2.2单晶材料的制备(材化)

单晶硅制备方法

金属1001 覃文远3080702014 单晶硅制备方法 我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 单晶硅,英文,Monocrystallinesilicon。是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。 用途:单晶硅具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随着温度升高而增加,具有半导体性质。单晶硅是重要的半导体材料。在单晶硅中掺入微量的第ЩA族元素,形成P型半导体,掺入微量的第VA族元素,形成N型,N型和P型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。 单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。在开发能源方面是一种很有前途的材料。 单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。 直拉法 直拉法又称乔赫拉尔基斯法(Caochralski)法,简称CZ法。它是生长半导体单晶硅的主要方法。该法是在直拉单晶氯内,向盛有熔硅坩锅中,引入籽晶作为非均匀晶核,然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按照籽晶的方向长大。拉出的液体固化为单晶,调节加热功率就可以得到所需的单晶棒的直径。其优点是晶体被拉出液面不与器壁接触,不受容器限制,因此晶体中应力小,同时又能防止器壁沾污或接触所可能引起的杂乱晶核而形成多晶。直拉法是以定向的籽晶为生长晶核,因而可以得到有一定晶向生长的单晶。 直拉法制成的单晶完整性好,直径和长度都可以很大,生长速率也高。所用坩埚必须由不污染熔体的材料制成。因此,一些化学性活泼或熔点极高的材料,由于没有合适的坩埚,而不能用此法制备单晶体,而要改用区熔法晶体生长或其

粉末冶金技术论文..

粉末冶金技术 摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。 关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇 Powder metallurgy technology (11 grade material class two) Abstract:Powder metallurgy is used for preparing metal or metal powder (or metal powder and metal powder mixture) as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material. Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method. It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powder and high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials. Key words:powder metallurgy, basic process, application, development trend, problems and opportunities

单晶制备方法综述

单晶材料的制备方法综述 前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。本文主要对单晶材料制备的几种常见的方法进行介绍和总结。 单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。 一、从熔体中生长单晶体 从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。二者速率的差异在10-1000倍。从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。 1、焰熔法[2] 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳也法。 1.1 基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。 1.2 合成装置和过程: 维尔纳叶法合成装置

振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。此方法主要用于制备宝石等晶体。 2、提拉法[2] 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 2.1、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 2.2、合成装置和过程 提拉法装置 首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 在提拉法制备单晶时,还有几种重要的技术:(1)、晶体直径的自动控制技术:上称重和下称重;(2)、液封提拉技术,用于制备易挥发的物质;(3)、导模技术。

纳米材料及其关键技术论文

纳米材料及其关键技术 课程名称机械制造技术基础 学院机械工程学院年级2011级专业班机自01班学生姓名陈庆学号20112352 开课时间2013至2014学年第1学期

