。匝道最大纵坡5.0%,最短坡长129.415 m,竖曲线最小半径:凸型500 m,凹型500 m。

公路互通式立交设计分析

公路互通式立交设计分析 发表时间:2019-07-05T10:48:27.290Z 来源:《基层建设》2019年第11期作者:曾海清 [导读] 摘要:立交桥梁是互通式立体交叉工程的重要组成部分,对整个立交工程有较大影响。 青州弘正建设工程质量检测有限公司山东青州 262500 摘要:立交桥梁是互通式立体交叉工程的重要组成部分,对整个立交工程有较大影响。结合设计实践,分析立交桥梁的若干技术问题。总结一些设计经验,与同行探讨。 关键词:互通式立交;桥梁;设计 立交桥梁是互通式立体交叉工程的重要组成部分,其设计多是互通式立交专业设计的难点、重点,其造价一般在整个立交工程中占有较大比例,对整个立交工程有较大影响。本文结合湖南多条高速公路上的互通式立交区域的桥梁设计实践,分析立交桥梁的若干技术问题,总结一些设计经验,与同行探讨。 1互通式立交的设计原则 互通式立交主要设计在车流量比较集中的城市路段和高速公路上。互通式立交通过设计多个通行车道达到分流的目的,专业称为匝道。通过设计向左或向右的匝道来分流。目前城市中和高速公路上已经设计有一些互通式立交,但是由于城市规划的关系,大部分的互通式立交并没有在市中心,而是在中环以外。因此,市中心的拥堵现象还无法用互通式立交来解决。 互通式立交需要的技术难度高,占地面积大,建造成本高,因此,互通式立交的设计要综合考虑,尽量用最低成本发挥最大效益。 互通式立交设计原则:一是考察路段的车流量。根据车流量的大小设计匝道的宽窄,以及单向匝道或是双向匝道。二是考虑地形条件。根据地形来设计适当地互通式立交,可以最大限度地减少成本。三是要考虑气候条件给此路段带来的影响。比如雨季的时候,该路段会不会积水,会不会有滑坡、泥石流的现象。要将这些条件进行综合考虑,设计最合理的互通式立交。 2互通式立交的设计要点 互通式立交的详细设计互通式立交的详细设计是在选型设计基础上针对地形、地物、交通量、技术规范等要求对互通式立交匝道布局的进一步深化,是互通式立交设计的参数化和指标化。 平面线形设计互通式立交平面线形设计,要根据互通式立交的重要性、地形、用地条件等因素确定,并保证车辆能连续安全地运行。互通式立交平面线形的要素主要有直线、缓和 曲线和圆曲线。匝道及其端部,凡曲率变化较大处应缓和曲线,一般缓和曲线采用回旋线。在匝道与匝道、匝道与主要道路拼接处,如采用缓和曲线,要注意回旋线参数要稍大一点,主要是便于超高过渡和适应汽车行驶速度的变化,特别是分流点处更应注意。在反向S型曲线处,选择回旋线参数时注意同超高过渡的协调一致,否则容易形成反超高。此外,匝道平面线形要与其交通量相适应,转向交通量大的匝道平面线形技术指标应高一些;驶出匝道的平面线形技术指标应高于驶入匝道的平面线形技术指标;反向曲线间的两个回旋线,其参数宜相等,不相等时,其比值应小于1.5。 纵面线形设计纵面线形应与地形相适应,设计成视觉连续、平顺而圆滑的线形,避免在短距离内出现频繁起伏。互通式立交的纵面线形设计实质是匝道的拉坡,不少设计人员将匝道拉坡范围完全与匝道的线位长度一致起来,这是不合适的。因为这样处理会在车流分合流端部形成剪刀差,路容、排水可能都有问题。拉坡的范围应该以车流分合流端部开始或结束,分合流端部以前的变速车道部分随主线的横坡和纵坡变化而变化。但在具体确定分合流匝道的起点和终点高程以及横坡时要综合考虑主线的纵坡和横坡,匝道在该处的纵坡、横坡不能简单地取主线的纵坡、横坡,这样至少在理论上是不连续的。另外,确定分合流点处的高程、纵坡、横坡时还须注意,当主线为曲线且有超高时,主线外侧变速车道先做成向外的横坡,然后根据变速车道形式向超高过渡,如果是直接式车道,则在变速车道全长范围内过渡,如果是平行式车道则在端部至匝道线位与主线“切点”范围内过渡。确定拉坡范围还应注意, 对于首尾相接的匝道,其拉坡范围应统一考虑。另外在拉坡时还要遵循平、纵配合的设计原则,注意平纵组合,注意线形与自然环境和景观的配合与协调。 超高及其过渡由于互通式立交范围内的平曲线指标比较低,所以超高不可避免,但超高的取值及过渡需要深入研究。 匝道超高设计匝道超高设计要充分考虑车辆在匝道上行驶速度经常变化的实际情况,采用不同的超高值。定向匝道跨越主要道路时,往往采用圆曲线最小半径的一般值或介于极限值与一般值之间,相应的超高按规范要求应取值8%以上,在这种情况下,由于定向匝道路基较宽,而且采用桥梁等结构物,没有路基边坡,所以在视觉上往往横向坡度比一般单匝道或土基填筑有边坡的路段横坡大,给驾驶员视觉上造成悬空的感觉,心理压力大,所以最大超高在这些地方宜放缓,收费站附近的超高值应小于匝道计算行车速度所对应的值。接近分流、合流处匝道超高值就应大一些。 超高过渡段匝道上直线至圆曲线间或两超高不同的曲线间应设置超高过渡段。超高过渡段的设置要根据计算行车速度、横断面的类型、旋轴的位置以及渐变率等因素来确定。 超高过渡区间。有缓和曲线时,超高过渡在回旋线的全长或部分范围内进行;没有缓和曲线时,可将所需过渡段长度的1/3~1/2插入圆曲线,其余设置在直线上;在有构造物地段,超高过渡应充分考虑桥跨布置,一般过渡范围最好放在桥梁的同一联里,这样可减少构造物处理上的难度; 反向超高的过渡。为了减少排水上的困难,反向超高的过渡采用较大的超高渐变率是合适的;C超高渐变率的取值。超高渐变率的取值在一般路段只需满足规范要求,但在宽度变化路段则要注意,由于宽度变化,行车道宽度的B值也是变化的。由于容易忽略宽度变化对超高渐变率的“折减”作用,此时超高渐变率似乎满足要求了,但象收费站等宽度变化较大的地方,边部将扭曲得很厉害,如果同时又在反向超高的地方,则排水就成问题了。因此在宽度变化路段要注意超高渐变率的取值;d超高旋转方式。这里是指过渡范围内行车道外侧边缘的竖向形状是直线的还是曲线的。一般情况下采用直线方式,但直线方式比较生硬,在过渡段两端有折曲感,所以从美观等因素考虑,采用曲线方式更好。 变速车道的设计变速车道分为直接式与平行式两种,减速车道原则上采用直接式,加速车道原则上采用平行式。当变速车道为双车道时,加、减速车道均采用直接式。一般双车道加速车道也采用直接式,但应注意直接式加速车道应采用较小的流入角度,这对车辆合流较为有利。另外双车道的匝道与主要公路拼接时应注意车道平衡问题,否则当车流量较大时,车流的分流与合流将产生问题。单车道减速车

