植物生物学期末考试复习概要

植物生物学期末考试复习概要
植物生物学期末考试复习概要

一、名词解释:

胞间连丝:贯穿细胞壁沟通相邻细胞的细胞质连线。为细胞间物质运输与信息传递的重要通道,通道中有一连接两细胞内质网的连丝微管。

后含物:植物细胞内除细胞质和细胞器以外,还有一些储存的营养物质、代谢废物和植物次生物质。细胞周期:连续分裂的细胞从上一次有丝分裂结束到下一次有丝分裂完成所经历的整个过程。

营养繁殖:指植物营养体的一部分从母体上分离,直接形成新个体的繁殖方式。

有丝分裂:真核细胞的染色质凝集成染色体、复制的姐妹染色单体在纺锤丝的牵拉下分向两极,从而产生两个染色体数和遗传性相同的子细胞核的一种细胞分裂类型。通常划分为前期、前中期、中期、后期和末期五个阶段。

凯氏带:某些植物根内皮层细胞的最初发育阶段,纵向壁和横向壁上形成的一条细的木栓质或类木质素的沉积带。

内起源:植物的侧根原基通常起源于母根的中柱鞘,发生于根的深层部位,这种起源方式称为内起源

外始式发育:初生木质部的分化、成熟过程是由外向内进行的,这种发育方式称为外始式。

周皮:某些植物发生增粗生长时形成的次生保护结构。

假二叉分枝:指具有对生叶的植物,在顶芽停止生长或分化成花芽后,由顶芽下两个对生的腋芽同时生长,形成叉状侧枝,这种分枝方式称为假二叉分枝。

异形叶性:同一植株上不同部位具有不同叶形的现象,称为异形叶性

叶镶嵌:由于叶在茎节上着生的位置和方向不同,叶柄长短不一,且叶柄可以扭曲生长,致使叶片之间互相遮阴最小,有利于接受光照。叶的这种排列特性称为叶镶嵌。

同源器官:指不同生物的某些器官在基本结构、各部分和生物体的相互关系以及胚胎发育的过程彼此相同,但在外形上有时并不相似,功能上也有差别。

同功器官:指在功能上相同,有时形状也相似,但其来源与基本结构均不同。

双受精:将两个精细胞分别与卵细胞和中央细胞相融合的现象,称为双受精。

单体雄蕊:植物的一朵花内有雄蕊多枚,花药完全分离,而花丝彼此连结成筒状,包围在雌蕊外面。这样的雄蕊称为单体雄蕊。

四强雄蕊:具有四枚长雄蕊和两枚短雄蕊,如大多数十字花科植物。

异花传粉:经过风力,水力,昆虫或人的活动把一朵花的花粉通过不同途径传播到另一朵花的花柱上过程叫异花传粉。

世代交替:指的生活周期中二倍体的孢子体世代与单倍体的配子体世代有规律地交替出现的现象。

有性生殖:通过配子相结合产生新个体的过程

自花传粉:花粉传到本朵花的柱头上。

髓射线:位于维管束之间,外至皮层、内达髓部,由薄壁组织构成,具有横向运输及储藏的作用。

细胞器:细胞器是细胞质中具有一定结构和功能的微结构。细胞中的细胞器主要有:线粒体、内质网、中心体、叶绿体,高尔基体、核糖体等。它们组成了细胞的基本结构,使细胞能正常的工作,运转。

真果:单纯由子房发育成的果实称为真果。

假果:子房以外的部分或全部参与果实的形成,这类果实称为假果。

春化作用:低温促使植物开花的作用。

长日植物:是要求经历一段白昼长于一定长度,黑夜短于一定长度的时期才能开花的植物。

短日植物:是要求经历一段白昼短于一定长度,黑夜长于一定长度的时期才能开花的植物。

光补偿点:当光强减弱是,光合速率随之降低,当光照减弱到光合作用所吸收的二氧化碳等于呼吸作用释放的二氧化碳时,这时的光照强度称为光补偿点。

碳补偿点:当吸收的二氧化碳量与呼吸作用释放的二氧化碳的量相等时,外界环境中的二氧化碳浓度就叫做二氧化碳补偿点。

光饱和点:光合速率在一定范围内随光照强度增加而加快,超过一定范围后,光合速率增加转慢,当达到某一定的光照强度时,光合速率不再增加,这时的光照强度为光饱和点。

碳饱和点:当空气中的二氧化碳浓度增高时,光合速率可增加,达到一定程度时,再增加二氧化碳浓度,光合速率不再增加,这时二氧化碳的浓度称为二氧化碳饱和点。

植物激素:植物体内合成的,对生长发育有显著调节作用的微量有机物。

植物生长调节剂:具有植物激素生理活性的人工合成化合物,包括促进剂、生长抑制剂和生长延缓剂。

向性运动:是指植物受环境因子单方向刺激而产生的定向生长运动。

感性运动:是指没有一定方向的外界刺激所引起的运动,其反应方向与刺激方向无关。

蒸腾作用:是指植物体内的水分通过体表,以水蒸气的形式,向外散失的过程。

光合作用:是绿色植物吸收光能,同化二氧化碳和水,制造有机物并释放氧的过程。

1、植物细胞的基本结构

植物细胞由细胞壁和原生质体两大部分组成。原生质体一词来源于原生质。原生质是指组成细胞的有生命物质的总称,是物质的概念。而原生质体是组成细胞的一个形态结构单位。是指活细胞中细胞壁以内各种结构的总称,是细胞内各种代谢活动进行的场所。原生质体包括细胞膜、细胞质、细胞核等结构。植物细胞中的一些贮藏物质和代谢产物统称为后含物。

2、简述根尖分区和它们的特点

根尖有根冠、分生区、伸长区和根毛区。

各区的特点是:

1、根冠,根尖最先端的帽状结构,罩在分生区的外面,有保护根尖幼嫩的分生组织,使之免受土壤磨损的功能。

2、分生区,也叫生长点,是具有强烈分裂能力的、典型的顶端分生组织。

3、伸长区,位于分生区稍后的部分。一般长约2~5毫米。是根部向前推进的主要区域,其外观透明,洁白而光滑。

4、根毛区。此区的各种细胞已停止伸长生长有较大的液泡(有小液泡融合而成),并已分化成熟,形成各种组织。表皮密生的茸毛即根毛,是根吸收水分和无机盐的主要部位。

3、述双受精过程及其生物学意义

双受精过程:

有两个精核分别进入卵细胞和中央细胞中,一个精核进入卵细胞后与卵核融合形成受精卵,形成二倍体合子,将来发育为胚。另一个精子进入中央细胞,精核与两个极核融合,形成初生胚乳核,将来发育成三倍体的胚乳。

双受精的生物学意义:

一方面,精细胞与卵细胞的融合形成二倍体的合子,恢复了各种植物原有的染色体数目,保持了物种遗传的相对稳定性;同时通过父、母本具有差异的遗传物质重新组合,使合子具有双重遗传性,既加强了后代个体的生活力和适应性,又为后代中可能出现新的遗传性状、新变异提供了基础。

另一方面,另一个精细胞与中央细胞受精形成了三倍体的胚乳,为被子植物过特有,它同样兼具双亲的遗传性,合子及胚是在独特营养组织的哺育下发育,使子代的生活力更强。过程中被吸收)。这样,可以使子代的变异性更大,生活力更强,适应性更为广泛。

因此,双受精作用是植物界有性生殖的最进化、最高级的形式,是被子植物在植物界繁荣昌盛的重要原因之一。同时,双受精作用的生物学意义也是植物遗传和育种学的重要理论依据。

4、蓼型胚囊的发育过程

由合点端有功能的一个大孢子经过3次连续有丝分裂形成,最初8个核分为两群,每群4个核,一群在胚囊的珠孔端,另一群在合点端。然后,珠孔端那群产生构成卵器的一个卵细胞和两个助细胞,以及一个上极核;合点端那群形成3个反足细胞和一个下极核。上、下极核都属于中央细胞。所以成熟胚囊为8核、7细胞的结构。被子植物大约有70%以上的科其胚囊属于这种发育类型。

5、被子植物的主要特征

具有真正的花、具有雌蕊,形成果实、具有双受精现象、孢子体进一步的发达和分化、配子体进一步退化6、果实和种子对传播的适应

以果实自身的机械力量散布种子、适应人及动物的传播、适应风力的传播、适应水力的传播

7、十字花科的主要特征

主要特征

茎和叶:草本,常具辛辣味。单叶,基生叶常呈莲座状,茎生叶互生,无托叶。

花:总花序状。十字花冠,四强雄蕊,蜜腺生于花托上,常与萼片对生。子房1室,被假隔膜分为假2室,横切面上有2个侧膜胎座。

果实和种子:角果(长角果和短角果)。种子无胚乳,胚弯曲。

8、百合科的主要特征

单子叶植物纲,大多数为草本,少数为木本。地下具鳞茎或根状茎,茎直立或呈攀援状,叶基生或茎生,茎生叶常互生,少有对生或轮生。花单生或聚集成各式各样的花序,花常两性,辐射对称,各部为典型的3出数,花被片6枚,花瓣状,两轮,离生或合生。雄蕊6枚,花丝分离或连合。子房上位,常为3室,蒴果或浆果。产于温带和亚热带。我国各地均产,以西南地区最盛。