【摘要】纳米技术是当今世界最优前途的决定性技术。文章简要的概述了纳米材料主要效应、特征和特性已经纳米技术的应用前景 【关键词】纳米技术;纳米材料;效应;特征;特性;应用;前景 一、纳米材料主要效应、特征和特性 (一)纳米材料的效应纳米材料与同质块体材料性质上有很大的差异,引起这种差异的原因可能是多方面的,甚至有些原因至今尚不清楚,但目前学术界普遍认为,纳米材料特殊的物理化学性质与纳米材料四大效应有着密切联系。表面效应:当颗粒的直径减小到纳米尺度范围时,随着粒径减小,比表面积和表面原子数迅速增加。量子尺寸效应:当金属或半导体从三维减小至零维时,载流子在各个方向上均受限,随着粒子尺寸下降到接近或小于某一值(激子玻尔半径)时,费米能级附近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。金属或半导体纳米微粒的电子态由体相材料的连续能带过渡到分立结构的能级,表现在光学吸收谱上从没有结构的宽吸收过渡到具有结构的特征吸收。量子尺寸效应带来的能级改变、能隙变宽,使微粒的发射能量增加,光学吸收向短波长方向移动,直观上表现为样品颜色的变化,如CdS微粒由黄色逐渐变为浅黄色,金的微粒失去金属光泽而变为黑色等。同时,纳米微粒也由于能级改变而产生大的光学三阶非线性响应,还原及氧化能力增强,从而具有更优异的光电催化活性。小尺寸效应:当物质的体积减小时,将会出现两种情形:一种是物质本身的性质不发生变化,而只有那些与体积密切相关的性质发生变化,如半导体电子自由程变小,磁体的磁区变小等;另一种是物质本身的性质也发生了变化,当纳米材料的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,材料的磁性、内压、光吸收、热阻、化学活性、催化活性及熔点等与普通晶粒相比都有很大的变化,这就是纳米材料的体积效应,亦即小尺寸效应。这种特异效应为纳米材料的应用开拓了广阔的新领域,例如,随着纳米材料粒径的变小,其熔点不断降低,烧结温度也显著下降,从而为粉末冶金工业提供了新工艺;利用等离子共振频移随晶粒尺寸变化的性质,可通过改变晶粒尺寸来控制吸收边的位移,从而制造出具有一定频宽的微波吸收纳米材料。宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如:微粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有隧道效应,它们可以穿越宏观系统中的势垒并产生变化,称为宏观量子隧道效应[8].利用这个概念可以定性解释超细镍粉在低温下继续保持超顺磁性。Awachalsom等人采用扫描隧道显微镜技术控制磁性粒子的沉淀,并研究低温条件下微粒磁化率对频率的依赖性,证实了低温下确实存在磁的宏观量子隧道效应[9]宏观量子隧道效应的研究对基础研究和实际应用都有重要的意义。它限定了磁带、磁盘进行信息存储的时间极限。宏观量子隧道效应与量子尺寸效应,是未来微电子器件的基础,或者说确立了现有微电子器纳米材料研究与纳米技术的应用件进一步微型化的极限。库仑堵塞与量子隧穿:当体系的尺度进入到纳米级(一般金属粒子为几个纳米,半导体粒子为几十纳米),体系是电荷“量子化”的,即充电和放电过程是不连续的,充入一个电子所需的能量Ec为e2/2C,为一个电子的电荷,为小体系的电容,eC体系越小,C越小,能量Ec越大。我们把这个能量称为库仑堵塞能。换句话说,库仑堵塞能是前一个电子对后一个电子的库仑排斥能,这就导致了对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子的传输。通常把小体系中这种单电子输运行为称为库仑堵塞效应。如果两个量子点通过一个“结”连接起来,一个量子点上的单个电子穿过能垒到另一个量子点上的行为称作量子隧穿。利用库仑堵塞和量子隧穿效应可以设计下一代的纳米结构器件,如单电子晶体管和量子开关等。以上几种效应都是纳米微粒和纳米固体的基本特性,它使纳米微粒和纳米固体呈现出许多奇特的物理和化学性质,出现一些不同于其它大块材料的反常现象。这使纳米材料具有了