山区高速公路单喇叭型互通立交设计浅析

山区高速公路单喇叭型互通立交设计浅析 李军发山西省交通科学研究院 摘要:重点阐述了山区高速公路单喇叭型互通立交匝道平面、纵面线形及横断面设计要点,结合本人的体会,对于山区单喇叭型互通立交的布设在满足互通功能的情况下应扩展思路,根据地形灵活布置立交线形。 关键词:山区高速公路单喇叭型互通立交设计浅析 1.山区高速公路互通立交的特点 a)在山区设置一般出入口互通立交的目的是为了服务于当地乡镇及县域经济发展,交通量往往都不大。 b)山区地形复杂、场地狭小、走廊内常常伴随河流、地方道路,使互通立交布设的位置和形式受到一定的限制。 c)山区高速公路主线构造物较多,互通布设范围常常受到前后大桥、隧道等构造物的限制,互通立交与隧道的间距在地形受限制的山区是很难达到标准、规范的要求,互通的布设还需特别注意行车安全性方面的要求。 d)山区高速公路主线平纵指标往往偏低,互通立交有时不可避免的处于主线长下坡或主线小半径平曲线上,同样也需要注意安全性方面的问题。 2.设计交通量 公路的交通量是随着社会经济的发展而变化,其远景设计年限交通量应包括正常的交通量以及诱增交通量。设计交通量应根据交通工程学原理,进行切实的调查、统计,通过科学的分析、预测,建立相关的数学模型,求得设计年限内平均日交通量(AADT)作为设计依据。设计过程中采用设计小时交通量对匝道的通行能力及横断面采用的车道数等进行验算,匝道设计小时交通量按(1)式计算: DDHV=AADT×D×K (1) 式中: DDHV——单向设计小时交通量,veh/h;AADT为预测年度的年平均日交通量,veh/d; D——方向不均匀系数,%;K为设计小时交通量系数,%,为第30个高峰小时交通量与AADT的比值。 3.匝道平面设计