9、主动吸水与被动吸水

植物吸水一个原因就是根压的作用,由植物根系生理活动而引起的吸水过程。蒸腾使叶片细胞失水,渗透压增高,水分在细胞间自由扩散,这样对周围细胞的水就产生了拉力,也就是蒸腾拉力。由蒸腾拉力引起的吸水的过程为被动吸水。根压吸水称为主动吸水,蒸腾吸水称为被动吸水。一般情况下,植物进行着蒸腾作用,水分子的吸收主要由蒸腾拉力引起,只有在春季叶片尚未展开或蒸腾速率很低的情况下,根压才是吸水的主要动力。

1、试述双子叶植物根的初生结构

横切面观察可分为表皮、皮层和维管柱3部分。

2、试述双子叶植物茎的初生结构

在横切面上,可以看到表皮、皮层、中柱三个部分。

3、双子叶植物根的初生结构与双子叶植物茎的初生结构有什么不同之处?

a.根表皮上有根毛、气孔,茎则有气孔无根毛;

b.根具有内皮层、和中柱鞘,内皮层有凯氏带,茎中多无明显的内皮层,均无凯氏带和中柱鞘;

c.木质部与韧皮部的排列方式不同,根是相间排列,茎是相对排列;

d,根的初生木质部的发育顺序为外始式,而茎中为内始式;

e.茎中有髓、髓射线,根中央多为后生木质部占据,仅少数植物根有髓,但无髓射线。

4、双子叶植物根的初生结构与双子叶植物茎的初生结构有什么相同之处?

均由表皮,皮层和维管柱三部分组成,各部分的细胞类型在根和茎中也基本一致,根、茎中初生韧皮部发育顺序均为外始式。

5、植物的叶由那几部分组成?植物的叶是如何适应干旱的环境?

植物的叶一般由叶片、叶柄和托叶三部分组成;

旱生植物的叶一般具有保持水分和防止蒸腾的明显特征,通常向着这两个不同的方向发展:

一类是对减少蒸腾的适应,形成小叶植物,其叶片小而硬,通常多裂,表皮细胞外壁增厚,角质层也厚,甚至于形成复表皮气孔下陷或局限在气孔窝内,表皮常密生表皮毛,栅栏组织层次多,甚至于上下两面均有分布,机械组织和输导组织发达,如夹竹桃;

另一类是肉质植物,如芦荟,其特征是叶肥厚多汁,在叶肉内有发达的薄壁组织,储存有大量的水分,以适应旱生的环境。

6、植物的叶有那几部分组成?沉水植物的叶是如何适应水生的环境?

植物的叶一般由叶片、叶柄和托叶三部分组成;

对于沉水叶,环境中除空气不足外,光照强度显然也不够,因此为适应水生环境,沉水植物的叶的结构与旱生植物的不同,其叶片的结构特点是:机械组织、保护组织退化,角质膜薄或无、叶片薄或丝状细裂,叶肉细胞层少,没有栅栏组织和海绵组织的分化,通气组织发达。

7、植物的花由哪几部分组成?虫媒花是如何适应其传粉媒介的?

花梗、花托、花被、雄蕊群、雌蕊群;

虫媒花大都具有鲜艳美丽的花被,有浓厚的芳香或其他气味,有丰富的蜜腺。花粉粒通常较大,表面粗糙,有刺或突起,具有黏性,这些特点有利于昆虫往来穿梭于花中时黏附花粉,起到传粉的作用。

8、植物的花由哪几部分组成?风媒花是如何适应其传粉媒介的?

花梗、花托、花被、雄蕊群、雌蕊群;

风媒花一般小而不鲜艳,花无香气,常无蜜腺,花粉体积小、质轻,较干燥、表面光滑,便于被风吹到相当的高度与距离相当远的地方去。风媒花雌蕊花柱较长,柱头往往膨大成羽状裸露在外,便于接受花粉。有些风媒花的柱头会分泌黏液,便于粘住飞来的花粉。

9、试述被子植物花的基本结构特点,一朵花开花传粉受精后各部分变化如何?

花的基本结构:

一朵完全花是由花梗、花托、花被、雄蕊群、雌蕊群等几部分构成。在长期的演化过程中,以及在不同的环境下,花的各部位发生各种形态变异,形成了千姿百态、绚丽多采的花的世界。花的形态特征是被子植物分类的重要依据之一,同时也是研究不同科属植物之间亲缘关系的重要根据。

一朵花开花传粉受精后各部分变化:

传粉后,花粉受到柱头分泌的黏液的刺激,就萌发形成花粉管。花粉管沿着花柱向子房生长。花粉管内有精子。子房内的胚珠中有卵细胞。当花粉管到达胚珠时,花粉管里的精子就会与卵结合,形成受精卵。

受精后,子房逐渐发育成为果实,而花的其他结构先后枯萎或凋落。最终,子房的各部分也逐渐发育成果实中相应的结构。(子房中的子房壁发育成果皮,胚珠中的珠皮、受精卵分别发育成种子中的种皮、胚,果皮和种子即为一个完整的果实)

10、试述果实的三种划分依据和它们的划分类型。

果实的划分类型有:真果与假果,又有单果、聚合果和聚花果之分;

它们的划分依据是:单纯由子房发育成的果实为真果;子房以外的部分或全部参与果实的形成,这类果实称为假果;单果是一朵花中只有一个雌蕊形成一个果实;聚合果是一朵花内有若干离生心皮雌蕊聚生在花托上所形成的果实;聚花果是由花序形成的一个果实,又叫复果。

十、下面是两种被子植物的方程式,根据方程式所提供的信息,描述这两种植物花的形态特征,并由此推断它们在分类上分别属于哪个科、哪个目、哪个纲、哪个门?

(1)*K(5)C5A(∞)G(3:3:∞)(2)*P3+3A3+3G(3:3:∞)

(1)花的形态特征:花两性,常有副萼;单体雄蕊,花药一室,花粉粒大且具刺。

属锦葵科,锦葵目。

属百合科百合目。

11、高等植物固定二氧化碳有什么途径?

高等植物固定二氧化碳的生化途径有3种,即卡尔文循环(C_3途径)、四碳二羧酸途径(C_4途径)和景天科植物酸代谢途径(CAM途径)。

12、光反应与碳反应有什么联系?

光反应为暗反应提供能量,暗反应为光反应提供原料;

13、为什么C4植物光合效率比C3植物高?

因为C4植物能把稀薄的二氧化碳通过C3-C4-C3使二氧化碳的浓度增高,从而增加光合作用效率,光合作用只和二氧化碳浓度和光照强度有关,和能量无关;

解剖结构上:C4植物花环型结构,叶肉细胞固定CO2,起CO2泵作用,提高卡尔循环场所CO2的浓度。鞘细胞中的光合产物可就近运入维管束,从而避免了光合产物累积对光合作用可能产生的抑制作用。

生理上:PEPC活性是RUBPC活性的60倍。C4植物的叶肉细胞中的PEPC对底物HCO3的亲和力极高,细胞中的HCO3浓度一般不成为PEPC固定CO2的限制因素。

C4植物光呼吸很弱。BSC中有高浓度的CO2从而促使RUBISCO的羧化反应,降低了光呼吸,且光呼吸释放的CO2又易被再固定。

14、暗期间断的效果决定于最后一次照射的是红光还是远红光?

对于SDP(短日照)而言,红光阻止开花,远红光促进开花;

对于LDP(长日照)而言,红光促进开花,远红光阻止开花。

15、光合转化过程通过什么?发生在什么时候、什么场所?

光反应场所:内囊体膜;暗反应场所:叶绿体基质;

光反应为暗反应提供能量,暗反应为光反应提供原料;

光反应:由光合色素将光能转变成活跃化学能并形成ATP和NADPH,放出O2的过程,该反应在叶绿体基粒囊体膜上进行;碳反应:是利用ATP和NADPH的化学能使CO2还原成糖或其他有机物的系列酶促过程,该反应在叶绿体基质中进行。

16、碳反应有什么途径?

在这一反应中,叶绿体利用光反应产生的ATP和NADPH这两个高能化合物分别作为能源和还原的动力将CO2固定,使之转变成葡萄糖, 由于这一过程不需要光所以称为暗反应。碳固定反应开始于叶绿体基质, 结束于细胞质基质。

17、为什么C3途径是植物碳反应的最基本途径?