材料科学与工程前沿中期论文

稀土材料 姓名:牛刚学号:S2******* 稀土被称为工业“味精”,在材料的结构与功能改性方面具有非常重要的意义。稀土元素的4f轨道电子数目是稀土元素之间最明显的差异,正是4f轨道电子数目的差异引发了稀土材料之间的性能差异。纳米材料由于具有表面效应、小尺寸效应和宏观量子隧道效应等具有与其他材料完全不同的许多优良性能。 我国稀土产品主要应用于冶金机械、石油化工和玻璃陶瓷等传统领域,但功能材料在高新技术产业中的应用近年来备受关注,稀土在磁性材料、储氢材料、发光材料、催化材料等领域的应用增长迅速,其应用份额从1990年的13%增长到了2002年的30%。稀土功能材料在高新技术中的应用从70年代开始进入了高速发展阶段,应用和产业化开发的速度愈来愈快,一般以5年左右的周期出现一个震动世界的新成果,并迅速形成了高新技术产业。 1稀土磁性材料 1.1稀土永磁材料稀土永磁材料经历了3个阶段的发展,20世纪60年代发明了RECo5型第一代稀土永磁材料;70年代出现了RE2Co17型第二代稀土永磁材料,其磁能积有了较大提高,特别是温度稳定性好,但由于主要原料是Sm和Co,成本高,一般用于军工等特殊领域;第三代稀土永磁REFeB发明于80年代,是当今磁能积最高的永磁材料。近年来全世界NdFeB产量年均增长率达到25%,2003年我国NdFeB磁体的产量达到15000t左右,位居世界第一。但我国稀土永磁制备技术和磁体性能方面与国外比较还有不少差距,多数厂家的产品因磁体性能较低、一致性难以满足高档用户的要求,因此价格仅为国际市场的1/3~1/2,经济效益不尽人意。随着烧结NdFeB磁体应用领域的不断扩大,对其性能提出了越来越高的要求。因此,近几年来,国内外掀起了一股研发高性能烧结NdFeB磁体的热潮。西方国家大部分采用快冷厚带工艺制备高性能烧结NdFeB磁体。用该工艺生产的磁体磁能积高,性能稳定。国内许多单位都在加速开发此新工艺,北京有色金属研究总院稀土材料国家工程研究中心在国家科技部十五科技攻关项目的支持下,已经开发出了具有自主知识产权的快冷厚带制备工艺,并与设备厂家合作设计制造了一台300kg甩带炉,试运行效果良好,产品已基本达到国外用户要求,近年内将实现规模化生产。近年来,稀土永磁材料的研发主要集中在以下几个方面:(1)制备工艺和设备的改进; (2)通过掺杂Co,Al和稀土Tb等提高矫顽力和改善温度稳定性;(3)通过纳米双相耦合技术提高永磁材料的性能;(4)稀土永磁薄膜材料和新型稀土永磁材料的开发。 据全国稀土永磁材料协作网预测,“十五”期间我国烧结NdFeB磁体总产量将达到50,000t,销售总额达到150亿元。到2010年中国烧结NdFeB磁体产量将达到7万吨,占全球75%,销售额将达到260亿元。在未来10年内,我国将成为世界稀土永磁材料的制造中心。 1.2磁致伸缩材料磁致伸缩材料是在偏磁场和交变磁场同时作用下,发生同频率的机械形变的一种材料。与压电陶瓷(PZT)和传统的磁致伸缩材料Ni,Co相比,稀土超磁致

材料化学论文

材料化学论文题高温超导材料研 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧( YBCO和铋锶钙铜氧(BSCCO)钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林?昂尼斯意外地发现,将汞冷却到-268.98 ° C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林?昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A15型超导体和三元系超导体,如Nb s Sn V s Ga Nb s Ge,其中Nb s Ge超导体的临界转变温度(TJ值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuG g 导体,已高于液氮温度(77K) ,高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCu0,再后来又有人将Ca掺人其中,得到Bis尤aCuOg导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了「系高温超导体,将超导临界温度提高到当时公认的最高记录125&瑞士苏黎世的希林等 发现在HgBaCaCi超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K) 以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO) 和二硼化镁(MgB2)。氧化物高温超导材料是以铜氧化物为组分的具有钙钛矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂

单晶制备方法

直拉法制单晶硅和区熔法晶体生长 第一节概述 多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。 多晶硅由很多单晶组成的,杂乱无章的。单晶硅原子的排列都是有规律的,周期性的,有方向性。 当前生长单晶主要有两种技术:其中采用直拉法生长硅单晶的约占80%,其他由区溶法生长硅单晶。 采用直拉法生长的硅单晶主要用于生产低功率的集成电路元件。例如:DRAM,SRAM,ASIC电路。 采用区熔法生长的硅单晶,因具有电阻率均匀、氧含量低、金属污染低的特性,故主要用于生产高反压、大功率电子元件。例如:电力整流器,晶闸管、可关断门极晶闸管(GTO)、功率场效应管、绝缘门极型晶体管(IGBT)、功率集成电路(PIC)等电子元件。在超高压

