化工仪表及自动化第2章(1)

合集下载

化工仪表及自动化第二章ppt

化工仪表及自动化第二章ppt


1
兆帕
1×106
工程大 9.807×104 气压
1×106 1
1.0197×10 9.869×10-6
-5
10.197
9.869
9.807×
1
10-2
0.9678
7.501 ×10-3
7.501 ×103
735.6
1.0197 ×10-4
1.0197 ×102
10.00
1.450×10-4 1×10-5
化工自控仪表识用与操作
主讲人: 周寅飞 扬州工业职业技术学院化学工程系
化工自控仪表识用与操作
第二章 压力检测
目录:
❖ 压力单位及测压仪表
❖ 弹性式压力计
❖ 弹性变片式压力传感器 ❖ 压阻式压力传感器 ❖ 电容式压力传感器
❖ 智能式变送器
❖ 智能变送器的特点 ❖ 智能变送器的结构原理
智能压力变送器
HAKK-3851高精度智能变送器46
第五节 压力计的选用及安装
一、压力计的选用
压力计的选用应根据工艺生产过程对压力测量的要求, 结合其他各方面的情况,加以全面的考虑和具体的分析, 一般考虑以下几个问题。
仪表类型的选用 仪表测量范围的确定 仪表精度级的选取
47
第五节 压力计的选用及安装
④具有数字、模拟两种输出方式,能够实现双向数据通 讯,可以与现场总线网络和上位计算机相连。
⑤可以进行远程通讯,通过现场通讯器,使变送器具有自 修正、自补偿、自诊断及错误方式告警等多种功能, 简化了调整、校准与维护过程,使维护和使用都十分 方便。
41
第四节 智能式变送器
二、智能变送器的结构原理 从整体上来看,由硬件和软件两大部分组成。 从电路结构上来看,包括传感器部件和电子部件两部 分。

化工仪表及自动化ppt课件

化工仪表及自动化ppt课件
控制系统实施
选用适当的控制器和执行器,搭建液位控制系统,并进行调试和优 化。
06
化工仪表及自动化
的未来发展趋势
化工仪表及自动化的技术发展趋势
智能化
随着人工智能和机器学习技术的发展,化工仪表将实现更高程度的智 能化,包括自适应控制、智能故障诊断和预测性维护等功能。
高精度化
化工生产对仪表的测量精度要求越来越高,未来化工仪表将实现更高 精度的测量,以满足生产过程中的严苛要求。
化工仪表的选型与
安装
化工仪表的选型原则与方法
满足工艺要求
根据工艺流程、介质特性、测量范围等选择合适的仪表类型。
可靠性
选择经过长期实践验证、技术成熟、性能稳定的仪表。
化工仪表的选型原则与方法
化工仪表的选型原则与方法
01
选型方法
02
了解工艺流程和介质特性,确定测量需求 和测量范围。
03
收集各种类型仪表的性能参数、价格等信 息,进行对比分析。
压力传感器选择
01
根据测量范围和精度要求,选择合适的压力传感器,如压电传
感器、应变片等。
控制策略设计
02
根据工艺要求,设计合理的控制策略,如PID控制、自适应控制
等。
控制系统实施
03
选用适当的控制器和执行器,搭建压力控制系统,并进行调试
和优化。
案例三:流量控制系统的设计与实施
流量计选择
根据测量介质和流量范围,选择合适的流量计, 如涡街流量计、电磁流量计等。
化工仪表在工业生产中的重要性
01
02
03
04
保障生产安全
通过实时监测和报警,避免生 产过程中的危险情况。
提高生产效率

化工仪表与自动化第五版第二章作业及答案

化工仪表与自动化第五版第二章作业及答案

第二章1.什么是被控对象特性?什么是被控对象的数学模型?研究被控对象特性有什么重要意义?答:被控对象特性是指被控对象输入与输出之间的关系。

即当被控对象的输入量发生变化时,对象的输出量是如何变化、变化的快慢程度以及最终变化的数值等。

对象的输入量有控制作用和扰动作用,输出量是被控变量。

因此,讨论对象特性就要分别讨论控制作用通过控制通道对被控变量的影响,和扰动作用通过扰动通道对被控变量的影响。

定量地表达对象输入输出关系的数学表达式,称为该对象的数学模型。

在生产过程中,存在着各种各样的被控对象。

这些对象的特性各不相同。

有的较易操作,工艺变量能够控制得比较平稳;有的却很难操作,工艺变量容易产生大幅度波动,只要稍不谨慎就会越出工艺允许的范围,轻则影响生产,重则造成事故。

只有充分了解和熟悉对象特性,才能使工艺生产在最佳状态下运行。

因此,在控制系统设计时,首先必须充分了解被控对象的特性,掌握它们的内在规律,才能选择合适的被控变量、操纵变量,合适的测量元件和控制器,选择合理的控制器参数,设计合乎工艺要求的控制系统。