因为无论是C3植物还是C4植物都要进过C3途径才能把CO2转化为有机物(糖)。C4途径中固定CO2的酶(PEP羧化酶)有很强的亲和能力,可以将大气中的低浓度CO2固定下来,因此C4途径固定CO2的能力要比C3途径强,起到CO2泵的作用,提高了C4植物利用CO2的能力。干旱条件下,叶片气孔关闭,C4植物能利用叶肉细胞间隙的低浓度CO2光合,C3植物则不能。

18、C4植物比C3植物更适应高温干旱的环境

高温干旱的环境使得植物叶片上气孔关闭以减少水分的散失,可气孔关闭会使叶片吸收CO2受阻,从而影响光合作用。C4植物具有C4途径,因此能够利用叶肉细胞间隙中的低浓度CO2进行光合作用,而C3植物就不能利用低浓度CO2,所以说C4植物比C3植物更适应高温干旱的环境。

19、CAM植物特点:

1、CO2固定时间:晚上,并以苹果酸贮藏在液泡中;

2、关键酶:PEPC

3、白天苹果酸从液泡释放到叶绿体参与卡尔循环

4、CAM植物与干旱环境有关,景天,仙人掌,菠萝等。

20、外部因素对光合作用的影响

1、光(光照强度、光质)

2、光饱和现象,光照低时,光合速率随光照增加而增加,但光强进一步增加时,光合速率增加幅度逐渐减少;

原因:

1、光合色素和光化学反应来不及利用

2、CO2同化速度慢,不能与光反应相协调

21、植物运动

向性运动:向光性、向重力性、向水性、向化性

感性运动:感夜性、感震性、感热性

22、植物激素的作用

生长素:IAA,顶端优势,促进植物生长,促进细胞分裂和分化,刺激乙烯的形成,刺激果实发育,向性反应,诱导插条产生不定根!

细胞分裂素:促进细胞分裂和扩大,延缓叶片衰老,促进侧芽生长,抗顶端优势,组织培养中诱导芽的分化;

开花;

脱落酸:促进休眠,促进气孔关闭,提高抗逆性乙烯:促进果实成熟,排胶

林业生物技术复习资料

《林业生物技术》复习重点 一、概念与名词 1、植物离体快速繁殖 ——又称微快繁,简称微繁, 应用植物细胞的“全能性”理论,在无菌条件下,把离体的植物器官(如根、茎、叶、花、果实、种子等)、组织(如花药、胚珠、形成层、皮层、胚乳等),放在人工控制的环境中,使其分化、繁殖,在短时间内产生大量遗传性一致的完整新植株的技术。是利用植物组织培养技术进行的一种营养繁殖方法,是常规营养繁殖方法的一种扩展与延伸。 2、试管外生根技术 ——试管外生根技术是指将组织培养茎芽的生根诱导与驯化培养结合在一起,直接将茎芽扦插到试管外有菌环境中,边诱导生根边驯化培养。该方法舍弃了组织培养苗在试管内生根这一环节,不仅避开了瓶内生根难的问题,同时也大大缩短了育苗周期和节省了育苗成本。 3、林业生物技术 ——应用自然科学及工程学原理,依靠森林植物、动物、微生物作为反应器将物料加工转化,规模化生产和提供人们所需的生态环境、生物质产品和公益性服务的科学技术。(P8) 4、细胞全能性 ——是指植物细胞具有发育成一个完整植株的全部遗传信息,在适当条件下能够形成完整植株。(P26)5、组织培养 ——组织培养是指将植物的形成层组织、分生组织、表皮组织、薄壁组织和各种器官组织以及愈伤组织进行离体培养的技术。 6、胚珠培养 ——胚珠培养是将授粉的子房在无菌条件下解剖后,取胚珠置于培养基中培养的过程。有时也把胚珠连同胎座一起取下来培养。 7、离体叶的培养 ——在自然界,很多植物的叶具有强大的再生能力,能从叶片产生不定芽的植物,离体叶培养指包括叶原基、叶柄、叶鞘、叶片、子叶在内的叶组织的无菌培养。它大多经脱分化形成愈伤组织,再由愈伤组织分化出茎和根。其中叶片培养是一个典型的代表。 8、植物细胞工程 ——植物细胞工程是植物生物技术的一个重要组成部分,是在离体培养条件下,在细胞水平上对植物材料进行遗传操作的技术,即对植物体的任何一个部分(器官、组织、细胞、原生质体)进行离体诱导使其称为完整植株的技术。 9、外植体 ——外植体指植物组织培养中用来进行无菌培养的离体材料,可以是器官、组织、细胞和原生质体等。 10、细胞悬浮培养 ——细胞悬浮培养是将游离的植物细胞按一定的细胞密度,悬浮在液体培养基中进行培养增殖的技术。 11、花粉培养 ——花粉培养也叫小孢子培养,是从花药中分离出花粉粒,使之成为分散的或游离的状态,通过培养使花粉粒脱分化,进而发育成完整植株的过程。 12、原生质体 ——原生质体是指植物细胞中除去细胞壁具有细胞全能性的裸露部分。 13、转基因林木 ——转基因林木是指利用基因工程技术改变基因组构成,用于林业生产或者林产品加工的森林植物。

植物生物学复习思考题

植物生物学复习思考题 绪论 1. 试述植物科学在自然科学和国民经济发展中的意义? 2. 怎样才能学好植物生物学? 第一章植物细胞与组织 一、名词解释 原生质和原生质体染色质和染色体质膜和膜系统胞间连丝传递细胞细胞周期微管束通道细胞纹孔后含物 二、简答题 1.简述叶绿体的超微结构。 2.简述植物细胞吸收矿质元素的方式及过程。 3.简述植物的复合组织。 4.有丝分裂和减数分裂的主要区别是什么?它们各有什么重要意义? 三、思考题 1.从输导组织的结构和组成来分析为什么被子植物比裸子植物更加高级?2.分生组织和成熟组织之间的关系怎样? 第二章植物体的形态结构和发育 一、名词解释 上胚轴和下胚轴次生生长和次生结构外始式和内始式叶迹和叶隙根瘤与菌根分蘖和蘖位年轮树皮凯氏带芽鳞痕离层泡状细胞叶镶嵌共质体叶枕射线 二、简答题 1.种子的基本结构包括哪几部分?有胚乳种子和无胚乳种子在构造上有什么不同? 2.什么是种子的休眠?种子休眠的原因是什么? 3.根尖可以分为哪些区域?其特点是什么?生理功能是什么?其相互联系是什么? 4.侧根是怎样形成的?简要说明它的形成过程和发生的位置? 5.根的初生结构横切面可分为几部分?属于哪些结构? 6.一棵"空心"树,为什么仍能活着和生长? 7.什么是茎尖、茎端、根尖、根端?各有何区别? 8.禾本科植物茎的结构是怎样的? 9.简述水分从土壤经植物体最后通过叶散发到大气中所走的路程。 10.旱生植物的叶在其构造上是如何适应旱生条件的。 11.简述叶和芽的起源过程。 12.怎样区别单叶和复叶? 13.一般植物叶下表面气孔多于上表面,这有何优点?沉水植物的叶为什么往往不存在气孔? 14.什么是中柱?中柱有几种类型?各有什么特点

植物生物学复习参考

植物生物学复习重点: 1、个体发育与系统发育:p440 个体发育:指任一植物个体,从其生命活动的某一阶段开始,经过一系列的生长、发育、分化、成熟,直到重又出现开始阶段的全过程。 系统发育:指某个物种、某个类群或整个植物界的形成、发展、进化的过程。 个体发育与系统发育之间的关系:个体发育是系统发育的环节,反映了系统发育过程的某些特征。个体发育由系统发育所决定,个体发育又使系统发育不断地延续和 发展。没有个体发育,系统发育也就停止。 2、达尔文自然选择学说的基本观点:p438 遗传是生物的普遍特征。生物的遗传性能使物种保持稳定。 生物都存在变异,每一代变异,没有两个生物个体是完全一样的。 人工选择的实质是利用生物的变异,把对人有利的变异保留和累积起来,连续选择使成显著变异,以培育出有益于人的品种。 生物是按几何级数增加个体数量的,但由于生活条件有限,就必须发生生存斗争,其结果是适者生存,不适者淘汰。 自然选择是生物进化的力量。 3、光和作用能量的转变过程: 简言之:太阳能—光和电子中的电能—ATP、NADPH中活跃的化学能—有机物中稳定的化学能。答题时要适当扩充点,组织好语言。 4、CO2如何转变成有机物? 这涉及到Calvin循环,这个循环可分三个阶段: 第一阶段(CO2的固定):3分子核酮糖二磷酸(简称RuBP)固定3分子CO2,形成6分子3-磷酸甘油酸(简称PGA),催化这一反应的酶是核酮糖二磷酸梭化酶。 第二阶段(氧化还原反应):三碳的糖酸(PGA)被还原成三碳的糖,即甘油-3-磷酸(G3P)。 (以后G3P在转变成葡萄糖等6个碳的糖和多糖,如淀粉。但已不属于Calvin循环)第三阶段(RuBP的再生):5个三碳糖(G3P)变成三个五碳糖。RuBP的再生需要ATP。 CO2+C5→2C3(在酶的催化下) C3+【H】→(CH2O)+ C5(在酶和ATP的催化下) 具体如下: 卡尔文循环是光合作用的暗反应的一部分。反应场所为叶绿体内的基质。循环可分为三个阶段: 羧化、还原和二磷酸核酮糖的再生。大部分植物会将吸收到的一分子二氧化碳通过一种叫二磷酸核酮糖羧化酶的作用整合到一个五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。此过程称为二氧化碳的固定。这一步反应的意义是,把原本并不活泼的二氧化碳分子活化,使之随后能被还原。但这种六碳化合物极不稳定,会立刻分解为两分子的三碳化合物3-磷酸甘油酸。后者被在光反应中生成的NADPH+H还原,此过程需要消耗ATP。产物是3-磷酸丙糖。后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。剩下的五个碳原子经一些列变化,最后在生成一个1,5-二磷酸核酮糖,循环重新开始。循环运行六次,生成一分子的葡萄糖。 葡萄糖可以又转化为其他能源物质或有机物,如蛋白质,脂肪等。 5、植物吸收水分的几种动力:p141 根系吸水的两个动力:蒸腾拉力(Transpiration pull)和根压(root pressure) 一般来说,蒸腾拉力在根系吸水过程中是主要的 由于蒸腾作用产生的一系列水势梯度使水分沿着导管上升的力。其吸水机理为渗透理论