大功率送变电设备、交通运输用的大功率电力牵引、UPS电源、高频开关电源、高频感应加热及节能灯用高频逆变式电子镇流器等方面具有广泛的应用。 直拉法比用区溶法更容易生长获得较高氧含量(12`14mg/kg)和大直径的硅单晶棒。根据现有工艺水平,采用直拉法已可生产6`18in (150`450mm)的大直径硅单晶棒。而采用区溶法虽说已能生长出最大直径是200mm的硅单晶棒,但其主流产品却仍然还是直径 100`200mm的硅单晶。 区熔法生长硅单晶能够得到最佳质量的硅单晶,但成本较高。若要得到最高效率的太阳能电池就要用此类硅片,制作高效率的聚光太阳能电池业常用此种硅片。 第二节直拉法晶体生长 直拉法: 直拉法又称乔赫拉尔基斯法(Caochralski)法,简称CZ法。它是生长半导体单晶硅的主要方法。该法是在直拉单晶氯内,向盛有熔硅坩锅中,引入籽晶作为非均匀晶核,然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按照籽晶的方向长大。拉出的液体固化为单晶,调节加热功率就可以得到所需的单晶棒的直径。其优点是晶体被拉出液面不与器壁接触,不受容器限制,因此晶体中应力小,同时又能防止器壁沾污或接触所可能引起的杂乱晶核而形成多晶。直拉法是以定向的籽晶为生长晶核,因而可以得到有一定晶向生长的单

单晶硅片制作工艺流程

单晶硅电磁片生产工艺流程 ?1、硅片切割,材料准备: ?工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(掺硼)。 ?2、去除损伤层: ?硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。 ? ? 3、制绒: ?制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。 ? 4、扩散制结:

?扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。 ? 5、边缘刻蚀、清洗: ?扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。 目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。 扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 ? 6、沉积减反射层: ?沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN ,由于PECVD淀积SiN时,不光是生长SiN 作为减反射膜,同时生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。 ? 7、丝网印刷上下电极: ?电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电

新材料论文

在信息爆炸的21世纪,世界上一切都好像春天来临时盛放的鲜花,种类繁多,特别是各种各样的新型工程材料。新型工程材料在诸多方面都起着重要作用甚至是缺一不可的作用,例如人造骨在医学上起到了重要作用;新型建材在建筑工程中发挥着独到的作用等。下面我们就来探讨一下新型工程材料。 和大千世界的万物一样新型工程材料也有着它得天独到的特征。首先从起来原来说,它是在自然界中不存在的,需要人为制造出来的,造物主没有给它特定的名字,于是我们人类就叫它新型工程材料。新型材料获得途径与传统(普通)材料不同新型材料是过去不曾有、自然赛中亦不存在的人造材料。传统的材料是利用天然原材料加以提炼、加工而成的0而新型材料是在研究并掌握了物质结构、变化规律的基础上根据人类的需要通过对源子、分子等的选择、组合并创造必要的环境条件了得到的具有预期性能的物质。所以是人合成创造的,在新型材料的研究和制造中人们是主动的原因有以下3点。 (1)研制新型材料是出于人类的主观需要因而有明确的目韵要求。此点自始至终贯穿于整个新型材料的研究、试验和制造过程中因而是有目的的“创造”。 (2)新型材料的研制是在人类已掌握各方面必需知识的基础之上进行的。由于人类已经越来越多地掌握了物质结构及其变化规律及由此对性能产生的影响因此新型材料的出现绝不是偶然事件也绝不是盲目的摸索而是人类科学、技术发展的必然结果。现在探索和创造新型材料有以下3种途径。①利用极限条件。如超高温、超高压、极低压等以获得有特异性的原子排列特点的材料。②通过形态和纯度的控制。如超细化、超薄膜化、多孔质化等设计和控制技术创造出具有高纯度、完全结晶、非晶态等极限状态的新材料。③材料复合。如金属、陶瓷、有机材料等的相互复合利用其复合效应开发高性能材’ (3)新型材料不像传统材料那样靠大规模、连续生产维持竞争能力它们一般生产规模小经营分散更新换代快而且品种变化频繁。 从科学方面来说,新型工程材料是多学科相互交叉,相互渗透,相互研究的。新型材料的出现是多种学科相互交叉、渗透和互相促进综合研究和进步的成果。是基础学科(如物理、化学、生物数学等)与理化专业技术(如微电子、计算机、冶金学等)新成果交织在一起的成果。新型材料的研究、制造是以先进的科学、技术为基础的是包括物理、化学、冶金学等多种学科综合研究和进步的成果。因此,其涉及面广,知识密度高。如果没有各种学科最新研究成果的指导或支持新型材料的设计、研究是不可能的即使有了设想和设计也不可能制造出来。新型材料工业本身亦是知识技术密集型的新产业其产品—一一新型材料具有极高的附加价值。例如由精密陶瓷材料制成的人造齿售价高达l000万日元蝇而碳纤维达2万日元每kg钢材仅为100日元每kg,可见其相差甚远。 在性能上,新型材料具有高新性能,能满足尖端技术以及设备制造的需要。新型材料具有高斯性能。能满足尖端技术和设备制造的需要。新型材料是高新技术、高新设备得以完成和实现的重要条件和保证。例如,不需高压和钢瓶,也不需要低温致冷设备和绝热保护来贮存氢是一项高新技术是利用新能源——氢的关键。但是如果没有新型的贮氢材料,这一高新技术是不可能实用化的。光导纤维的开发使光纤通信这一高新技术得到实际应用, 高纯单晶硅半导体材料的研制成功,使集成电路问世,开创了微电子学这一新领域。而以新型材料砷化镓制作的电子器件比硅制器件的运算速度快5O倍,甚至高达100倍,从而可使计算机的运算速度达到100亿次/8。所以新型半导体材料的出现才使对无线电波的控制有了希望。令人可喜的是一大批超轻质、耐高温、耐腐蚀、超高强、超电导以及耐超低温等极限材料已经成为航天、海洋、新能源、生物工程以及信息技术等领域的主要应用材料。 从需求上,新型材料发展的驱动力由军事需求向经济需求转变。回顾20世纪由于国防和战争的需要核能的利用和航天航空技术的发展成为新型材料发展的主要驱动力。