特别在设计新型的控制系统时,例如前馈控制、解耦控制、自适应控制、计算机最优控制等,更需要考虑被控对象特性。

2.简述建立对象的数学模型两种主要方法。

答:一是机理分析法。

机理分析法是通过对对象内部运动机理的分析,根据对象中物理或化学变化的规律(比如三大守恒定律等),在忽略一些次要因素或做出一些近似处理后推导出的对象特性方程。

通过这种方法得到的数学模型称之为机理模型,它们的表现形式往往是微分方程或代数方程。

二是实验测取法。

实验测取法是在所要研究的对象上,人为施加一定的输入作用,然后,用仪器测取并记录表征对象特性的物理量随时间变化的规律,即得到一系列实验数据或实验曲线。

然后对这些数据或曲线进行必要的数据处理,求取对象的特性参数,进而得到对象的数学模型。

3.描述简单对象特性的参数有哪些?各有何物理意义?答:描述对象特性的参数分别是放大系数K、时间常数T、滞后时间 。

化工仪表及自动化第2章

化工仪表及自动化第2章

途径
以换热器建模为例,可以先列写出其热量平衡方程 式,而其中的换热系数K值等可以通过实测的试验数据 来确定。
27
28
第三节 描述对象特性的参数
h K Q1
K h Q1

第三节 描述对象特性的参数
举例 以合成氨的转换炉为例,说明各个量的变化对被 控变量K的影响
生产过程要求一氧化碳的转化率要高,蒸汽消耗量要少, 触媒寿命要长。通常用变换炉一段反应温度作为被控变量, 来间接地控制转换率和其他指标。
Q1 Q12 dt Adh1
20
Q12 Q2 dt Adh2
转到26页
第二节 对象数学模型的建立
第二节 对象数学模型的建立
机理建模缺点:
消去Q12、Q2、h1
dh1 1 Q1 Q12 dt A dh2 1 Q12 Q2 dt A
①复杂而烦琐、有时机理不清楚,很难得到数学表达式; ②作了许多假定和假设,忽略了很多次要因素。
(1)串联水槽对象 假定输入、输出量变化很小的情况下, 贮槽的液位与输出流量具有线性关系。
Q2为常数,变化量为0 1 dh Q1dt 其中,A为贮槽横 A 截面积 1 h Q1dt A 说明,所示贮槽具有积分特性。
图2-4 积分对象
19
假定每只贮槽的截面积都为A,则
图2-5 串联水槽对象
三、实验建模
实验方法 研究对象特性
整理得
T1T2 d 2 h2 dh T1 T2 2 h2 KQ1 dt 2 dt
式中 T1 AR1为第一只贮槽的时间常数;T2 AR2 为第二只 K R2 为整个对象的放大系数。 贮槽的时间常数;
21

化工仪表与自动化基础教材

化工仪表与自动化基础教材

化工仪表与自动化基础教材第一章绪论第二章化工自动化的基本概念第一节化工自动化的主要内容第二节自动控制系统的基本组成第三节识读管道仪表流程图(P&ID)第三章检测仪表第一节检测仪表的基本性能和分类第二节压力检测仪表第三节温度检测仪表第四节流量检测仪表第五节物为检测仪表第六节分析仪表(红外分析仪表,CEMS,COD)第七节传动设备检测仪第四章显示仪表第一节数字显示仪表第二节无纸记录仪第五章执行器第一节概述第二节气动薄膜调节阀第六章集散控制系统第一节集散控制系统的组成第二节集散控制系统的功能第三节集散控制系统的操作方法第七章联锁保护系统第一章绪论伴随着科学技术的迅猛发展,自动化技术已成为当代举世瞩目的高技术之一。