植物生物学总结

第一章植物细胞得结构与功能 质膜:就是包围在细胞质表面得一层薄膜,通常紧贴细胞壁,厚度约7~8 nm (原生质体表面得一层薄膜,脂类与蛋白质) 质膜得结构:脂双层+膜蛋白+膜糖 质膜得功能:1、物质跨膜运输2、能量转换3、代谢调节4、细胞识别5、抗逆性6、信号转导7、纤维素得合成与微纤丝得组装 生物膜得“流动镶嵌模型”主要特点:有序性、流动性、不对称性 质膜有许多重要得生理功能。质膜具有选择透性,能有选择地允许物质出入细胞,能控制细胞与外界环境之间得物质交换,维持细胞内环境得相对稳定;质膜又具胞饮作用、吞噬作用与胞吐作用;此外,质膜 还具有主动运输,接受与传递胞外信息,细胞间得相互识别以及抵御病菌感染等功能。因此,质 膜对细胞得生命活动有重要作用。 细胞壁 化学组成:主要就是多糖,包括纤维素、果胶质与半纤维素等。往往在多糖组成得细胞壁中添加了其她成分,如木质素,还有不亲水得角质、木栓质与蜡质等。 层次:根据时间与化学成分得不同分成三层: ①胞间层(中胶层、中层):细胞分裂产生新细胞就是最早形成,就是相邻细胞共有得一种结构,存在于细胞壁得最外面。主要成分就是果胶质,特性就是柔软与胶粘,由可塑性,在细胞间起缓冲作用。 ②初生壁:细胞分裂与正在生长时形成得细胞壁,即细胞停止生长前形成得细胞壁,存在于胞间层内侧。主要成分就是纤维素,半纤维素与果胶质,通常较薄,柔软富有弹性,能随细胞生长而扩展。 ③次生壁:细胞体积停止增大后加在初生壁内侧继续积累得细胞壁,主要成分为纤维素与半纤维素,并常有木质素、木质、栓质等物质填充其中,常出现在机械支持或运输作用得细胞中。 功能:①包围在原生质体外得坚韧外壳;②保护、支持作用;③吸收、蒸腾、运输、分泌;④细胞识别;⑤参与细胞生长调控。 初生纹孔场:细胞得初生壁上得稀薄区域。 胞间连丝:穿过细胞壁与胞间层,沟通相邻细胞得原生质细丝。它就是细胞原生质体间物质与信息直接联系得桥梁,就是多细胞植物体成为一个结构得功能上统一得有机体得重要保证。就是连接相邻两个植物细胞得跨细胞得细胞器,就是植物细胞间物质与信息交流得直接通道,行使水分、营养物质、小得信号分子以及大得胞间运输功能。 细胞间物质运动方式:被动运输(简单扩散、促进扩散)、主动运输、内吞作用、外排作用。 第三章细胞分裂、细胞分化与细胞死亡 细胞分化:个体发育过程中,细胞在形态、结构与功能上发生改变得过程,称为细胞分化。 细胞分化得应用:细胞分化就是基因有选择地表达得结果。不同类型得细胞专门活化细胞内某种特定基因,使其转录形成特定得信使核糖核酸,从而合成特定得酶与蛋白质,使细胞之间出现生理生化得差异,进一步出现形态、结构得分化。 脱分化:已分化得细胞在一定因素作用下可恢复分裂机能,重新具备分生组织细胞得特性,这个过程称为脱分化。脱分化后随之往往发生再分化。 脱分化得应用:为再分化作准备,沿着另一个发展方向,分化为不同得组织。利用根、茎、芽进行扦插。 植物细胞全能性就是指植物体得每一个活细胞都有一套完整得基因组,并具有发育成完整植株得潜在能力。 植物细胞全能性得应用:植物组织培养、细胞培养、原生质体培养。微繁殖、脱病毒、体外种质保存、遗传转化、突变体筛选。 组织培养:就是在无菌条件下,在含有营养物质与植物激素等得培养基中,培养离体植物组织(器官或细胞)得技术。 组织培养得研究进展: 细胞编程性死亡:又称细胞凋亡或者程序性死亡,它就是细胞在一定生理或病理条件下,遵循自身得程序,主动结束其生命得过程,就是正常得生理性死亡,就是基因程序性活动得结果。PCD 管状分子得分化,根冠细胞得死亡,糊粉层得退化消失,胚柄消失,白细胞得死亡,根系生长发育过程中表皮与根毛细胞得枯萎、死亡, 细胞编程性死亡生物学意义:细胞编程性死亡就是有机体自我调节得主动得自然死亡过程,就是以一种与有丝分裂相反得方式去调节细胞群体得相对平衡。它可主动地清除多余得与有机体不相适应得、已经完成

植物生理学重点知识整理

第一章:植物的水分生理 1.水分的存在状态 束缚水—被原生质胶体吸附不易流动的水 特性:1.不能自由移动,含量变化小,不易散失2.冰点低,不起溶剂作用3.决定原生质胶体稳定性4.与植物抗逆性有关 自由水—距离原生质胶粒较远、可自由流动的水。 特性:1.不被吸附或吸附很松,含量变化大2.冰点为零,起溶剂作用3.与代谢强度有关 自由水/束缚水:比值大,代谢强、抗性弱;比值小,代谢弱、抗性强 2.植物细胞对水的吸收方式:扩散、集流、渗透作用 1)、扩散作用—由分子的热运动所造成的物质从浓度高处向浓度低处移动的过程。 特点: 简单扩散是物质顺浓度梯度进行,适于短距离运输(胞内跨膜或胞间) 2)、集流—指液体中成群的原子或分子在压力梯度下共同移动的现象。 特点:物质顺压力梯度进行,通过膜上的水孔蛋白形成的水通道 3)、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 注:渗透作用是物质顺浓度梯度和压力梯度进行 3.水势及组成 1.Ψw =ψs +ψp+ ψm+ψg Ψs:渗透势Ψp:压力势 Ψm:衬质势Ψg:重力势 1)渗透势—在某系统中由于溶质颗粒的存在而使水势降低的值,又叫溶质势(ψπ)。 ψs大小取决于溶质颗粒总数:1M蔗糖ψs> 1M NaClψs (电解质) 测定方法:小液流法 2)压力势—ψp〉0,正常情况压力正向作用细胞,增加ψw;ψp〈0,剧烈蒸腾压力负向作用细胞,降低ψw;ψp =0,质壁分离时,壁对质无压力 3)重力势—当水高1米时,重力势是0.01MP,考虑到水在细胞内的小范围水平移动,通常忽略不计。 4)衬质势—由于亲水性物质和毛细管对自由水的束缚而引起的水势降低值,ψm〈0,降低水势. 2.注:亲水物质吸水力:蛋白质〉淀粉〉纤维素 *有液泡细胞,原生质几乎已被水饱和,ψm =--0.01 MPa ,忽略不计; Ψg也忽略,水势公式简化为:ψw=ψs+ ψp *没有液泡的分生细胞、风干种子胚细胞:ψw=ψm *初始质壁分离细胞:ψw = ψs *水饱和细胞: ψw = 0 3.细胞水势与相对体积的关系 ◆细胞吸水,体积增大、ψsψpψw 增大 ◆细胞吸水饱和,体积、ψsψp ψw = 0最大 ◆细胞失水,体积减小,ψsψp ψw减小 ◆细胞失水达初始质壁分离ψp= 0,ψw= ψs ◆细胞继续失水,ψp 可能为负ψw《ψs 4.蒸腾作用(气孔运动) 小孔扩散律(边缘效应)——气体通过小孔表面的扩散速度不与小孔的面积呈正比,而与