单晶材料的制备

单晶材料的制备 High Pressure ResearchVol. 24 No. 4 December 2004 pp. 481 – 490 PREPARATION AND SINGLE-CRYSTAL STRUCTURE OF A NEW HIGH-PRESSURE MODIFICATION OF BaAl2Si2 SHOJI YAMANAKA MASUO KAJIYAMA SADASIVAN N. SIVAKUMAR and HIROSHI FUKUOKA Department of Applied Chemistry Graduate School of Engineering Hiroshima University Higashi-Hiroshima 739-8527 JapanA ternary element mixture of Ba Al and Si in a molar ratio of 1 : 2 : 2 was arc-melted and treated under a high-pressure and high-temperature condition of 5 GPa at 1200 8C. X-ray structural analysis was performed on thesingle crystal obtained by this treatment. The crystal was found to be a new high-pressure modication ofBaAl2Si2 and isotypic with layer structured ThCr2Si2 in the space group I4/mmm. The crystal obtained by thesimple arc-melting also had the same structure high-pressure phase. The low-pressure phase a-BaAl2Si2 wasprepared by annealing the arc-melted sample at 1200– 1000 8C. The single crystals of the a-phase werealso obtained which crystallized in the space group Cmcm. This structure was closely related to the structure ofa-BaAl2Ge2 space group Pnma. It is interesting to note that BaAl2Si2 has a pressure induced polymorphwhereas BaAl2Ge2 has a temperature dependent dimorphism.Keywords: Silicide High pressure Synthesis Clathrate BaAl2Si2 Phase transitionINTRODUCTIONIn a series of studies on the synthesis of new silicon clathrate compounds containing bariumand