浅析互通式立交匝道起终点平面接线设计

浅析互通式立交匝道起终点平面接线设计 摘要:互通式立交匝道起点平面线形设计尤为重要,尤其是对应主线上为缓和曲线时,在匝道起、终点设计中较为复杂。规范中对此没有明确具体的规定,本文将通过设计实例,对此加以总结归纳,以供参考。 关键词:互通式立交;主线为缓和曲线;匝道起终点设计 Abstract: Thehorizontal alignmentdesignoftheinterchangerampstarting pointis particularlyimportant, especiallywhenthetransition curvecorresponding to the main line, rampterminaldesign more complex.Thereisnoclear and specificprovisions of the specification,design examples, whichtobesummarizedfor reference. Key words: interchange;mainlinefor transition curve;rampterminaldesign 1、前言 互通立交是路网的一个重要组成部分,无论在高速公路还是在城市道路中都具有交通枢纽的作用,其中匝道就是相交道路的连接道,供车辆驶入驶出,其变速车道与主线部分相依,此部分的设计需要综合考虑主线线形,如果设置不当,很容易出现不顺适,造成该处行车不舒适,或者使车辆行驶条件恶化,存在交通安全隐患。 匝道起终点的接线设计,规范上要求变速车道全长范围内原则上采用与主线相同的线形(相同半径的圆弧或相同参数的回旋线),实际设计中,当匝道起终点对应主线线形为直线或者圆曲线时,较为容易;当主线对应处为缓和曲线时,设计时相对复杂,理论上应采用缓和曲线接线设计,但是由于主线上的缓和曲线曲率半径很大,所以为方便设计和施工,也可以采用圆曲线进行接线设计,本文就是针对这种情况进行总结分析。 2、匝道起点设计 以山东省某高速公路互通立交减速车道设计为例,该公路主线设计速度为120km/h,A匝道驶离主线,其中此处主线平面线形为A=775、Ls=280m的不完整缓和曲线(半径由4980m变化到1500m)。 确定起点位置 首先根据互通总体位置,确定A匝道设计起点(主线渐变段终点)的大约位置,在这个范围内由于主线是缓和曲线,其每一点的曲率半径都不同,故需要人为取其中一点作为设计起点,通常可取一个整桩号点,以方便计算、标注。

高速公路互通式立交选型诠释

高速公路互通式立交选型诠释 摘要:互通式立体交叉公路是高速公路网的主要节点,高速公路互通式立交的选型关系对路网功能作用的发挥起着关键的作用。互通的选型应满足路网规划的要求,同时其位置和型式亦是高速公路路线走向的一个重要制约因素。 关键词:高速公路;互通式立交;选型 1高速公路互通式立体交叉设计分析 1.1互通式立体交叉的设计交通量与通行能力道路立体交叉的主要目的是为了提高交叉路口的通行能力,减少交叉时交通的干扰,从而保证道路交叉处的交通安全与快速通行。 1.2互通式立交设计车速我国对设计车速的定义是:在天气良好,交通量小,路面干净的条件下,中等技术水平的驾驶员在道路受限制部分能够保持安全而舒适行驶的最大速度。设计车速实际是个理论的车速,而车辆的运行车速是实际的85%车速。 1.3互通式立交的匝道设计匝道设计按一个固定车速来控制整个匝道的设计指标,是不符合汽车行驶特性的,导致匝道不能提供顺适、安全、经济和通畅的要求。匝道的设计车速与公路主线的设计车速的应用在设计中是不一样的。公路主线按设计车速来控制整个路线指标(公路主线没有要求不同设计车速或等级情况下),来提供全线的安全、舒适的行驶。而匝道是提供车辆转弯的连接道,匝道的设计车速除了满足匝道本身设计的安全、经济外,还要考虑到与连接道路的顺畅连接,这也是匝道的设计车速不能用一个速度来控制的原因。 1.4互通式立交的变速车道设计变速车道的横断面由左侧路缘带(与主线车道共用)、车道、右路肩(含右侧路缘带)组成。变速车道分为直接式和平行式,路线规范规定:变速车道为单车道时,减速车道宜采用直接式,加速车道宜采用平行式。变速车道为双车道时,加、减速车道均应采用直接式。 对直接式减速车道传统的做法是从主线外侧行车道中心,用同于主线线形(一般情况)以1/17.5~1/25流出角向外流出,在流出达到一个车道宽度即减速车道起点,到分离主线,形成整个减速车道。该设计方法主要优点是线形流出自然,符合车辆行驶轨迹,但驾驶员不易辨认出流出位置,并且在设计过程中减

互通式立交桥设计

107 国道跨金水路、郑汴路立交桥方案设计概况 1 概况 107国道北起北京南至珠海,是我国南北向交通运输的大动脉。目前郑州以北的北京至新乡段和郑州以南的郑州至漯河段已相继建成高速公路,而郑州至新乡段仍为一级公路。由于受一级公路的平面交叉制约,交通堵塞比较严重。特别是郑州东出口金水路和郑汴路两处平交,双向直行和转向车交通量都很大,还有进出市区的行人、自行车、摩托车和拖拉机等,严重影响南来北往的车辆顺利通行。已成为107国道上的两个卡脖子路段。不仅严重影响了国道主干线上交通的正常通行,而且给郑州车辆进出造成极大的不便。为解决这两个交叉口的交通堵塞问题,修建立交进行交通分流十分必要。 2 立交总体方案 要解决金水路、郑汴路与107国道交叉的交通堵塞问题,考虑到近期及远期交通量和流向可避免修建两座投资大、占地多的大型互通式立交,因为:①近期107国道的交通量是另外两条被交叉道路两倍以上;②远期郑州黄河二桥及新乡至郑州的高速公路修建必将大大缓解107国道的交通压力。将主要流向107的交通无干扰直通,我们设计了以下两种方案,以达到投资小见效快的目的。 2.1方案一 107国道上跨金水路和郑汴路,跨线桥宽17.5m,双向四车道,