由于生产过程连续化、大型化、复杂化,使得广大工艺、维修、管理人员需要学习和掌握必要的监测技术和自动化知识,这是现代化工业生产实现高效、优质、安全、低耗的基本条件和重要保证,也是提高企业综合竞争实力、提升企业管理水平的前提。

本章的重点:对自动化、化工自动化的概念;实现化工自动化的目的;化工自动化发展的过程。

自动化技术的进步推动了工业生产的飞速发展,在促进产业革命中起着十分重要的作用。

特别是在石油、化工、冶金、轻工等部门,由于采用了自动化仪表和集中控制装置,促进了连续生产过程自动化的发展,大大地提高了劳动生产率,获得了巨大的社会效益和经济效益。

化工自动化是化工、炼油、食品、轻工等化工类生产过程自动化的简称。

在化工设备上,配置上一些自动化装置,代替操作人员的部分或全部直接劳动,是生产在不同程度上自动地进行,这种用自动化装置来管理化工生产过程的办法,称为化工自动化。

自动化是提高社会生产力的有力工具之一,实现化工生产自动化的目的如下。

1)加快生产速度,降低生产成本,提高产品产量和质量。

在生产过程由于人的五官对事物量的测量精度较差,而且许多量值无法用感官进行测量,所以产品质量难以有效控制;同时由于人的手和脚的速度和力量有限,无法长时间,高效率、大规模生产。

化工仪表第一、二章讲解

化工仪表第一、二章讲解
操纵变量:受控制器操纵的用以克服干扰的影响,使被 控变量保持设定值的物料量或能量
扰动:除操纵变量外,作用于被控过程并引起被控变量 变化的因素
设定值:工艺参数所要求保持的数值
偏差:被控变量设定值与实际值之差
负反馈:将被控变量送回输入端并与输入变量相减
1.4. 闭环控制与开环控制
闭环控制:
在反馈控制系统中,被控变量送回输入端,与设 定值进行比较,根据偏差进行控制,控制被控变量, 这样,整个系统构成了一个闭环。
二、字母
在控制流程图中,用来表示仪表的小圆圈的上半园 内,一般写有两位字母,第一位字母表示被测变量, 后继字母表示仪表的功能,常用被测变量和仪表功能 能的字母代号见表1-2
1.4 自动控制系统的组成及方框图
在研究自动控制系统时,为了更清楚的表示控制 系统各环节的组成、特性和相互间的信号联系,一般 都采用方框图。每个方框表示组成系统的一个环节, 两个方框之间用带箭头的线段表示信号联系;进入方 框的信号为环节输入,离开方框的为环节输出。
t 些;化学反应器的温度控
制要求高,余差就要小一
些。
(4)过渡时间(回复时间) TS
过度时间表示控制系统过渡过程的长短。
定义:控制系统在受到阶跃外作用后,被控变量从原有稳态 值达到新的稳态值所需要的时间。
y
B
B’
A
0
C t
(1)最大动态偏差(emax)或超调量( )
y
B
B’
A
0
控制系统的品 质指标示意图
C
动画链
t 接按钮
最大动态偏差或超调量是描述被控变量偏离设定值最大程度的 物理量,也是衡量过渡过程稳定性的一个动态指标。
对于定值控制系统,过渡过程的最大动态偏差是指被控变 量第一个波的峰值与设定值之差。在上图中,最大偏差就是第 一个波的峰值,为A。