材料制备技术 复习题

《材料制备技术》复习题 1.形变退火再结晶的驱动力是什么? 2.什么样的材料适合用形变退火再结晶法制备单晶材料? 3.适合用于形变退火再结晶法制备单晶的形变方法有哪些? 4.简述形变退火法制备单晶的工艺过程。 5.从能力守恒原理讨论直拉法晶体生长中如何控制晶体直径? 6.从熔体中生长单晶常用的方法有哪些? 7.简述定向凝固法制备单晶的工艺过程。 8.简述区域熔化法制备单晶的工艺过程。 9.比较定向凝固法和区域熔化法制备单晶的异同点和优缺点。 10.什么叫Brigman法? 11.什么叫改进的Brigman法? 12.什么叫PVD? 13.什么叫CVD? 14.简述直流溅射发制备薄膜的工艺过程。 15.简述溅射机制。 16.什么叫闪蒸法?为什么要用闪蒸法? 17.什么叫双蒸法?为什么要用双蒸法? 18.什么是离子镀?为什么要用离子镀? 19.什么是高频溅射?为什么要用高频溅射? 20.什么叫磁控溅射?为什么要用磁控溅射? 21.在单晶材料制备中,都有一个提升设备。对这个提升设备有什么基本要求? 22.什么是蒸发源?有哪些蒸发源种类? 23.对蒸发源材料有什么要求? 24.对定向凝固中用的坩埚有什么要求? 25.液相-固相平衡生长中选晶原理是什么?有哪些选晶方法和结构? 26.在单晶材料制备时,希望熔体中有非均匀形核点吗? 27.在非晶材料制备中,希望熔体中有非均匀形核点吗? 28.液态急冷法制备非晶态材料的原理是什么? 29.什么样的合金容易形成非晶态好合金? 30.合金粘度对非晶态形成有什么影响? 31.简述液态急冷法制备非晶材料的工艺。 32.简述几种液态急冷法制备非晶态材料的具体方法。 33.液态急冷法制备非晶材料对所用的极冷板有什么要求? 34.如何制备大块非晶材料? 35.液态急冷法制备非晶材料中的临界冷却速度指的是什么? 36.临界冷却速度和非晶形成能力之间是什么关系? 37.非晶态材料有哪些特性? 38.什么叫玻璃化元素? 39.什么叫晶化温度?它和非晶态材料的稳定性之间什么关系? 40.什么叫玻璃化转变温度?它和非晶态形成能力什么关系?

单晶制备

单晶制备的常用方法 溶剂, 单晶, 冰箱, 橡胶, 制备 有以下两种方法较常用: 1) 挥发溶剂法: 将纯的化合物溶于适当溶剂或混和溶剂。(理想的溶剂是一个易挥发的良溶剂和一个不易挥发的不良溶剂的混和物。)此溶液最好稀一些。用氮/氩鼓泡除氧。容器可用橡胶塞(可缓慢透过溶剂)。为了让晶体长得致密,要挥发得慢一些,溶剂挥发性大的可置入冰箱。大约要长个几天到几星期吧。 2) 扩散法: 在一个大容器内置入易挥发的不良溶剂(如戊烷、已烷),其中加一个内管,置入化合物的良溶剂溶液。将大容器密闭,也可放入冰箱。经易挥发溶剂向内管扩散可得较好的晶体。时间可能比挥发法要长。另外如果这一化合物是室温反应得到,且产物比较单一,溶解度较小,可将反应物溶液分两层放置,不加搅拌,令其缓慢反应沉淀出晶体。容易结晶的东西放在那里自己就出单晶,不容易结晶的怎么弄也是不出。好象不是想做就能做出来的。首先看一下产物的溶解度,将产物抽干后用良性溶剂溶解成饱和溶液(如用二氯甲烷),然后加入相同体积的不良性溶剂,若产物不稳定应在惰性气体的保护下进行操作,完成后置于冰箱中冷冻至单晶析出,或直接用惰性气体鼓泡直至单晶析出。(应缓慢。 3) 还可以这样: 在大烧杯里放一个小烧杯,小烧杯里放良溶剂和要结晶的物质,大烧杯里放易挥发的不良溶剂,把大烧杯密封,放于室温即可。 4) 还可以这样: 在比色管中先用一种溶剂溶解产物,在慢慢地加入另一种溶解性小的溶剂,密封,会较快长出晶体. 5) 讨论 晶体的生长是一个动力学过程,由化合物的内因(分子间色散力偶极力及氢键)与外因(溶剂极性、挥发或扩散速度及温度)决定。晶体的培养实质是一个饱和溶液的重结晶过程,使溶液慢慢饱和的方法(如溶液挥发、不良溶剂的扩散及温度的降低)都可。如1)所言,