桥长分别为401.0m、431.0m,两端引道均为100m。桥下平交进行渠化并增设郑州至机场方向的右转车专用车道。 2.2方案二 金水路、郑汴路上跨107国道,跨线桥宽17.5m,双向四车道,桥长分别为401.0m、431.0m,两端引道均为100m。107国道在下层通过,平面处进行渠化,并增设郑州至机场方向的右转专用车道。这两种方案均增设了郑州至机场方向的右转车专用车道,能够解决郑州的车辆出市问题,设置跨线桥使直行车不经过平面交叉口而直接通过,能有效地缓解由原来直行车绕行环岛引起的交通干扰,达到解决交叉口交通堵塞的目的。从直行车交通量分析,107国道上的直行交通量较金水路、郑汴路的直行交通量要大得多,采用107国道上跨金水路和郑汴路的跨线桥方案能最有效地分流交通。从远期发展考虑,郑州黄河公路二桥和新乡至郑州高速公路建成后,107国道北连开洛高速公路,南通机场路和郑许高速公路,远期做为郑州市的主干线,其重要作用仍不可替代。综合近期和远期的分析情况,推荐107国道上跨方案,即方案一(见图1、图2)。 推荐方案和比较方案工程数量对比见表1。

互通式立交桥绿化

作为提高道路通行能力、缓解城市交通压力,解决城市区域间交通的有效手段,高速公路越来越显现出其巨大的社会效益和经济效益。互通式立交是高速公路重要的构造物之一,它是利用跨线构造物使道路与道路在不同标高相互交叉的连接方式,是路与路之间连接的交通枢纽,车辆的进出均是通过立交实现的。城市高速公路通过互通式立交由郊外延伸到城市中心地带,成为城市道路交通体系中不可缺少的重要部分。如何利用快速路立交区的绿化,使城市快速路立交桥景观以及快速路景观成为城市景观的重要组成部分,在发挥交通作用的同时也成为城市生物的绿色廊道,从而保障城市生态环境的平衡,已成为人们普遍关注的问题。 如何才能更好地发挥高速公路的功能,使其成为与自然相协调的建筑群体,创造出一个高速、快捷、舒适、优美的交通环境,总的说来要满足两个方面的要求。 互通式立交区绿化应首先满足交通要求,保证行车安全。中环线-民族大道立交车流量大,线路复杂,除了立体交叉的快车道外,底层还有平面交叉的慢车道, 匝道盘旋交叉围成几个面积大小不一,立地条件各异的开阔空间。由于是一些起相对封闭的区域,在养护管理等方面受到许多限制。另外,高速公路绿化需要长期养护的面积大,地形复杂、费用高,养护资金有限等因素的制约。考虑以上特点,此互通式立交区绿化以“安全、实用”为宗旨,以管理方便为原则。

互通式立交区绿化还应满足景观效果,凸现城市形象的要求。作为进入市区中心的视觉焦点,互通式立交区又是城市的形象窗口,其景观必须反映地方特色,时代风貌、和都市的现代化气息。因此,在景观营造上,以优化植物配植为主,强调生态绿化;三季有花,四季常青,突出季相效果;立体绿化层次分明,突出层次效果;以丛植为主,注重涵养水源;在创造良好生态群落的前提下,追求景观效果,力求做到生态性与视觉效果上的有机结合。 细分一下,互通式立交区绿化设计有以下几个方面的原则: 安全性原则。在交通安全上,立交区绿化设计要注意以下几个方面。首先转弯区应有足够的安全视距,使司机视线畅通,每一个环形匝道围合区域靠近道路转弯处是影响底层道路司机视线的重要部位,因此转弯处24米内不栽植遮挡视线的乔灌木,采用建植草坪和模纹色带,形成开阔明朗、大气简洁的植物景观。其次景观上不做过于突出的造景,配置的开花植物,花色、花形避免与交通标志颜色、形状混淆。另外,景观绿化的重要作用之一是防眩,避免会车时灯光对人眼的刺激,保证行车安全。根据车灯位置及扩散角度,合理设计植物的高度和间距,并通过修剪控制植株的高度。一般在1.5m即可,过高会妨碍司机观察对方车辆的行驶情况;过矮又难以遮掩会车灯光,失去防眩作用。 实用性原则。立交区绿化设计要满足引导视线,缓解视觉疲劳的要求。在弯道外侧种植成行的乔木,突出匝道优美的动态曲线,诱导