【高考生物】植物生物学复习考试

(生物科技行业)植物生物 学复习考试

第一题: 1、生物种的概念:去问吕静。 2、什么是世代交替:孢子体世代与配子体世代(无性世代与有性世代)交替出现,这就是植 物生活史中的世代交替现象。 3、植物的组织:在植物体中,具有相同来源的细胞(由一个细胞或同一群有分裂能力的细胞) 分裂、生长与分化形成的细胞群称为组织(tissue)。 4、胞间连丝:贯穿细胞壁沟通相邻细胞的细胞质连线。为细胞间物质运输与信息传递的重要 通道,通道中有一连接两细胞内质网的连丝微管。 5、内质网:细胞质内由膜组成的一系列片状的囊腔和管腔,彼此相通形成一个隔离于细胞基 质的管道系统。分为粗糙和光滑两种类型:糙面内质网(或称粗面内质网),膜的表面附有核糖体,其功能是参与蛋白质的合成和运输;光面内质网(或称滑面内质网),膜上没有核糖体,主要功能是参与多种脂质和糖类的合成。 6、植物质壁分离:植物细胞由于液泡失水而使原生质体和细胞壁分离的现象。 7、植物细胞分化:执行不同功能的细胞在其形态、结构和功能上表现出各种变化和特化的过 程。 8、光合作用:植物捕获和利用太阳能,将无机物(CO2和H2O)合成为有机物,即将太阳 能转化为化学能并贮存在葡萄糖和其他有机分子中,这一过程称为光合作用(photosynthesis)。 9、光系统:由叶绿素分子及其蛋白复合物、天线色素系统和电子受体等组成的单位称为光系 统。 10、同源器官:在变态器官中,一般将器官功能不同而来源相同的,称为同源器官,如枝刺、 根状茎、块茎、茎卷须等 11、有限花序:也称聚伞花序,与无限花序的不同之处是有限花序花轴上小花开放的顺序是

植物生物学实验教案—优秀教案

植物生物学实验教案授课专业:生物科学、农学主讲:

实验1 光学显微镜及体视镜的构造和使用方法 一、实验目的 1、了解光学显微镜及体视镜的一般构造和性能; 2、学会正确地使用光学显微镜及体视镜,熟练地掌握对光,低高倍物镜的使用技术, 以及显微镜的维护; 3、学会临时装片的制作和徒手切片。 二、重点与难点 正确地使用光学显微镜及体视镜,熟练地掌握对光,低高倍物镜的使用技术。三、教学方法与手段 本次课主要采取讲授法和讨论法,在学生实验过程中辅以个别指导进行教学。 四、实验内容 1、光学显微镜的构造、使用方法及维护; 2、临时装片的制作及徒手切片的练习; 3、体视镜的一般结构及使用方法。 五、实验材料 洋葱(Allium cepa)根尖永久装片;洋葱(Allium cepa)鳞片叶;油菜(Brassica campestris)或水稻(Oryza sativa)花粉。 六、实验用品 普通光学显微镜、体视显微镜;镊子、载玻片、盖玻片、培养皿、纱布、吸水纸、擦镜纸、滴瓶、毛笔;碘液、水。 七、实验方法 (一)普通光学显微镜的构造、使用方法及维护 1、显微镜的构造 显微镜的基本结构可以分两部分,即光学部分与机械部分。 (1)光学部分 ①物镜、②目镜、③聚光器、④虹彩光圈、⑤反光镜、⑥镜筒 (2)机械部分 ①镜座、②镜柱、③镜臂、④载物台、⑤物镜转换器、⑥调焦螺旋 2、显微镜的使用方法 (1)正确安置显微镜、(2)对光、(3)低倍物镜的使用、(4)高倍物镜的使用(5)浸油物镜的使用、(6)显微镜的使用练习、(7)用毕复原 3、显微镜的放大倍数 4、光学显微镜的显微测微法 (1)显微测微计 ①镜台测微计、②目镜测微计 (2)测量方法

最新植物生物学总结演示教学

第一章植物细胞的结构与功能 质膜:是包围在细胞质表面的一层薄膜,通常紧贴细胞壁,厚度约7~8 nm (原生质体表面的一层薄膜,脂类和蛋白质) 质膜的结构:脂双层+膜蛋白+膜糖 质膜的功能:1.物质跨膜运输2.能量转换3.代谢调节4.细胞识别5.抗逆性6.信号转导7.纤维素的合成和微纤丝的组装 生物膜的“流动镶嵌模型”主要特点:有序性、流动性、不对称性 质膜有许多重要的生理功能。质膜具有选择透性,能有选择地允许物质出 入细胞,能控制细胞与外界环境之间的 物质交换,维持细胞内环境的相对稳定; 质膜又具胞饮作用、吞噬作用和胞吐作 用;此外,质膜还具有主动运输,接受 和传递胞外信息,细胞间的相互识别以 及抵御病菌感染等功能。因此,质膜对 细胞的生命活动有重要作用。 细胞壁

化学组成:主要是多糖,包括纤维素、果胶质和半纤维素等。往往在多糖组成的细胞壁中添加了其他成分,如木质素,还有不亲水的角质、木栓质和蜡质等。 层次:根据时间和化学成分的不同分成三层: ①胞间层(中胶层、中层):细胞分裂产生新细胞是最早形成,是相邻细胞共有的一种结构,存在于细胞壁的最外面。主要成分是果胶质,特性是柔软和胶粘,由可塑性,在细胞间起缓冲作用。 ②初生壁:细胞分裂和正在生长时形成的细胞壁,即细胞停止生长前形成的细胞壁,存在于胞间层内侧。主要成分是纤维素,半纤维素和果胶质,通常较薄,柔软富有弹性,能随细胞生长而扩展。 ③次生壁:细胞体积停止增大后加在初生壁内侧继续积累的细胞壁,主要成分为纤维素和半纤维素,并常有木质素、木质、栓质等物质填充其中,常出现在机械支持或运输

作用的细胞中。 功能:①包围在原生质体外的坚韧外壳; ②保护、支持作用;③吸收、蒸腾、运输、分泌;④细胞识别;⑤参与细胞生长调控。 初生纹孔场:细胞的初生壁上的稀薄区域。 胞间连丝:穿过细胞壁和胞间层,沟通相邻细胞的原生质细丝。它是细胞原生质体间物质和信息直接联系的桥梁,是多细胞植物体成为一个结构的功能上统一的有机体的重要保证。是连接相邻两个植物细胞的跨细胞的细胞器,是植物细胞间物质和信息交流的直接通道,行使水分、营养物质、小的信号分子以及大的胞间运输功能。 细胞间物质运动方式:被动运输(简单扩散、促进扩散)、主动运输、内吞作用、外排作用。 第三章细胞分裂、细胞分化和细胞死亡 细胞分化:个体发育过程中,细胞在形态、结构和功能上发生改变的过程,称为细胞分化。

(完整版)植物生理学笔记复习重点剖析

绪论 1、植物生理学:研究植物生命活动规律及其机理的科学。 2、植物生命活动:植物体物质转化、能量转换、形态建成及信息传递的综合反应。 3、植物生理学的基本内容:细胞生理、代谢生理、生长发育生理和逆境生理。 4、历程:近代植物生理学始于荷兰van Helmont(1627)的柳条试验,他首次证明了水直接参与植物有机体的形成; 德国von Liebig(1840)提出的植物矿质营养学说,奠定了施肥的理论基础; 植物生理学诞生标志是德国von Sachs和Pfeffer所著的两部植物生理学专著; 我国启业人是钱崇澍,奠基人是李继侗、罗宗洛、汤佩松。 第二章植物的水分关系 1、束缚水:存在于原生质胶体颗粒周围或存在于大分子结构空间中被牢固吸附的水分。 2、自由水:存在于细胞间隙、原生质胶粒间、液泡中、导管和管胞内以及植物体其他间隙的水分。 3、束缚水含量增高,有利于提高植物的抗逆性;自由水含量增加,植物的代谢加强而抗逆性降低。 4、水分在植物体内的生理作用:①水分是原生质的主要成分;②水是植物代谢过程中重要的反应物质;③水是植物体内各种物质代谢的介质;④水分能够保持植物的固有姿态;⑤水分能有效降低植物的体温;⑥水是植物原生质良好的稳定剂;⑦水与植物的生长和运动有关。 5、植物细胞的吸水方式:渗透性吸水和吸胀吸水。 6、渗透作用:溶剂分子通过半透膜扩散的现象。 7、水的偏摩尔体积:指加入1mol水使体系的体积发生的变化。 8、水势:溶液中每偏摩尔体积水的化学势差。 9、水通道蛋白调节水分以集流的方式快速进入细胞的细微孔道。 10、溶质势:由于溶质颗粒与水分子作用而引起细胞水势降低的数值。Ψs = -icRT。 11、衬质势:细胞中的亲水物质对水分子的束缚而引起水势下降的数值,为负值。Ψm 12、压力势:由于细胞吸水膨胀时原生质向外对细胞壁产生膨压,细胞壁产生的反作用力——壁压使细胞水势增加的数值。Ψp 13、Ψw = Ψs + Ψm + Ψp + Ψg + …。 14、吸胀吸水:植物细胞壁中的纤维素以及原生质中的蛋白质、淀粉等大分子亲水性物质与极性的水分子以氢键结合而引起细胞吸水膨胀的现象。蛋白质>淀粉>纤维素 15、植物根系由表皮、皮层、内皮层和中柱组成,吸水途径有共质体途径和质外体途径。 16、主动吸水:仅由植物根系本身的生理活动而引起的吸水。分为伤流和吐水。 17、根压:由于植物根系生理活动而促使液流从根部上升的压力。 18、被动吸水(主要方式):通过蒸腾拉力进行的吸水。枝叶的蒸腾作用使水分沿导管上升的力量称为蒸腾拉力。 19、植物蒸腾作用是产生蒸腾拉力并促进根系吸水的根本原因 20、影响根系吸水的因素:(1)内部:导管水势、根系大小、根系对水的透性、根系对水吸收速率;(2)外部:土壤水分、土壤温度、土壤通气状况、土壤溶液浓度。