先进制造技术论文

先进制造论文 先进制造技术 院系:周口科技机械工程 姓名:曹军科 班级:数控4班 时间:2010年12月25日

先进制造技术 材料加工工程在先进制造技术中占有重要地位,是发展高新技术产业和传统工业更新换代的重要科学基础和共性技术。其中包括高效、精密的加工工艺、装备和检测技术,低能耗、低成本产品的流程制造,集成、柔性、智能化制造系统,是工程可持续发展与绿色制造体系的重要组成部分。 材料合成与加工新技术研究包含纳米结构材料和金属加工、聚合物加工、陶瓷加工、复合材料加工、快速凝固、超纯材料、近终型加工等各类合成和加工的基础研究。根据材料的服役效能来调整成分、组织、结构、进而对材料的制备工艺进行设计,将使材料在强韧性、抗摩擦、抗冲击、抗腐蚀等方面的性能大大提高,对材料科学的全面发展起关键的促进作用。 材料制备与成型加工技术,与材料的成分和结构、材料的性质是决定材料使用性能的最基本的三大要素。一般而言,材料需要经历制备、成型加工、零件或结构的后处理等工序才能进入实际应用。 下面将分别介绍新材料加工技术的研究现状、工作原理、特点及发展趋势。 一、研究现状 新材料成形加工技术的研究开发,是近二、三十年来材料科学技术领域最为活跃的方向之一。先进制备与成型加工技术的出现与应用,加上了新材料的研究开发、生产和应用进程,促成了诸如微电子和生物医用材料等新兴产业的形成,促进了现代航天航空,交通运输,能源环保等高技术产业的发展。 先进工业国家对材料制备与成型加工技术的研究开发十分重视。美国制定了“为了工业材料发展计划”,其核心是开放先进的制备与成型加工技术,提高材料性能,降低生产成本,满足未来工业发展对材料的需求。德国开展的“21世纪新材料研究计划”将材料制备与成型加工技术列为六个重点内容之一。在欧盟的“第六框架”计划中,先进制备技术时新材料领域的研究重点之一。日本在20世纪90年代后期,先后实施了“超级金属”、“超钢铁”计划,重点是发展先进的制备加工技术,精确控制组织,大幅度提高材料的性能,达到减少材料用量、节省资源和能源的目的。同时开展本科学领域色前沿和基础研究,并综合利用相关学科基础理论和科技发展成果,提供预备新材料的新原理新方法,也是材料科学与工程学科自身发展的需求。 一大批先进技术和工艺不断发展和完善,并逐步获得实际应用,如快速凝固、定向凝固、连续铸轧、连续铸挤、精密铸造、半固态加工、粉末注射成型、陶瓷胶态成型、热等静压、无模成型、微波烧结、离子束制备、激光快速成型、激光焊接、表面改性等,促进了传统材料的升级换代,加速了新材料的研究开发、生产和应用,解决了高技术领域发展对特种高性能材料的制备加工与组织性能精确控制的急需。 现在将主要的先进材料加工技术分别介绍如下: 1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动