互通式立体交叉设计与选型

公路互通式立体交叉的设计与选型 马家宇 (河南省新开元路桥工程咨询有限公司) 一、互通式立交简介 1.路线交叉的分类 加铺转角式 公路与铁路交叉渠化 平面交叉环形交叉(俗称转盘) 交通信号灯管制 路线交叉公路与公路交叉 分离式立体交叉 立体交叉 公路与管线交叉互通式立体交叉公路与公路交叉设计时,应采取措施尽可能消灭冲突点或减少改善冲突点。 (1)实行交通管制在交叉口设置交通信号灯或由交通警察指挥,使发生冲突的车流从通行时间上错开。 (2)采用渠化交通在交叉口内合理布置交通岛、交通标志和标线,或增设车道等,引导各方向车流沿固定路径行驶,以减少车辆之间的相互干扰,改善冲突点和分合流点的位置及角度。 (3)变冲突点为分合流点环形平面交叉可以变冲突点为分合流点,进行交织,消灭了冲突点。 (4)修建立体交叉将相互冲突的车流从空间上分开,使其互不干扰。这是解决交叉口交通问题最彻底的办法。 2.互通式立交发展概况 1928年美国在新泽西州修建了世界上第一座苜蓿叶型互通式立交。由于其社会、经济效益良好,发展十分迅速,到1936年,美国修建了125座互通式立交。 我国互通式立交发展较晚且发展缓慢。1955年武汉滨江路修建了我国第一座部分苜蓿叶型互通式立交;1956年北京市郊京密引水滨河路修建了三座部分互通式立交;1964年广州大北路修建了一座双层环型立交。从1988年10月沪嘉高速公路通车至今,中国大陆高速公路走过了18年的快速发展历程,公路互通式立交也随着高速公路得到快速的发展。 3.互通式立交分类 3.1 按跨越方式分:上跨式、下穿式、半上跨半下穿式 3.2 按交通功能分:全互通式、部分互通式

高速公路互通立交景观设计说明

关于XX高速XXX互通与 曹庵互通绿化图纸优化设计的说明 一、原施工图存在的问题 1、两互通区域内的水域位置及面积已调整; 2、招标文件中的苗木清单没有包含互通区设计图纸中的大部分苗木品种; 3、原设计图纸苗木品种单一,数量较少,搭配不合理,不能满足互通区景观绿化功能; 4、原设计图纸以低矮小灌木为主,少量乔木为辅,随着时间的推移,小灌木会逐渐被杂草淹没,导致在后期整个互通区绿化效果呈现荒化; 5、原设计图纸中,主要是以低矮小灌木为主,这对养护的要求比较严格。 二、优化设计思想 互通区是高速公路整体结构中的一个节点。互通区的规划设计首先是通过植物造景,使景观的造型与自然景观相融合,以生态性为主,在大小不同、形态各异的绿地中,利用不同植物的镶嵌组合,形成一个层次丰富、景色各异的花园绿岛,营造一个优美的行车环境。 互通区景观规划设计的重点区域是匝道围合而成的圆形空敞,由于匝道区域车速较慢,创造优美、和谐的景观就显得尤为重要。为了保证视线的通透,入口处内侧应栽植植株低矮的树丛、灌木,而且入口处外侧应利用树丛、灌木勾勒出道路线性,以起到标志性和导向性的作用。以本土植物为基础种植,选择一些与其他绿化区域相似的植物,采用乔、灌、草的复合群落,在栽植时能形成图案等,能表现出当地的经济文化特色为宜。景观上要注意与周边环境和整条道路景观取得协调一致。总之,互通立交区是主线景观的一个重点,就像镶嵌在项链上的钻石,对于提高整个高速路的景观效果至关重要。互通区采用如图1所示的景观规划设计模式: 图.1

三、优化设计手法 从互通立交桥景观设计入手,例如通过植物高低的变化引导视线,构造景观的节奏感,营造出“车在路上走、人在画中游”的优美的公路交通环境。中心区域以孤植大乔木作为点缀,并以大乔木为中心,向四周辐射,搭配一些低矮的乔灌木及球类植物,形成季相分明、层次突出、色彩丰富的景观效果。在匝道周围,栽植不同树种的树阵,让驾乘人员一进入互通区就能感受到视觉上的震撼。此外,互通立交桥区色彩的充分利用,可以极大的提高驾驶的安全性。 四、优化设计原则 绿化考虑到公路互通的特点,以“安全、实 用、美观”为宗旨,以经济可行,管理、维护方 便为原则,力求建造一个集绿化、生态、美化于 一体的互通区环境。绿化满足交通要求,保证行 车安全,使司机视线畅通,转弯区有足够开阔的安图.2 全视距。乔、灌木结合,树立大绿化的思想,道路、互通的绿化与沿线自然的绿化环境 相结合,注意绿化的整体性和节奏感。 1、交通功能的绿化 (1)在互通出主车道的匝道口处种植一排具 有引导作用的乔木以诱导司机的视线,引道车辆 能安全的进入出口匝道,例如:淮南东立交G匝 道的栾树、高杆女贞。在绿化的设计上充分考虑图.3 到了互通区的功能的要求,使绿化与互通的功能结合,达到绿化美化同时又能对车辆起到交通的提示作用。如图2、图3所示。 (2)在车辆进入主线快车道与匝道口的 交接区域,充分考虑到主线行车应与接线口 保持良好的视点,使高速行驶的主线车辆能 观察到匝道的车辆,同时匝道口的车辆也能 了解主线快速道的车辆行驶情况,保证行车 的安全,所以这区域的绿化,只能种植低矮 的灌木,例如:淮南东互通2景观B、C、D 区红花继木球、丝兰、金边黄杨、红叶石楠 球等,否则会影响行车的视线,造成安全隐患。图.4 如图3所示区域。 2、互通植物种植原则 高速公路互通立交范围内的植物种植设计,除了诱导交通、提高交通安全主要作用