植物生物学期末考试复习概要

一、名词解释: 胞间连丝:贯穿细胞壁沟通相邻细胞的细胞质连线。为细胞间物质运输与信息传递的重要通道,通道中有一连接两细胞内质网的连丝微管。 后含物:植物细胞内除细胞质和细胞器以外,还有一些储存的营养物质、代谢废物和植物次生物质。细胞周期:连续分裂的细胞从上一次有丝分裂结束到下一次有丝分裂完成所经历的整个过程。 营养繁殖:指植物营养体的一部分从母体上分离,直接形成新个体的繁殖方式。 有丝分裂:真核细胞的染色质凝集成染色体、复制的姐妹染色单体在纺锤丝的牵拉下分向两极,从而产生两个染色体数和遗传性相同的子细胞核的一种细胞分裂类型。通常划分为前期、前中期、中期、后期和末期五个阶段。 凯氏带:某些植物根内皮层细胞的最初发育阶段,纵向壁和横向壁上形成的一条细的木栓质或类木质素的沉积带。 内起源:植物的侧根原基通常起源于母根的中柱鞘,发生于根的深层部位,这种起源方式称为内起源 外始式发育:初生木质部的分化、成熟过程是由外向内进行的,这种发育方式称为外始式。 周皮:某些植物发生增粗生长时形成的次生保护结构。 假二叉分枝:指具有对生叶的植物,在顶芽停止生长或分化成花芽后,由顶芽下两个对生的腋芽同时生长,形成叉状侧枝,这种分枝方式称为假二叉分枝。 异形叶性:同一植株上不同部位具有不同叶形的现象,称为异形叶性 叶镶嵌:由于叶在茎节上着生的位置和方向不同,叶柄长短不一,且叶柄可以扭曲生长,致使叶片之间互相遮阴最小,有利于接受光照。叶的这种排列特性称为叶镶嵌。 同源器官:指不同生物的某些器官在基本结构、各部分和生物体的相互关系以及胚胎发育的过程彼此相同,但在外形上有时并不相似,功能上也有差别。 同功器官:指在功能上相同,有时形状也相似,但其来源与基本结构均不同。 双受精:将两个精细胞分别与卵细胞和中央细胞相融合的现象,称为双受精。 单体雄蕊:植物的一朵花内有雄蕊多枚,花药完全分离,而花丝彼此连结成筒状,包围在雌蕊外面。这样的雄蕊称为单体雄蕊。 四强雄蕊:具有四枚长雄蕊和两枚短雄蕊,如大多数十字花科植物。 异花传粉:经过风力,水力,昆虫或人的活动把一朵花的花粉通过不同途径传播到另一朵花的花柱上过程叫异花传粉。 世代交替:指的生活周期中二倍体的孢子体世代与单倍体的配子体世代有规律地交替出现的现象。 有性生殖:通过配子相结合产生新个体的过程 自花传粉:花粉传到本朵花的柱头上。 髓射线:位于维管束之间,外至皮层、内达髓部,由薄壁组织构成,具有横向运输及储藏的作用。 细胞器:细胞器是细胞质中具有一定结构和功能的微结构。细胞中的细胞器主要有:线粒体、内质网、中心体、叶绿体,高尔基体、核糖体等。它们组成了细胞的基本结构,使细胞能正常的工作,运转。 真果:单纯由子房发育成的果实称为真果。 假果:子房以外的部分或全部参与果实的形成,这类果实称为假果。 春化作用:低温促使植物开花的作用。 长日植物:是要求经历一段白昼长于一定长度,黑夜短于一定长度的时期才能开花的植物。 短日植物:是要求经历一段白昼短于一定长度,黑夜长于一定长度的时期才能开花的植物。 光补偿点:当光强减弱是,光合速率随之降低,当光照减弱到光合作用所吸收的二氧化碳等于呼吸作用释放的二氧化碳时,这时的光照强度称为光补偿点。 碳补偿点:当吸收的二氧化碳量与呼吸作用释放的二氧化碳的量相等时,外界环境中的二氧化碳浓度就叫做二氧化碳补偿点。 光饱和点:光合速率在一定范围内随光照强度增加而加快,超过一定范围后,光合速率增加转慢,当达到某一定的光照强度时,光合速率不再增加,这时的光照强度为光饱和点。 碳饱和点:当空气中的二氧化碳浓度增高时,光合速率可增加,达到一定程度时,再增加二氧化碳浓度,光合速率不再增加,这时二氧化碳的浓度称为二氧化碳饱和点。 植物激素:植物体内合成的,对生长发育有显著调节作用的微量有机物。 植物生长调节剂:具有植物激素生理活性的人工合成化合物,包括促进剂、生长抑制剂和生长延缓剂。 向性运动:是指植物受环境因子单方向刺激而产生的定向生长运动。 感性运动:是指没有一定方向的外界刺激所引起的运动,其反应方向与刺激方向无关。 蒸腾作用:是指植物体内的水分通过体表,以水蒸气的形式,向外散失的过程。 光合作用:是绿色植物吸收光能,同化二氧化碳和水,制造有机物并释放氧的过程。

植物生物学复习题

0绪论复习题 1.什么是植物?在林奈的二界系统和魏泰克的五界系统中,植物包括的范围有何变化? 植物有明显的细胞壁和细胞核,其细胞壁由纤维素构成,具有光合作用的能力——就是说它 可以借助光能及动物体内所不具备的叶绿素,利用水、矿物质和二氧化碳生产食物。魏泰克的五界系统中不仅包括林奈的二界系统中的植物界和动物界,还增加了真菌界,原生生物界,原核生物界。 2.列举5个我国著名的植物研究机构,简述他们的主要研究领域。 ○1中国科学院植物研究所(系统与进化植物学领域、植物生态学(草原)、光合作用、植物分子生理与发育领域等);○2中国科学院昆明植物研究所(植物分类与生物地理、植物化学 与天然产物研发、野生种质资源保藏与利用、民族植物学与区域发展、资源植物研发与产业化);○3中国农业大学,主要研究领域:植物逆境机理、植物发育生物学、作物重要性状功 能基因组学、植物基因表达调控的分子机理;○4中国科学院上海生命科学研究院植物生理生 态研究所(功能基因组学,分子生理与生物化学,环境生物学和分子生态学等);○5中国科学院上海植物逆境生物学研究中心(植物逆境分子生物学研究)。 3.列举5个我国当代著名的植物学家,简述他们的主要研究领域。 张新时院士,植物生态学;洪德元院士,植物细胞分类学;王文采院士,植物分类学;匡廷 云院士,光合作用;周俊院士,植物化学;施教耐院士,植物呼吸代谢;陈晓亚院士,植物 次生代谢。 01细胞与组织-01细胞-复习题 一、选择 1.光镜下可看到的细胞器是。 A.微丝B.核糖体C.叶绿体D.内质网 2.光学显微镜下呈现出的细胞结构称。 A.显微结构B.亚显微结构C.超显微结构D.亚细胞结构 3.下列细胞结构中,具单层膜结构的有。 A.叶绿体B.线粒体C.溶酶体D.核膜E.液泡 4.下列细胞结构中,具双层膜结构的有, A.叶绿体B.线粒体C.溶酶体G.微管I.高尔基体J.内质网K.核膜 5.植物细胞初生壁的主要成分是。 A.纤维素、半纤维素和果胶B.木质、纤维素和半纤维素C.果胶D.角质和纤维素 6.初生纹孔场存在于。 A.次生壁B.初生壁C.胞间层D.角质层 7.糊粉粒贮藏的养分是。 A.淀粉B.脂肪C.蛋白质D.核酸 8.细胞进行呼吸作用的场所是。 A.线粒体B.叶绿体C.核糖体D.高尔基体 9.与细胞分泌功能有关的细胞器是。 A.线粒体B.高尔基体C.溶酶体D.白色体 10.细胞内有细胞活动的“控制中心”之称的是。 A.细胞器B.细胞核C.细胞质D.叶绿体

