大一高数复习资料【完整版】

大一高数复习资料【完整版】
大一高数复习资料【完整版】

大一高数复习资料【完整版】

高等数学(非数院)

第一章 函数与极限

第一节 函数

○函数基础(高中函数部

分相关知识)(★★★)

○邻域(去心邻域)(★)

(){},|U a x x a δδ=-< (){},|0U a x x a δδ=<-<

第二节 数列的极限 ○数列极限的证明(★) 【题型示例】已知数列{}n

x ,证明{}lim n

x x a →∞

=

【证明示例】N -ε语言 1.由n

x a ε-<化简得()εg n >,

∴()N g ε=???? 2.即对0>?ε,()N g ε?=????。当N n >时,始终有不等式n

x a ε-<成立, ∴{}a x n

x =∞

→lim

第三节 函数的极限 ○0

x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0

lim 【证明示例】δε-语言

1.由()f x A ε-<化简得()0

0x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当0

0x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0

lim ○∞→x 时函数极限的证明

(★) 【题型示例】已知函数()x f ,证明()A x f x =∞

→lim 【证明示例】X -ε语言

1.由()f x A ε-<化简得()x g ε>, ∴()εg X =

2.即对0>?ε,()εg X =?,当X x >时,始终有不等式

()f x A ε-<成立, ∴()A x f x =∞

→lim 第四节 无穷小与无穷大

○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大

?()∞=x f lim ○无穷小与无穷大的相

关定理与推论(★★)

(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=????

(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1

f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1

-为无穷大

【题型示例】计算:()()0

lim x x f x g x →?????

(或∞→x )

1.∵()f x ≤M ∴函数()f x 在

x x =的任一去心邻域()δ,0

x U

内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;)

2.()0lim 0

=→x g x x 即函数()x g 是0

x

x →时的无穷小;

(()0lim =∞

→x g x 即函数()x g 是∞

→x 时的无穷小;)

3.由定理可知()()0

lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞

?=????)

第五节 极限运算法则 ○极限的四则运算法则(★

★)

(定理一)加减法则 (定理二)乘除法则

关于多项式()p x 、()x q 商式的极限运算

设:()()?????+?++=+?++=--n

n n m

m m

b x b x b x q a

x a x a x p 1

101

1

则有

()()??????

?∞=∞→0

lim 0

b a x q x p x m n m n m n >=<

()()()

()000

lim 0

0x x f x g x f x g x →??

??=∞?????

()()()()()0000000,00g x g x f x g x f x ≠=≠==

(特别地,当

()()00lim 0

x x f x g x →=(不

定型)时,通常分子分母约

去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)

【题型示例】求值2

3

3

lim 9

x x x →-- 【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()2

3

3

3

3311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()2

3

9

x f x x -=-的可去间断点

倘若运用罗比达法则求解(详见第三章第二节):

解:()()00

2

3

332

33

11lim lim lim

9

26

9x L x x x x x x x '→→→'

--===-'

-

○连续函数穿越定理(复合

函数的极限求解)(★★)

(定理五)若函数()x f 是定义域上的连续函数,那

么,()()00

lim lim x x x x f x f x ??→→??=????????

【题型示例】求值:9

3lim 23

--→x x x 【

求解示

223

3331

6lim 996

6

x x x x x x →→--===

--

第六节 极限存在准则及两个重要极限

○夹迫准则(P53)(★★★)

第一个重要极限:1sin lim 0

=→x

x

x ∵??

?

??∈?2,0πx ,x x x tan sin <<∴1sin lim 0

=→x x

x 0

00

lim11

lim lim 1sin sin sin lim x x x x x x x x x x →→→→===?? ???

(特别地,0

sin(

)

lim 1x x x x x x →-=-)

○单调有界收敛准则(P57)

(★★★)

第二个重要极限:e

x

x

x =?

?

?

??+∞

→11lim

地,

()()

()()

lim lim lim g x g x f x f x =??????

??

,其中

()0lim >x f )

【题型示例】求值:1

1232lim +∞

→???

??++x x x x 【求解示例】 ()()21

1

1

212

1212

2121

1221

2

2121lim

212

21232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞

+→∞

?++++??+++→∞

+→∞++→∞+++????

?

?==+ ? ? ?+++??

??

??

?

??

??

???=+=+ ? ???++??

??

?

?

?

??

???=+

???+???

?