2024年度-《化工仪表及自动化》课件

化工仪表基本原理 包括测量原理、仪表结构和分类等,为
理解和应用化工仪表打下基础。
化工仪表选型与安装 针对化工生产过程中的实际需求,讲 解了仪表的选型原则、安装方法和注
意事项。
自动化控制系统 详细介绍了自动化控制系统的组成、 原理和应用,包括DCS、PLC等控制 系统。
维护与故障处理 介绍了化工仪表的日常维护、定期检 修以及常见故障的诊断和处理方法。
20
安装调试流程和方法
安装前准备
熟悉仪表结构、性能和使用说明 书,检查仪表及附件是否齐全、
完好。
安装步骤
按照工艺要求和安装图纸进行仪 表安装,确保安装位置正确、固
定牢固、密封可靠。
调试方法
先进行单体调试,检查仪表的显 示、输出等功能是否正常;再进 行系统调试,检查仪表与控制系 统、执行器等设备的联动是否协
32
学员心得体会分享
学员A
通过学习,我对化工仪表及自动 化有了更深入的了解,掌握了仪 表的选型、安装和维护技能,对 今后的工作有很大帮助。
学员B
课程中的实际案例让我印象深刻, 通过分析和解决实际问题,我提 高了自己的工程实践能力。
学员C
老师的讲解生动有趣,让我对枯 燥的理论知识产生了兴趣,激发 了我对化工仪表及自动化的热爱。
期稳定运行。
03
自动化技术在化工领域应用
Chapter
11
自动化技术发展历程及现状
01
02
03
自动化技术起源
介绍自动化技术的起源, 以及早期在化工领域的应 用情况。
发展历程
阐述自动化技术从简单控 制到复杂控制系统的发展 历程,包括重要技术突破 和里程碑事件。
现状分析
分析当前自动化技术在化 工领域的应用现状,包括 普及程度、技术水平和市 场需求等方面。