城市互通式立交设计要点分析

城市互通式立交设计要点分析 发表时间:2018-09-12T16:24:58.437Z 来源:《基层建设》2018年第22期作者:彭振华 [导读] 摘要:城市互通式立交设计就是能够更好的提高公路的运行能力,进一步对安全通行性进行强化的必然措施。 北京市市政工程设计研究总院有限公司东莞分院广东东莞 523000 摘要:城市互通式立交设计就是能够更好的提高公路的运行能力,进一步对安全通行性进行强化的必然措施。但是怎样提高城市互通式立交设计的儿科学性,并以此来解决城市互通式立交设计中一些尚存的问题已经成了各城市互通式立交设计单位中工作的重点内容。本文就详细的分析了城市互通式立交设计中的要点问题,希望为类似工程的设计提供可以参考的依据。 关键词:城市互通;立交;设计;要点;分析 随着城市化进程的加快和社会经济的快速增长,城市的交通业也得到了更大的发展空间,道路的纵横交错使得平面交叉路口已经满足不了现代城市交通量的增长,在这样的环境下,城市互通式立交,作为现代化城市交通标志的形式也就产生了。其也就成了城市道路网络中的重要枢纽。由于其具有特殊的空间多层的立体结构形态,又担负着道路中的交通转向、梳理和控制车流量的作用,因此,也就成了道路中的主要安全关口。从总体上来说,这种形式的交通组织方式有很多优势,比如,可以使各个方向上的车流在不同标高的平面上行驶,大大的减少了车流的冲突点;为车流的连续通行提供了便捷的条件,进而提高了道路的通行能力;有效的节约了人们的行驶时间,还节省了燃料的消耗,进而降低了车辆的运行成本和尾气的排放,实现了节能减排;还对相交道路的车辆出入进行了控制,进而减少了对城市主干道和快速交通道路的干扰。 1、城市互通式立交可行性分析 城市互通式立交的可行性分析主要是对道路建设的区域的交通量进行分析。一般情况下,很多城市在对道路交通量进行分析时,先要对本城市的交通量进行预测,在预测时,主要包含以下几个阶段:首先要对整个城市的发展进行综合性的预测,尤其要重点估计道路建设区域周边经济发展的情况;然后要详细的分析道路建设区域的交通集中量,这中间不但包括交通集中发生区域的交通量,还包括交通集中的程度,尤其还要明确的区分各个道路交通集中点的密集程度,通过分析,并将分析的结果以及其中用到的数据资料等整理起来,作为后期进行城市互通式立交设计的参考资料;其次就是要预测道路建设区域的交通分布情况,通过预测,构建出一个道路交通运行的大致框架;最后就是根据构建出的大致框架,对道路建设区域的交通量进行分配,通过对城市道路建设中各条道路的交通量进行规划,从而达到对道路建设区域中各条道路的交通量进行合理的规划。在对城市道路的交通量进行合理的预测后,就需要将预测的结果进行整理,使其形成一个条理清晰的可行性报告。一般情况下,交通量的预测报告中以每2年为一个基准,其中一定要重点说明互通式立交道路的日流量、高峰时段的流量以及针对各个道路高峰点所做出的流量预测的结果。 2、城市互通式立交设计方案的要点 对城市互通式立交设计方案进行合理的设计,使其能够形成一个更加有效的,并且切合实际的设计体系,这也是一种能够有效推动城市道路交通的重要手段。而城市互通式立交的设计需要从多个方面入手,我们只有发挥出积极配合的力量才能取得理想的设计效果,从而对城市互通式立交设计的应用更加具有实用性做好保障。 2.1选择立交的位置要合理 对城市互通式立交设计的工作人员来说,合理的选择城市互通式立交的位置是明确交通枢纽节点的关键问题,这也是城市互通式立交总体设计的主要内容之一。设计人员应该对建设项目的整体功能作为重点进行考虑,再对周边的交通情况进行详细的了解,包括周边道路的交通情况、城市互通式立交附近的地形情况、地形条件以及地质条件等。设计人员在明确了上述这些问题后,还要考虑到城市互通式立交公路项目区域的真题规划、区域交通能力等因素,根据这些因素来对节点的位置进行确定。一般来说,城市道路交通方案的最终结果取决于城市互通式立交的位置,当满足不了高质量施工和应用要求,或者无法在主线和被交路相交处进行设置时,可以考虑到移位、合并或者分离等措施,进而保证城市互通式立交设计的规范化和合理化。 2.2要对立交的型式进行科学的衡定 对于城市互通式立交设计来说,立交桥式的选择合理程度直接影响着城市互通式立交以及与其相应通行道路的运行能力。而从另一个方面来说,城市互通式立交设计的重点就是要科学的衡定立交的型式。这可以从两个方面来分析,一是从城市互通式立交的适用功能方面。站在功能的角度上对城市互通式立交进行划分,可以将其划分为枢纽城市互通式立交和出入口型城市互通式立交。枢纽城市互通式立交就是能够有效的解决城市道路之间存在的交通流量的转换问题,在实际的选型过程中,设计人员要更多的考虑到其实用性的功能,此种型式有着较大的设计空间。而出入口型城市互通式立交则更多的应用在交通流量上下高速道路的位置,在设计的型式上与上述枢纽式的城市互通式立交的设计型式有所区别,此种设计型式比较有限,需要在充分满足公路管理的相关要求上来进行;二是在保证城市道路通行能力方面。实现城市互通式立交的目的就是要对交叉路口的运行效率进行提升,进而减少道路交叉对交通出行的影响,而通过有效的设计则能够更好的满足于城市交通安全与快速的通行要求,设计人员还要针对日常高速公路中交叉路段的通行情况,选择使用性强的城市互通式立交型式,使城市道路能够保持稳定的通行能力。 2.3要对匝道的设计进行综合性的考量 在城市互通式立交整体的规划中,匝道的设计车速和通行能力也是非常重要的,其关系着城市互通式立交的具体形状、设计尺寸等因素,而要想提高城市道路的通行能力,同时对通行的安全做好保障就需要设计人员对匝道的设计进行综合性的考量。在设计车速方面,在实际的设计中,在匝道车速的设计环节,设计人员一定要根据城市互通式立交的等级、类型、转弯的交通量等情况来对相应匝道的车速进行设计。因此,在这个过程中,设计人员要遵循以下几个原则:在右转弯的匝道上需要采用上限标准或者中间值,来保证车辆通行的安全性;在直连式或者半直连式左转匝道的设计方面要采用上限标准或者中间值;为了更好的保障城市道路的通行效率,在入口的匝道部分,应设计更高的车速,但是在接近出口的匝道部分应将车速适当的降低。在匝道通行能力方面,设计人员要对相关的因素进行充分的考量,并采用科学的方法进行验算和检查,最终确定合适的设计方案,使匝道的通行能力能够更好的满足交城市道路交通运行的实际需求。 2.4要与周边环境相适应 在城市互通式立交设计中设计人员要考虑到施工地形方面的需求,尤其是对于一些风险点和敏感区,设计人员要进行避让,减少地形环境对城市互通式立交设计带来的影响。另外,还要避免建设中由于高填、深挖等工程给周边环境、景观等造成的破坏和影响。设计人员