解:()()12lim 121

21212

121

22lim 1

21x x x x x x x x x e

e

e e +→∞??

?+??

+??+→∞+→∞???+??

+??

+??

?

+?

?

==== 第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U

U U U U U U e +-

2.U U cos 1~212

- (乘除可替,加减不行) 【题型示例】求值:()()x

x x x x x 31ln 1ln lim

2

++++→ 【求解示例】

()()

()()()()()3

131lim 31lim 31ln 1lim 31ln 1ln lim

,0,000020=++=+?+=++?+=++++=≠→→→→→x x x x x x x x x x x

x x x x x x x x x x 所以原式即解:因为

第八节 函数的连续性

○函数连续的定义(★)

()()()000

lim lim x x x x f x f x f x -+

→→== ○间断点的分类(P67)(★) ??

?∞???

?

?)无穷间断点(极限为

第二类间断点可去间断点(相等)跳越间断点(不等)

限存在)第一类间断点(左右极(特别地,可去间断点能在

分式中约去相应公因式)

【题型示例】设函数

()?

?

?+=x a e x f x

2 ,00

0000f e e e

f a a

f a -

-?+

+

?===??=+=??=??

2.由连续函数定义

()()()e f x f x f x x ===+

-→→0lim lim 00 ∴e a =

第九节 闭区间上连续函数

的性质

○零点定理(★)

【题型示例】证明:方程

()()f x g x C

=+至少有一个根介

于a 与b 之间 【证明示例】 1.(建立辅助函数)函数()()()x f x g x C ?=--在闭区间[],a b 上连续;

2.∵()()0a b ???<(端点异号) 3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使

得()0=ξ?,即()()0

f g C ξξ--=(10<<ξ)

4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分 第一节 导数概念

○高等数学中导数的定义及几何意义(P83)(★★) 【题型示例】已知函数()?

??++=b

ax e x f x

1 ,00

>≤x x 在0=x 处可导,求a ,b

【求解示例】

1.∵()()0

010f e f a

-

+'?==??

'=??,()()()0000112

0012f e e f b f e -

-+

?=+=+=??=??

=+=??

2.由函数可导定义

()()()()()0010002f f a f f f b -+-+''===???====??

∴1,2a b ==

【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ????

处的切线与法线方程)

【求解示例】

1.()x f y '=',()a f y a

x '='=|

2.切线方程:()()()y f a f a x a '-=- 法线方程:()()

()1y f a x a f a -=--'

第二节 函数的和(差)、积与商的求导法则

○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=±

2.函数积的求导法则(定理二):()uv u v uv '''=+

3.函数商的求导法则(定理三):

2u u v uv v v '

''-??=

???

第三节 反函数和复合函数的求导法则

○反函数的求导法则(★) 【题型示例】求函数()x f 1

-的导

【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴

()()

1

1

f x f x -'??=??' ○复合函数的求导法则(★★★) 【题型示例】设

(21

22

ln x y e x a -=+,求y ' 【求解示例】

()(()()()()222

22221

22

arcsin 1

22

2

22

1

22

2arcsin 1

222

1

222

arcsin 1

22

arcsi arcsin 1

22

12112122x x x x x x x y e x a e x a x x a e x a x e x a x e x x a e x a e e x a -------''=+++'??'- ?+= + --++ ???

?- = -+++ ??=++解:2n 1

2222

12x x x x a -?? -?-+?

第四节 高阶导数 ○()()()()1

n n f x f x -'??=??(或()()1

1

n n n

n d y d y dx dx

--'??=??

??

)(★)

【题型示例】求函数()x y +=1ln 的

n 阶导数 【求解示例】()1

111y x x

-'==++,

()()()12

111y x x --'??''=+=-?+??

()()()()()23

11121y x x --'??'''=-?+=-?-?+??

……

()

1

(1)(1)(1)n

n n

y n x --=-?-?+!

第五节 隐函数及参数方程

型函数的导数

○隐函数的求导(等式两边

对x 求导)(★★★)

【题型示例】试求:方程y

e

x y +=所给定的曲线C :()x y y =在点

()1,1e -的切线方程与法线方

【求解示例】由y

e x y +=两边对x

求导

即()y y x e '

''=+化简得1y

y e y ''=+?

∴e e y -=-='11

111

∴切线方程:()e x e y +--=-111

1 法线方程:()()e x e y +---=-111 ○参数方程型函数的求导 【题型示例】设参数方程()()?

?