化工仪表及自动化复习题

(高职)《化工仪表及自动化》(第4版)章节复习题第一篇化工检测仪表一、填空题1、补偿导线通常在范围内其热电特性与热电偶本身几乎完全一样。

2、节流式流量计的测量原理是利用流体流经节流装置时所产生的实现流量测量的。

3、工程上所用压力表指示值大多数为,表压是绝对压力和之差。

4、测氧气压力表要严格,普通压力表不能用来测的压力。

5、节流装置属于、变压差的一种测量方法。

6、标准节流元件有、和等。

7、转子流量计属于恒压差,的一种测量方法。

8、涡街流量计是根据的原理而进行测量的一种流量仪表。

9、零点迁移就是改变量程的上、下限,相当于测量范围的平移,而不改变的大小。

10、使用电磁流量计测量流量时,介质必须是可以导电的电介质,电导率应。

11、仪表的精度等级是衡量仪表质量优劣的重要指标之一,一般数值越,仪表的精度等级越高,仪表的准确度也越。

12、当需要测量腐蚀、导电或带固体微粒的流量时,可选用。

当需要测量高粘度流体流量时,可选用。

13、测量蒸汽压力时,应加装,以防止高温蒸汽直接与测压元件;对于有腐蚀性介质的压力测量,应加装14、热电偶是利用原理测温的。

热电阻是利用的。

15、瞬时流量是指。

16、椭圆齿轮流量计适用于流量测量,而不适用于的测量。

17、某温度表的精度为0.5级,其测量下限是500C,下限是8500C。

则此表的量程是;测量范围是;允许基本误差是;最大绝对误差是。

18、热电偶温度计中常用的冷端温度补偿方法有、、、、五种。

19、按误差出现的规律,可将误差分为误差、误差及误差。

20、在常用的热电偶温度计中,精度较高的是__型热电偶,线性最好的是_型热电偶,灵敏度较高的是_____热电偶。

不受被测介质物理性质影响的流量计是:________、__________、____(说出三种即可)。

21、电容式差压变送器的测量部分是先将转变成,然后再变成___作为转换部分的输入。

22、热电偶温度计是基于原理测量温度,热电偶可将温度转换成信号,孔板可将流量转换成信号。

化工仪表及自动化全套课件


对于气体,密度受温度、压力变化影响较大, 如在常温常压附近,温度每变化10℃,密度变化 约为3%;压力每变化10kPa,密度约变化3%。
因此在测量气体流量时,必须同时测量流体的 温度和压力。为了便于比较,常将在工作状态下 测得的体积流量换算成标准状态下(温度为20℃, 压力为101325Pa)的体积流量,用符号Qn表示, 单量(Qn):折算到标准的压力和温度下的体 积流量。(标准状态下) 流量的国际单位是千克/秒(kg/s)、立方米/ 秒(m3/s)。此外,常用的还有吨/小时(t/h)、 千克/小时(kg/h)、立方米/小时(m3/h)等; 总量的国际单位是千克(kg)、立方米(m3)。 此外,常用的总量单位还有吨(t)。
2.压力开关的工作原理是:当被测压力超过额定值时,弹性元件的 自由端(产生位移),直接或经过比较后推动(开关元件), 改变(开关元件)的通断状态,达到控制被测压力的目的。
3.压力开关采用的弹性元件有(单圈弹簧管)、(膜片)、(膜盒) 及(波纹管)等。 开关元件有(磁性开关)、(水银开关)、 (微动开关)等。
第二章 压力测量仪表
第一节: 压力单位
国际单位制(SI)---帕(Pa), 工程大气压---at 标准大气压---atm 毫米汞柱---mmHg 毫米水柱---mmH2O
1Pa=1牛/米2(N/m2) 1Mpa=1×105Pa 1 公斤力/厘米2(kgf/cm2) = 0.0981 MPa 1 巴(bar) = 0.1 MPa 1 毫米水柱(mmH2O) = 9.81×10-6 MPa 1 毫米水银柱(mmHg) = 1.333×10-3 MPa 1 标准大气压(atm) = 0.1013 MPa
而涡街流量计: 1、结构简单; 2、涡街变送器直接安装于管道上,克服了管路泄

化工仪表自动化基础知识


④节流装置应正确安装。
⑤接至差压变送器的差压应该与节流装置前后差压相一致,这就需要正确安装 压信号管路。(如后面图示)
(2)靶式流量计F≈K*Q
(3)转子流量计
转子流量计示意图
靶式流量计示意图
(4)涡轮流量计
(5)电磁流量计
电磁流量计工作原理图
涡轮流量计示意图
(6)旋涡流量计q=f/k (7)超声波流量计∆t≈2Lv/c2
电容式压力传感 器示意图 压电式压力传感器结构示意图
DTC二O .流量检测及仪表
分类 1、速度式流量计(差压式流量计、转子式流量计、电磁流量计、涡轮流量计、堰 式流量计) 2、容量式流量计(椭圆齿轮流量计(罗茨)、活塞式流量计) 3、质量流量计 4、热导式流量计
(1)、速度式流量计 (1)节流装置—包括孔板、喷嘴和文丘管 Q=K*Sqr(∆P)
过程参数仪表位号的字母代号如下:
字母
A B C D E F G H I J K L M N P Q R S T U V W
第一位字母 被测变量或初始变量
分析 喷嘴火焰 电导率 密度或重度 电压(电动势) 流量 尺度(尺寸) 手动 电流 功率 时间或时间程序 物位 水份或湿度 浓度 压力或真空 数量或件数 放射性 速度或频率 温度 多变量 拈度 重量或力
2、常用压力检测仪表
(1)弹性式压力表
①膜片
②波纹管波纹管
③弹簧管弹簧管
平薄膜 波纹膜 波纹管 单圈弹簧管 多圈弹簧管
(2)压力传感器
①应变片式压力传感 器 ②压电式压力传感器 ③压阻式压力传感器 ④电容式压力传感器 ⑤集成式压力传感器
箔式应变片
弹簧管压力表
压阻式集成传感器 检测元件示意图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28
第三节 描述对象特性的参数
或hKQ1 KQh1
图2-12 水槽液位的变化曲线
K在数值上等于对象重新稳定后的输 出变化量与输入变化量之比。K越大, 就表示对象的输入量有一定变化时, 对输出量的影响越大,即被控变量对 这个量的变化越灵敏。
29
第三节 描述对象特性的参数
举例
以合成氨的转换炉为例,说明各个量的变化对被 控变量K的影响
(a)
研究的目 的是为了 使所设计 的控制系 统达到更 好的控制 效果。
(b)
在产品规格和产 量已确定的情况 下,通过模型计 算,确定设备的 结构、尺寸、工 艺流程和某些工 艺条件。
(c)
6
第一节 化工过程的特点 及其描述方法
★ 按数学模型的表述形式分 ● 非参量模型:曲线图或数据表
优点:形象、直观,容易看出定性的特征 缺点:进行系统分析和设计比较困难 ● 参量模型:数学方程式 ★ 按数学模型所描述的运动状态分 ●静态模型(描述对象在静态时的输入量与输出 量之间的关系,不随时间而变化) ●动态模型(描述对象在输入量改变后输出量的 变化情况,输入量、输出量随时间而变化)
特点
形象、清晰,比较容易看出其定性的特征
缺点 直接利用它们来进行系统的分析和设计往往比较困难
表达形式 对象在一定形式输入作用下的输出曲线或数据来表示
9
第一节 化工过程的特点 及其描述方法
2.参量模型 当数学模型是采用数学方程式来描述时,称为参量模
型。对象的参量模型可以用描述对象输入、输出关系的微 分方程式、偏微分方程式、状态方程、差分方程等形式来 表示。
控制通道:操纵变量至被控变量的信号联系。
输入
操纵变量
输入
几个概念
f1 f2
干扰变量
输出变量
输入变量 通道