植物生物学知识点.doc

. 《植物生物学》知识点整理 (据《植物生物学》周云龙版不包括植物生理学部分+前生物竞赛笔记) 1. C 植物 C 植物 3 4 叶结构无“花环状” 结构,只有一种有“花环状” 结构,常具有两 叶绿体种叶绿体 叶绿体维管束鞘细胞中不含叶绿体,维管束鞘细胞中叶绿体个体 叶肉细胞中大无基粒,叶肉中数目少个体 小 分布典型的温带植物典型热带和亚热带植物 二氧化碳固定途径只有卡尔文循环在不同空间分步进行C4循环 途径和卡尔文循环 与二氧化碳亲和力弱强(有 PEP羧化酶) 光和效率低高 共同点:植物重要的生理过程,均有水分参与作用。 2、有世代交替必有核相交替,有核相交替不一定有世代交替。 3、比较旱生叶和水生叶的结构与其功能的适应 旱生植物叶:第一类叶小而厚,多茸毛,表皮细胞壁角质层发达,有的具有复表皮,气 孔下陷或限生于局部区域(气孔窝)。栅栏组织层数多提高了光合作用效率,海绵组织和细 胞间隙不发达,机械组织发达。原生质体少水性,细胞液高渗透压。另一类为肉质植物,有 发达薄壁组织,能保持大量水分,水的消耗少能耐旱。 沉水叶: 1、叶小而薄,叶常常裂成细丝状可以直接吸收水分和溶于水中的气体和盐类, 表皮细胞壁薄多含叶绿体,因此表皮既是保护组织又是吸收同化组织。2、叶肉质不发达,细胞层数少便于光的透入,提高光合效率。3、输导组织和机械组织不发达,具有发达的 通气组织弥补气体吸收不足。 4 、一般表皮细胞壁薄,角质层薄,无气孔表皮毛。 4、比较根和茎的初生结构及其发展 初生结构根茎 表皮具有根毛,无气孔,角质层薄不具根毛,有气孔,角质层厚 皮层有栓质化外皮层,有内皮层,具有凯外皮层有厚角组织,含叶绿体,无内氏带,具中柱鞘皮层,不具凯氏带,不具中柱鞘 维管柱初生韧皮部和初生木质部相间排列,初生韧皮部和初生木质部相对排列,木质部形成脊成星芒状,一般不具髓形成一个维管束,一般具髓 成熟方式初生木质部:外始式初生木质部:内始式 初生韧皮部:外始式初生韧皮部:外始式 发展木栓形成层起源于中柱鞘(内起源),木栓形成层起源于表皮和外围的皮层皮层、表皮死亡,维管形成层无分化(外起源),皮层保留,存在束中和束 间形成层 5、单轴分枝 / 合轴分枝 单轴分枝具有明显的顶端优势,由顶芽不断向上生长形成主轴,侧芽发育形成侧枝,侧 .

植物生物学复习题集200712

植物生物学复习题集(2007年12月) 一、名词概念(说明以下名词的基本概念、基本结构和功能及其生物学意义,一般要求举例说明,每小题3分) 原生质体,原生质,细胞质,微管,微丝,细胞骨架,胞间层,初生壁,次生壁,纹孔,初生纹孔场,单纹孔,具缘纹孔;细胞生长,细胞分化,细胞繁殖,细胞编程性死亡;有丝分裂,减数分裂;胞质分裂,细胞版,成膜体;细线期,偶线期与联会,粗线期,双线期,交叉与染色体片段互换; 原生分生组织,初生分生组织,次生分生组织;顶端分生组织,侧生分生组织,居间分生组织;管胞,导管,导管分子;筛胞,筛管,筛管分子;保卫细胞,副卫细胞,气孔器;薄壁组织,同化组织,厚角组织,厚壁组织;保护组织,机械组织,周皮,石细胞,皮孔; 原核细胞,真核细胞;异形胞,隔离盘,藻殖段; 衣藻型细胞结构,松藻,水綿,石莼,甘紫菜,海带; 同型世代交替,异型世代交替;接合生殖;壳斑藻; 黏菌,发网菌;分生孢子,孢囊孢子,接合孢子;子囊果,子囊孢子,产囊体,受精丝,钩状构成;担子果,担孢子,锁状联合,菌褶,菌环; 颈卵器,精子器,原丝体,蒴苞和假蒴苞,孢蒴,弹丝,蒴齿,环带,蒴盖,蒴轴,蒴台与蒴壶,蒴帽; 原生中柱,管状中柱,真中柱,星散中柱;孢子叶球(穗),厚壁孢子囊或后囊性发育孢子囊,薄壁孢子囊或薄囊性发育孢子囊,大型叶,小型叶,孢子囊群,囊群盖,原叶体; 根冠,根毛,内皮层,凯氏带,原生木质部,后生木质部,内始式发育,内起源,主根与侧根,定根与不定根,主根系与须根系; 顶芽与腋芽,枝芽花芽与混合芽,芽鳞痕,攀援茎,缠绕茎,茎卷须,球茎,鳞茎,单轴分枝,合轴分枝,假二叉分枝,原套与原体,髓射线与维管射线,外始式发育,外起源,维管形成层,纺锤状原始细胞,射线原始细胞,木栓形成层,软树皮或内树皮,硬树皮或外树皮,心材与边材,年轮,初生生长与初生结构,次生生长与次生结构; 栅栏组织,海绵组织,等面叶,异面叶,叶脉,复表皮,气孔窝,C3植物,C4植物,花环式构造,泡状细胞,单叶与复叶,互生对生与轮生,叶卷须; 子房上位,子房下位,心皮,背缝线与腹缝线,边缘台座,侧膜胎座,中轴胎座,湿柱头与干柱头,胚珠,胚囊,绒毡层,双受精,花粉管; 羽状大孢子叶,珠领,珠鳞或种鳞,胞鳞,球果,小孢子叶球(雄球花),大孢子叶球(雌球花); 托叶环痕,蓇葖果,角果,荚果,瓠果,蒴果,柑果,双悬果,瘦果,单体雄蕊,二体雄蕊,四强雄蕊,杠杆雄蕊,聚药雄蕊,蝶形花冠,唇形花冠,筒状花,舌状花,假舌状花,禾本科植物小穗,禾本科植物小花,颖片,稃片,浆片,合蕊柱,肉穗花序,佛焰苞,总状花序,穗状花序,轮伞花序,复伞形花序,头状花序

植物生理学总结

植物生理学总结. 第一章植物的水分生理 1、植物体内的水分存在形式 自由水:参与各种代谢作用,它的含量制约着植物的代谢强度。自由水占总含水量的百分比越大,则植物代谢越旺盛。 束缚水:不参与代谢作用,但植物要求低微的代谢强度去度过不良的外界条件,因此束缚水含量与植物抗性大小有密切关系 2、水势的概念(必考) 水溶液的化学势与纯水的化学势之差除以水的偏摩尔体积所得的商 3、渗透作用 水分子通过半透膜,由水势高的系统向水势低的系统移动的现象,称为渗透(osmosis)。 4、根系吸水的部分,途径,动力 部位:根尖,吸水能力依次为根毛区,根冠,分生区,伸长区。 途径:质外体途径:水分通过细胞壁,细胞间隙等没有细胞质部分的移动,阻力小,所以这种移动方式速度快 跨膜途径:水分从一个细胞移动到另一个细胞,要通过两次质膜,还要通过液泡膜,故称跨膜途径 共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢 共质体途径和跨膜途径统称为细胞途径,这三条途径共同作用是根部吸收水分 动力:根压、蒸腾拉力。(根内外水势差产生原因) 根压:根系生理活动引起液体从根部上升的压力。 蒸腾拉力:蒸腾作用产生的吸水力。叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。 蒸腾拉力为主要原因。 5、蒸腾作用的概念、指标(蒸腾系数、蒸腾速率) 概念:植物体内的水分以气体状态向外界扩散的生理过程。 指标:蒸腾系数:形成1g干物质所消耗的水分克数。 蒸腾速率:单位时间单位叶面积散失的水量。 蒸腾效率(比率):形成干物质g / 消耗1Kg水。 6、脱落酸对气孔运动 脱落酸促使气孔关闭,其原因是:脱落酸会增加胞质Ca2+浓度和胞质溶胶pH,一方面抑制保卫细胞质膜上的内向K+通道蛋白活性,抑制外向K+通道蛋白活性。促使细胞内K+浓度减少,与此同时,脱落酸活化外向Cl—通道蛋白,Cl—外流,保卫细胞内Cl—浓度减少,保卫细胞膨压就下降,气孔关闭 7、气孔运动的三个学说 (1)淀粉-糖互变学说 保卫细胞的水势变化是由淀粉糖的变化影响的。 (2)无机离子吸收学说 保卫细胞的水势变化是由无机离子调节的。 (3)苹果酸生成学说 K+是保卫细胞渗透势发生变化的重要因素。