材料合成与制备结课论文

新型6xxx系铝合金板材热加工工艺和成分优化及其相关机理研究 学号:s2******* :高洁 专业:材料科学与工程

摘要 6xxx系铝合金作为可热处理强化的合金,其具有中等的强度、良好的耐蚀性、较好的成形性以及较低的密度,但是成形性能、烤漆硬化能力和弯边性能等有待进一步提高。其中成形性能的提高主要取决于微观组织和织构的调控,而这主要受合金成分及热加工工艺的影响。因此,从合金成分和热加工工艺的角度合理调控Al-Mg-Si-Cu-Zn系合金的微观组织以及第二相粒子的尺寸、形状和分布是实现成形性能优化的有效方法。 本文首先针对中铝科学技术研究院制备的新型Al-Mg-Si-Cu-Zn合金采用不同热加工工艺对组织和织构演变的影响进行了研究,并且优化出一种较好的热加工工艺。其次设计开发了新型6xxx系铝合金(Mn和Zn元素均有变化),研究Mn元素的变化对合金基体富铁相粒子尺寸、形状及分布的影响,以及Zn元素的添加对合金微观组织、织构及性能的影响。 随着新型Al-Mg-Si-Cu-Zn合金在中间退火前冷轧变形量的增加,使合金基体的粒子得到充分破碎及获得较大的形变储能,使得中间退火后细小的第二相粒子能够更加充分回溶进基体,而一些细小且难溶的富铁相粒子仍然保留在合金基体上。因此合金的再结晶组织和织构将会发生显著变化,并使T4P态合金的力学性能达到最优。 对于新设计开发的6xxx系铝合金,随着Mn含量的改变,合金的组织、再结晶织构和性能都会发生一定程度的变化。Mn含量的提高,会增加基体富铁相粒子的浓度,变形过程中会形成不同尺度的粒子,它们之间在再结晶时的协同配合作用,可以显著使得再结晶晶粒的细化以及织构弱化,塑性应变比r值的提高。添加Zn元素能够显著细化再结晶晶粒,对再结晶织构的影响不大。

单晶制备方法综述概要

课程论文 题目单晶材料的制备方法综述 学院材料科学与工程学院专业材料学 姓名刘聪 学号S150******** 日期2015.11.01 成绩

单晶材料的制备方法综述 前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。本文主要对单晶材料制备的几种常见的方法进行介绍和总结。 单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。 一、从熔体中生长单晶体 从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。二者速率的差异在10-1000倍。从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。 1、焰熔法[2] 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳也法。 1.1 基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。 1.2 合成装置和过程:

纳米材料与技术论文

石墨烯在橡胶中的应用 摘要:石墨烯具有较强的力学性能和导电/导热性质,为发展多功能聚合物纳米材料提供了新的方向。本文简单介绍了石墨烯的制备及其功能化,并重点介绍了石墨烯/橡胶纳米复合材料的3种主要制备方法,同时分析了石墨烯/橡胶纳米复合材料的发展前景和存在问题. 关键词:石墨烯纳米复合材料制备 1 引言 橡胶在室温下具有独特的高弹性,其作为一种重要的战略性物资,泛应用于国民经济"高新技术和国防军工等领域。然而,未补强的橡胶存在强度低,模量低,耐磨差,抗疲劳差等缺陷。因此绝大数橡胶都需要补强,同时随着橡胶制品的多元化,在满足最基本的物理机械性能强度的同时,需要具有功能性的纳米填料/橡胶复合材料。石墨烯是一种有着优异性能的二维纳米填料,将石墨烯与聚合物复合是发挥其性能的重要途径,石墨烯/橡胶纳米复合材料对橡胶的力学机械性能、电学性能、导热性能和气体阻隔性能等都有很大提升,因此得到了广泛关注。 2 石墨烯的制备及其衍生物的功能化 2.1 石墨烯的制备 本文重点介绍利用氧化石墨烯(GO)的还原来制备石墨烯,该方法制备的石墨烯不能完全消除含氧官能团,还存在结构缺陷和导电性差等缺点,但是相比于其他方法,其宏量和廉价制备的特点更为突出。 2.2 氧化石墨烯的还原 目前,氧化石墨烯的还原一般分为热还原与化学还原两种方法。热还原是指GO在高温下脱除表面的含氧基团并释放大量气体,从而还原并剥离GO.化学还原法是指利用具有还原性的物质对GO进行脱氧还原。 2.3 石墨烯的功能化 对于氧化石墨烯还原之后的石墨烯,可以用非共价键改性,通过工业用燃料,荧光增白剂,表面活性剂高效稳定石墨烯。 2.4 橡胶/石墨烯复合材料的结构,性能的检测 利用红外光谱仪测定复合物的红外光谱图;用X射线衍射仪(XRD)测定复合物的衍射谱图;用发射扫描电镜(SEM)分析复合物的形貌;用电子万能试验机测试式样力学性能。 3 橡胶/石墨烯橡胶纳米复合物的制备方法 目前制备石墨烯/橡胶复合材料的制备方法主要有三种,即胶乳共混法,溶液共混法,机械混炼法。 3.1 胶乳共混法

相关文档
最新文档