被控变量 输出 控制通道
对象
干扰通道
图2-1 对象的输入输出量
5
第一节 化工过程的特点 及其描述方法
ห้องสมุดไป่ตู้
用于控制的数学模型(a、b)与用于工艺设计与分析的数学 模型(c)不完全相同。
一般是在工艺 流程和设备尺 寸等都确定的 情况,研究对 象的输入变量 是如何影响输 出变量的。
对象特性的实验测取法,就是在所要研究的对象上,加 上一个人为的输入作用(输入量),然后,用仪表测取并 记录表征对象特性的物理量(输出量)随时间变化的规律, 得到一系列实验数据(或曲线)。这些数据或曲线就可以 用来表示对象的特性。
22
第二节 对象数学模型的建立
❖ 三、实验建模
系统辨识
定义:通过这种应用对象的输入输出的实测数据来决 定其模型的结构和参数 。
生产过程要求一氧化碳的转化率要高,蒸汽消耗量要少, 触媒寿命要长。通常用变换炉一段反应温度作为被控变量, 来间接地控制转换率和其他指标。
图2-13 一氧化碳变换过程 示意图
图2-14 不同输入作用时的被控变量 变化曲线
30
第三节 描述对象特性的参数
影响变换炉一段反应温度的因素主要有冷激流量、蒸 汽流量和半水煤气流量。改变阀门1、2、3的开度就可以 分别改变冷激量、蒸汽量和半水煤气量的大小。从右上 图看出,冷激量对温度的相对放大系数最大;蒸汽量对 温度的相对放大系数次之;半水煤气量对温度的相对放 大系数最小。
则函数表达式为 ht KA 1 et T
图2-16 反应曲线
34
第三节 描述对象特性的参数
从上页图反应曲线可以看出,对象受到阶跃作用后,被控 变量就发生变化,当t→∞时,被控变量不再变化而达到了新 的稳态值h(∞),这时上式可得:
17
第二节 对象数学模型的建立
图2-2 水槽对象
Q1 Q2 dt Adh
(2-4)
若变化量很微小,可以近似认为Q2与h 成正比
Q2
h Rs
(2-5)
将上式代入(2-4)式,移项
ARs
dh dt
h
RsQ1