植物生物学知识点

《植物生物学》知识点整理 (据《植物生物学》周云龙版不包括植物生理学部分+前生物竞赛笔记) 共同点:植物重要的生理过程,均有水分参与作用。 2、有世代交替必有核相交替,有核相交替不一定有世代交替。 3、比较旱生叶和水生叶的结构与其功能的适应 旱生植物叶:第一类叶小而厚,多茸毛,表皮细胞壁角质层发达,有的具有复表皮,气孔下陷或限生于局部区域(气孔窝)。栅栏组织层数多提高了光合作用效率,海绵组织和细胞间隙不发达,机械组织发达。原生质体少水性,细胞液高渗透压。另一类为肉质植物,有发达薄壁组织,能保持大量水分,水的消耗少能耐旱。 沉水叶:1、叶小而薄,叶常常裂成细丝状可以直接吸收水分和溶于水中的气体和盐类,表皮细胞壁薄多含叶绿体,因此表皮既是保护组织又是吸收同化组织。2、叶肉质不发达,细胞层数少便于光的透入,提高光合效率。3、输导组织和机械组织不发达,具有发达的通气组织弥补气体吸收不足。4、一般表皮细胞壁薄,角质层薄,无气孔表皮毛。 5、单轴分枝/合轴分枝 单轴分枝具有明显的顶端优势,由顶芽不断向上生长形成主轴,侧芽发育形成侧枝,侧枝又以同样的方式形成次级侧枝,主轴生长明显占有优势的分时方式。常见于裸子植物。 合轴分枝:没有明显的顶端优势,顶芽只活动一段时间便死亡或生长极为缓慢,紧邻下方的侧芽开放长出新枝,代替原来的主轴向上生长,生长一段时间后又被下方的侧芽取代,

如此更迭。使树冠呈伸展状态,更利于通风透光,大部分被子植物为这种分枝方式。假二叉分枝为合轴分枝的一种。(注意区别二叉分枝) 6、单子叶植物/双子叶植物 A.双子叶植物多为木本,少草本;多为直根系;茎为环状中柱具形成层;叶常为网状脉;花同被,多为4、5基数;胚具2枚子叶;花粉具3个萌发孔。 B.单子叶植物多为草本少木本;多为须根系;茎为散生中柱,无形成层;也常为平行脉;花多3基数,胚具1个子叶;花粉具有1个萌发孔。 7、如何区别根、茎横切面; A.茎上有年轮,根中没有 B.根中具有凯氏带 C.茎中有特别明显的射线 8、三切面(三切面的判别主要要借助于射线的形态、分布) A.横切面:可见到同心圆似的年轮,所见到导管、管胞、木纤维等均为横切面观,可观察到它们的孔径、壁厚及分布状况;仅射线为纵切面观,呈辐射状排列,显示射线的长和宽。 B.切向切面:也称弦向切面。垂直于茎半径所做纵切面(不过中心)年轮常呈倒U形,所见导管、管胞、木纤维均为纵切面,可见其长宽及细胞两端形状、特点;但射线为横切面观,轮廓为纺锤形,可见高宽。 C.径向切面:通过茎的中心做的纵切面,所见管胞、导管、木纤维、射线都是纵切面,可见高、长。射线细胞排列整齐,并与茎的纵轴相垂直。 9、掌状三小叶/羽状三小叶:掌状三出复叶三个小叶柄等长,羽状三出复叶顶端小叶柄较长。 10、如何区别叶片的上下表皮 靠近木质部的为上表皮(近轴面、腹面),反之为下表皮(远轴面、背面)。此为最正确判断方法。但一般情况下气孔器多的为下表皮,反之为上表皮。深绿色为上表皮,浅绿色为下表皮 11、无限花序/有限花序: 无限花序是在开花期间其花序轴可继续生长,不断产生新的苞片与花芽,开花的顺序是花序轴基部的花或边缘花先开,顶部花或中间花后开(自下而上,由外向内);有限花序的花轴顶端不在向上产生新的花芽,而是由顶花下部分形成新的花芽,花开放的顺序从上向下或从内向外。 12、自花传粉可以推出什么特征? 两性花;雄蕊雌蕊同时成熟,柱头对接受自身花粉无生理上障碍。(需同时成立)请自己推出异花传粉可以知道的信息。 13、风媒花/虫媒花 风媒花的花多密集或为穗状花序、葇夷花序等,可产生大量花粉,花粉体积小,质量小,较干燥,表面多光滑少纹饰,雌蕊柱头往往较长,呈羽毛等形状以便接受花粉。花被不显著或不存在。木本往往先叶开花。虫媒花多数具花蜜,特殊气味,往往花朵较大,花显著,有鲜艳的颜色,花粉粒往往较大,表面附有黏性物质,花粉外壁粗糙,常有刺穿。【注:风媒花进化于虫媒花】

植物生物学复习题

植物生物学复习题 一、名词解释: 1.胎座:子房室内心皮腹缝线处或中轴处着生胚珠,胚珠着生的位置称胎座。 2.边缘胎座式:单雌蕊1心皮1室、胚珠沿腹缝线着生的是~。 3.中轴胎座式:合生雌蕊多室子房、胚珠着生在中轴上的是~。 4.侧膜胎座式:合生雌蕊心皮边缘愈合形成1室子房、胚珠着生在腹缝线上的为~。 5.特立中央胎座式:多室子房纵隔消失,胚珠生于中央轴上的是~。 6.全面胎座式:睡莲的胚珠着生在子房室的各个面上,是一种原始的胎座类型,称~。 7.杂性同株:两性花与单性花共同生于同一植株上的为~。 8.雄性生殖单位:被子植物在精细胞与营养核之间和一对精细胞之间存在物理上的 连接和结构上的连接,这种结构单位成为雄性生殖单位. 9.雌性生殖单位:在卵细胞、助细胞与中央细胞交界处缺少细胞壁,三者在结构与功 能上有密切的联系,称~。 10.花序:被子植物的花是多朵花按一定规律排列在一总花柄上,称为~。 11.有限花序:也称聚伞花序,花轴上小花开放的顺序是从上向下或由内向外依次开放。 即花序轴的顶芽首先形成花芽,然后下方侧芽发育称花芽,再由此花芽下方的侧芽 发育成为花芽,如此反复。 12.无限花序:在开花期间其花序轴可继续生长,不断产生新的小花,开花的顺序是在 花序轴基部由下向上或由边缘向中间陆续进行。 13.复合花序: 14.分泌绒毡层(腺质绒毡层):又称腺质绒毡层,整个发育过程没有细胞的破坏,通 过内切向壁向花粉囊内分泌各种物质,至花粉成熟时细胞在原位解体,是被子植 物中最常见的发育方式,如百合。 15.变形绒毡层:又称周缘质团绒毡层,它在发育过程中较早地发生内切向壁和径向 壁的破坏,原生质体逸出进入花粉囊中,彼此融合形成多核的原生质团,分布在 花粉之间,当花粉完全成熟时被吸收,如棉。 16.珠心: 17.合点:珠被、珠心、珠柄汇合的区域称合点。 18.单孢子胚囊:由1个大孢子发育形成的一种被子植物的胚囊类型。 19.四孢子胚囊:一些植物的大孢子母细胞在减数分裂过程中没有细胞壁的形成,4个 单倍体的大孢子核都参与胚囊的发育,这种由4个大孢子核发育形成胚囊的类型称 为~。 20.卵器: 21.传粉:由花粉囊散出的花粉借助一定的媒介被传送到同一花或另一花的柱头上,称 为~。 22.虫媒花:以昆虫作为传粉的载体。 23.风媒花:风媒花的花粉散放后随风飘散,随机地落到雌蕊的柱头上。 24.同被花:有些植物没有萼片和花瓣的分化,称~。 25.自花传粉:花粉落到同一朵花或同一植株另一朵花的柱头上,称~。 26.异花传粉:花粉落在同一植株的另一朵花或同种植物不同植株的花的柱头上,称~。 27.珠孔受精:大多数植物的花粉管从珠孔进入胚珠,并直接进入在珠孔端的胚囊,这 种花粉管进入胚珠的方式称~。 28.合点受精:有些植物,如核桃的花粉管是从合点端进入胚珠,然后沿珠被继续生长

相关文档
最新文档