?==t y t x γ?,求2

2

dx y

d 【求解示例】

1.()()

t t dx

dy ?γ''= 2.()

2

2

dy d y dx dx t ?'?? ???='

第六节 变化率问题举例及相关变化率(不作要求) 第七节 函数的微分

○基本初等函数微分公式与微分运算法则(★★★)

()dx x f dy ?'=

第三章 中值定理与导数的应

第一节 中值定理

○引理(费马引理)(★)

○罗尔定理(★★★)

【题型示例】现假设函数()

f x 在[]0,π上连续,在()0,π 上可

导,试证明:()0,ξπ?∈,

使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】 1.(建立辅助函数)令()()sin x f x x ?= 显然函数()x ?在闭区间

[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ?== ()()sin 0f ?πππ== 即()()00??π== 3.∴由罗尔定理知 ()0,ξπ?∈,使得

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0,(),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 ππ-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 0ln(15)lim .sin 3x x x x →+ 2. (6 分)设2,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +? 4. (6分)求3 0(1),f x dx -?其中,1,()1cos 1, 1.x x x f x x e x ?≤?=+??+>?

5. (6分)设函数()y f x =由方程00cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞??+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x ππ??=-≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--?? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 3 1;y x =+ 2 2;3 3 0; 4 0. 三、 1 解 原式2 05lim 3x x x x →?= 5分 53 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分 2212[]121 x y x x '∴=-++ 4分

高等数学大一上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论

结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设 ~,~ααββ'',

且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。

2018最新大一高等数学期末考试卷(精编试题)及答案详解

大一高等数学期末考试卷(精编试题)及答案详解 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 20 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) . d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求 7、(本小题5分) . 求? ππ 212 1cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+30 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422Y 11、(本小题5分) .求? π +20 2 sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分)

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无 穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且 →=0 () lim x f x A x ,A 为常数. 求'() g x

(完整版)高数_大一_上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 1 0lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型. ①定理(x a →时的0 型): 设 (1)lim ()lim ()0x a x a f x F x →→==; (2) 在某(,)U a δo 内, ()f x 及()F x 都存在且()0F x ≠;

大一微积分期末试卷及答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( ) n 1 X cos n = 2 00000001( ) 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 二、填空题 1d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是:2+1 x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11(1)()1m lim lim 2 (1)(3)3477,6 x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 三、判断题 1、无穷多个无穷小的和是无穷小( ) 2、0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、0f"(x )=0一定为f(x)的拐点() 4、若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 1~5 FFFFT 四、计算题 1用洛必达法则求极限2 1 20lim x x x e → 解:原式=2 2 2 1 1 1 330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:332233 33232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim(cos )x x x →求极限

(精选)大一高数期末考试试题

一.填空题(共5小题,每小题4分,共计20分) 1. 2 1 lim() x x x e x →-= .2. ()()1 2005 1 1x x x x e e dx --+-= ? .3.设函数()y y x =由方程 2 1 x y t e dt x +-=? 确定,则 x dy dx == .4. 设()x f 可导,且1 ()()x tf t dt f x =?,1)0(=f , 则()=x f .5.微分方程044=+'+''y y y 的通解 为 . 二.选择题(共4小题,每小题4分,共计16分) 1.设常数0>k ,则函数 k e x x x f +- =ln )(在),0(∞+内零点的个数为( ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分 方程43cos2y y x ''+=的特解形式为( ). (A )cos2y A x *=; (B )cos 2y Ax x * =; (C )cos2sin 2y Ax x Bx x * =+; (D ) x A y 2sin *=.3.下列结论不一定成立的是( ). (A )若[][]b a d c ,,?,则必有()()??≤b a d c dx x f dx x f ;(B )若0)(≥x f 在[]b a ,上可积, 则()0b a f x dx ≥?;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有 ()()?? +=T T a a dx x f dx x f 0 ;(D )若可积函数()x f 为奇函数,则()0 x t f t dt ?也为奇函数.4. 设 ()x x e e x f 11 321++= , 则0=x 是)(x f 的( ). (A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 无穷间断点. 三.计算题(共5小题,每小题6分,共计30分) 1. 计算定积分 2 30 x e dx - 2.2.计算不定积分dx x x x ? 5cos sin . 求摆线???-=-=),cos 1(),sin (t a y t t a x 在 2π= t 处的切线的方程.