T ARs , K Rs

18
dh T dt h KQ1
转到22页
第二节 对象数学模型的建立
特点:把被研究的对象视为一个黑匣子,完全从外部 特性上来测试和描述它的动态特性,不需要深入了解 其内部机理 。
23
第二节 对象数学模型的建立
实验性能的测试方法
1. 阶跃反应曲线法 用实验的方法测取对象在阶跃输入作用下,输出量y随 时间的变化规律。 举例
简单水槽的动态特性
图2-7 简单 水槽对象
优点 缺点
简单 稳定时间长 测试精度受限
图2-8 水槽的阶跃反应曲线
24
第二节 对象数学模型的建立
2. 矩形脉冲法
当对象处于稳定工况下,在时间t0突然加一阶跃干扰, 幅值为A,到t1时突然除去阶跃干扰,这时测得的输出量 y随时间的变化规律,称为对象的矩形脉冲特性,而这 种形式的干扰称为矩形脉冲干扰。此外,还可以采用矩 形脉冲波和正弦信号。
31
第三节 描述对象特性的参数
❖二、时间常数T
从大量的生产实践中发现,有的对象受到干扰后,被 控变量变化很快,较迅速地达到了稳定值;有的对象在 受到干扰后,惯性很大,被控变量要经过很长时间才能 达到新的稳态值。
图1-15 不同时间常数对象的反应曲线
32
第三节 描述对象特性的参数
如何定量地表示对象受 干扰后的这种特性呢?
★ 混合建模法 先由机理分析提供数学模型的结构,然后对未知的或不确 定的参数通过实测确定—参数估计。
14
第二节 对象数学模型的建立
❖ 二、机理建模
根据对象或生产过程的内部机理,列写出各种有关的 平衡方程,如物料平衡方程、能量平衡方程、动量平衡 方程、相平衡方程以及某些物性方程、设备的特性方程、 化学反应定律、电路基本定律等,从而获取对象(或过 程)的数学模型,这类模型通常称为机理模型。
图2-9 矩形脉冲特性曲线 图2-10 矩形脉冲波信号
图2-11 正弦信号
★优点:干扰时间不长,对正常生产影响比较小;干扰幅值较大,测试 精度较高。
★缺点:实现相对麻烦,数据处理比较复杂。
25
第二节 对象数学模型的建立
实验法建模应注意的问题
★ 测试前,被控对象应处于相对稳定状态;
★ 在相同条件下,应重复多做几次试验;
化工生产中,被控对象的类型很多,特性也千差万别(平稳 和不平稳)。被控对象的特性是由工艺生产过程和本身结构 等方面决定的;是实现自动控制的基础。
3
第一节 化工过程的特点 及其描述方法
被控对象的特性,就是指被控对象的输入量发生变化时, 其输出量的变化规律。
研究和分析被控对象的特性,就是用数学的方法描述 被控对象输入量与输出量之间关系。
在自动化领域中,往往用 时间常数T来表示。时间常 数越大,表示对象受到干 扰作用后,被控变量变化 得越慢,到达新的稳定值 所需的时间越长。
33
第三节 描述对象特性的参数
举例
简单水槽为例
由前面的推导可知
T
dh dt
h
KQ1
(2-33)
假定Q1为阶跃作用,t<0时Q1=0; t>0或t=0时Q1=A,如左图。
h2
KQ1
式中 T1 AR1为第一只贮槽的时间常数;T2 AR2 为第二只 贮槽的时间常数;K R2 为整个对象的放大系数。
21
第二节 对象数学模型的建立
机理建模缺点:
①复杂而烦琐、有时机理不清楚,很难得到数学表达式; ②作了许多假定和假设,忽略了很多次要因素。
❖ 三、实验建模
实验方法
研究对象特性
化工仪表及自动化
第二章 过程特性及其数学模型
1
内容提要
❖ 化工过程的特点及其描述方法
❖ 对象数学模型的建立
▪ 建模目的 ▪ 机理建模 ▪ 实验建模
❖ 描述对象特性的参数
▪ 放大系数Κ ▪ 时间常数Τ ▪ 滞后时间τ
2
第一节 化工过程的特点 及其描述方法
自动控制系统是由被控对象、测量变送装置、控
制器和执行器组成。系统的控制质量与被控对象的特性 有密切的关系。
Q12
h1 R2
Q2
h2 R2
假定每只贮槽的截面积都为A,则
Q1 Q12 dt Adh1 Q12 Q2 dt Adh2
20
转到26页
第二节 对象数学模型的建立
消去Q12、Q2、h1
dh1 dt
1 A
Q1
Q12
整理得
dh2 dt
1 A
Q12
Q2
T1T2
d 2h2 dt 2
T1
T2
dh2 dt
★ 完成一次测试后,应使被控过程恢复原来工况,并稳定 一段时间,再作下次测试;
★ 输入的阶跃变化量不能过大,以免对生产的正常进行影 响,也不能过小,以防其它干扰影响的比重相对较大。
26
第二节 对象数学模型的建立
❖ 混合建模
途径 先由机理分析的方法提供数学模型的结构形式,
然后对其中某些未知的或不确定的参数利用实测的方法 给予确定。
7
第一节 化工过程的特点 及其描述方法
对象的数学模型分为静态数学模型和动态数学模型
基础
静态数学模型
动态数学模型
特例
8
第一节 化工过程的特点 及其描述方法
❖ 数学模型的表达形式分类
1.非参量模型
当数学模型是采用曲线或数据表格等来表示时,称为 非参量模型。非参量模型可以通过记录实验结果来得到, 有时也可以通过计算来得到。
(2-1)
在允许的范围内,多数化工对象动态特性可以忽略输入量的 导数项可表示为
an ynt an1 yn1 t a1 yt a0 yt xt
相关文档
最新文档