互通式立交桥工程施工设计方案

六、施工组织设计

目录 第一章工程概况 (1) 第一节工程说明 (1) 一、工程位置及环境情况 (1) 1、工程位置 (1) 2、环境情况 (1) 3、地下管线现状 (1) 二、工程规模 (1) 第二节施工条件 (2) 一、本工程业主要求 (2) 二、周边条件 (2) 第二章施工组织管理机构 (4) 第一节施工管理目标 (4) 第二节工期要求及工期安排 (4) 第三节现场管理机构 (4) 第四节项目管理人员的配备 (4) 一、建立完整的管理组织机构 (4) 二、公司以及项目部施工组织机构框图 (5) 三、项目部主要成员职责 (7) 四、项目部管理要点 (9) 第三章施工总体部署及资源配备计划 (12) 第一节施工总体部署 (12) 第二节劳动力组织与投入计划 (12) 一、劳动力组织 (12)

二、班组配备 (12) 第三节施工机械配置 (13) 一、施工机械设备配备计划 (13) 第四章测量控制方法 (14) 第一节水准的控制方法 (14) 第二节平面控制方法 (14) 第五章道路工程施工方法 (16) 第一节路基工程施工方法 (16) 一、施工准备工作 (16) 二、基本施工顺序 (16) 三、主要施工方法 (16) 四、施工过程须重点注意的问题 (18) 第二节软基处理方法 (19) 一、换填碾压施工方法 (19) 二、软基施工时应着重注意的问题 (20) 第三节现状路面处理方法 (20) 一、现状水泥混凝土路面处理措施 (20) 二、现状沥青混凝土路面处理措施 (21) 第四节道路基层施工方法 (21) 一、基本施工顺序 (21) 二、主要施工方法 (21) 三、施工过程须重点注意的问题 (24) 第五节排水工程施工方法 (25) 一、施工顺序和施工方法的选择 (25) 二、主要施工方法 (25) 第六节电力工程施工方法 (31) 一、施工顺序及工艺流程 (31) 二、电力管线施工 (32) 2、沟槽开挖 (32) 第七节路基、路面工程施工方法 (32) 一、路面基层验收及透封层油粘层施工 (33) 二、沥青混凝土施工方法 (33)