大一上学期(第一学期)高数期末考试题(有答案)

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()() x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 0=+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++= 2 2 2 21n n n n n n ππ π π . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 (一) 一、选择题(共12分) 1. (3分)若2,0, (),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 π π -?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 2 4 1(sin )x x x dx -+=? . 3. (3分) 2 1lim sin x x x →= . 4. (3分) 3 2 23y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15)lim .sin 3x x x x →+ 2. (6 分)设1 y x = +求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ? ≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt + =?? 所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞? ?+ ?? ? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x π π?? =- ≤≤ ?? ? 与x 轴所围成图形绕着x 轴旋转一周所得旋 转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().2 2 b b a a b a f x dx f a f b x a x b f x dx -''= ++ --? ? (二) 一、 填空题(每小题3分,共18分) 1.设函数()2 312 2 +--= x x x x f ,则1=x 是()x f 的第 类间断点. 2.函数()2 1ln x y +=,则= 'y . 3. =? ? ? ??+∞→x x x x 21lim . 4.曲线x y 1 = 在点?? ? ??2,21处的切线方程为 .

大一上学期高数期末考试题0001

大一上学期高数期末考试卷 一、单项选择题(本大题有4小题,每小题4分,共16分) 1 (X)= cos x(x + |sinx|),贝= O处有( ) (A) n°)= 2(B)广(°)= 1 (C)广(°)= °(D) /(X)不可导. 设a(x) = |—0(兀)=3-3坂,则当^ —1时( ) 2. 1 + 兀? 9 9 (A) &⑴与0(力是同阶无穷小,但不是等价无穷小;(B) a(“)与仪兀)是 等价无穷小; (C) °(x)是比0(力高阶的无穷小;(D) 0(")是比°(x)高阶的 无穷小. 3. 若F(x)= Jo(力-兀)")力,其中/(兀)在区间上(71)二阶可导且广(小>0,则(). (A) 函数尸⑴ 必在x = 0处取得极大值; (B) 函数尸⑴必在“ °处取得极小值; (C) 函数F(x)在x = 0处没有极值,但点(0,F(0))为曲线>'=F(x)的拐点; (D) 函数F(x)在* = °处没有极值,点(°,F(0))也不是曲线〉'=F(x)的拐点。 4 设f(x)是连续函数,-W(x) = x + 2j o* f(t)dt,贝!j f(x)=( ) 十竺+ 2 (A) 2 (B) 2 +(C) —I (D) x + 2. 二、填空题(本大题有4小题,每小题4分,共16分) 5.腳(f ____________________________________ 己知竿是/(X)的一个原函数贝IJ“(x)?竽dx = (? 7C #2兀 2 2龙2刃—1 \ lim —(cos —+ cos ——H ------ cos -------- 兀)= 7. nfg n n n n i x2arcsinx + l , ------ / ——dx = 8. 飞__________________________ . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数尸曲由方程严+sing)"确定,求0(兀)以及以。).

大一上学期高数知识点电子教案

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: 0lim →x =--0 )0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1sin )(? = 0lim →x x x K 1sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ??>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0,00,1cos 1sin )(21x x x x x Kx x f K K

2017大一第一学期期末高数A试卷及答案

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 2 2βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限 a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++ - . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 1211--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

大一(第一学期)高数期末考试题及答案

( 大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. … 4. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 5. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 6. , 7. = +→x x x sin 20 ) 31(lim . 8. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 9. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 10. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 11. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

大一下学期高等数学期中考试试卷及答案

大一第二学期高等数学期中考试试卷 一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。 1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________ 2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为 3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为 4、 22 22222 (,)(0,0) (1cos())sin lim ()e x y x y x y xy x y +→-+=+ 5、设二元函数y x xy z 3 2 +=,则 =???y x z 2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。 1、旋转曲面1222=--z y x 是( ) (A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成; (B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成; (C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成; (D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成. 2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数. (A).2 12211sin )(cos )(x d x b x a x x b x a x ++++; (B).322 12211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).322 12211)sin cos )((d x d x d x b x a b x a x +++++; (D).322 111)sin )(cos (d x d x d x x b x a x +++++ 3、已知直线π 22122 : -= += -z y x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( ) (A) 两向量a 与b 平行的充要条件是存在唯一的实数λ,使得b a λ=; (B) 二元函数()y x f z ,=的两个二阶偏导数22x z ??,22y z ??在区域D 内连续,则在该区 域内两个二阶混合偏导必相等;

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

相关文档
最新文档