高速公路互通立交景观设计规范标准

高速公路互通立交景观设计规 一、国法规 鉴于互通立交桥在高速公路建设中的特殊重要地位,各国十分重视高速公路互通立交桥的景观设计。我国国家交通部1998年关于发布《公路环境保护设计规》(JTJ/T006--98),下面摘录关于互通立交桥景观设计的几条规定: 条文6.2.2.1公路上的桥梁、互通式立交、隧道和服务区、管理设施等作为一个景点,设计时应使构造物本身各部位比例协调。 条文6.2.2.2各景点设计路段应充分结合工程和自然景观,宜具有一定风格,且与地域景观协调一致。各景观设计路段之间的过渡应自然。 条文6.3.4.4互通式立交区及服务区围,有条件时宜作景观绿化设计。 二、设计手法 公路互通立交桥景观环境要素包罗万象,但我们不应将精力集中在耗费大量人力、物力、财力的人造景观上,而应重点体现对原有的建筑景观资源的保护、利用和开发,以及公路主体与原有自然及社会环境的相融--“不破坏就是最大的保护”。 从互通立交桥景观设计入手,例如通过植物高低的变化引导视线,构造景观的节奏感;从互通立交桥线形入手,优化平纵组合、改善线形,使其流畅连续,确保车辆快速安全通过,提供舒适的行车条件,营造出“车在路上走、人在画中游”的优美的公路交通环境; 从互通立交桥结构入手,要求边坡以曲线柔美自然流畅的曲面为主,挡墙由高至低或由低至高渐变且与路线线形吻合为主要造型,边沟以隐蔽、宽浅或远离路基为首选。 互通立交桥周围的山岭、坡地、河流,构成美丽的风景,千变万化的植被体现出一种自然美。互通立交桥作为一种构造物,既要满足车辆通行的基本要求,又要达到自然景观与再造景观的和谐统一。 互通立交桥匝道大量曲线的设置,使公路线形能更好地适应地形,增加了互通立交桥的曲线美,给人以幽静和耐人寻味的感觉。曲线丰富的变化和节奏感,驾驶员行驶在上面,眼睛左右移动,不断扫视整个视域,并把视线引向远方,避免了驾驶员遇到紧急情况而手慌脚乱。

公路和城市道路互通式立交设计问题

公路和城市道路互通式立交设计问题 交通的发展带动了国家经济的发展,交通掌握了国家物资在全国范围内运转的关键,是人们在生产生活中都不可离开的一部分,而飞速发展的现代社会给交通提出了新的挑战。下面,我们将从多个角度提出关于互通式立交设计需要注意的一些问题和关于设计需要考虑的一些因素,希望能对我国公路与城市道路互通式立交的设计提供一些帮助。 标签:公路;城市道路;互通式立交设计问题 Abstract:The development of transportation has led to the development of the national economy,and transportation has been the key to the operation of state materials throughout the country. It is a part that people can not leave in production and life,and the rapid development of modern society has posed new challenges to traffic. This paper raises some problems that need to be paid attention to and some factors that need to be considered in the design of interchange from many angles,hoping to provide some help for the design of interchange between highway and urban road in our country. Keywords:highway;urban road;interchange design problem 1 概述 國民不断提升的经济水平给城市的交通带来了新的压力,而互通式立交不仅在一定程度上解决了这个问题,缓解了公路和城市道路的压力,还便利了人们的交通,减少了人们浪费在堵车上的平均时间,而通顺的路况甚至能提升人们出游的幸福度。因此公路与城市道路互通式立交的设计近些年来受到社会的重视。而城市道路与公路在一些设计标准中存在差距,因此立交设计的标准值也存在一定程度的差距,并且我国的立交设计还并不成熟,在很多方面上仍旧在借鉴外国的经典设计案例,这就导致国内的立交设计理念和案例较混乱,没有明确的要求,因此我们急需建设完善的互通式立交设计系统。 2 互通式立交设计需要注意的问题 高速公路由互通式立交、各种公路和高速公路等几部分组成,其中互通式立交是公路与公路之间连接的结点,是城市公路交通网络中不可缺少的一部分,对城市整体交通系统起到重要辅助作用,而交通的顺畅和完整程度在很大程度上决定了一个国家经济发展的速度,是一个国家在发展的过程中必须要重视的事情。互通式立交的设计合理与否又能决定整个高速公路的运行效果和公路系统的正常运作。 互通式立交根据其连接道路的类型可以统分成两大类:一类是枢纽互通式立交,另一类是一般互通式立交。枢纽互通式立交是指国家和区域之间等重要干线

相关文档
最新文档