模板综述-白色脂肪组织的存在

合集下载

人体脂肪

人体脂肪

人体脂肪一.人体脂肪的研究下面这个表格是脂类在近代被认识的发展过程:局限于此。

脂肪,是人类健康的必需物质。

狭义的脂肪指动植物的油脂,例如猪油、羊油、菜子油、花生油等。

其主要化学成分是甘油与脂肪酸所产生的脂—三酞甘油(甘油三醋)。

存在于动植物中的脂肪是复杂的混合物,包括由相同脂肪酸所构成的甘油三单醋和由不同脂肪酸所构成的甘油三杂酷等中性脂肪,也可能含有甘油二酷、甘油单醋、游离的脂肪酸,有时也含有高分子醇、烃类及色素等。

组成脂肪的酸主要是具有偶数碳原子的高分子饱和脂肪脂肪肝的概述酸及不饱和脂肪酸。

植物脂肪主要由不饱和脂肪酸构成,多呈液态,而呈固态的动物脂肪中含有大量饱和脂肪酸。

脂肪,具有独特的香味,为烹调食物必不可少的东西。

但是过多地摄人脂肪,也会影响消化功能,减退食欲。

人体中储存脂肪过多,还会增加心脏与其他器官的负担。

不仅使人体臃肿、行动笨拙,而且还易诱发心脏病、肥胖病、高血压及脂肪肝等,所以一提起脂肪,不少人便有谈“脂”色变之感。

当今,人们对脂肪进行了新的全面的研究。

最新研究资料表明:脂肪不仅是人体代谢的主要能源,而且也是人类发育及健康所必需的物质。

脂肪摄人不足将严重影响身体的健与美。

脂肪不仅是一种含高热值的营养素,也是构成脑细胞的主要成分,是人体吸收利用维生素所必需的物质。

更重要的是,人体中含有一些被称为必需脂肪酸的物质,如摄人不足,造成机体缺乏,便会使组织、细胞发生某种异常变化,而这种必需脂肪酸不能由糖、蛋白质转化而来,只能从食物中获得。

脂肪的另一重要功能是参与性激素的合成与代谢,脂肪摄人不足将直接导致性激素含量降低,进而影响性器官的成熟与发育。

有一种说法,摄人脂肪过多可致癌。

事实上任何美味佳肴吃得过多都没有好处。

合理的食法应是适量摄取植物性脂肪,少吃动物性脂肪,总之,不可走极端。

人体的脂肪有两类:一类为中性脂肪,即俗话说的“肥油”,它可以随人们的营养状况和机体活动的多少而增减;另一类为类脂,包括磷脂胆固醇和胆固醇脂,它们是人体生物膜的主要成分,是形成生命重要物质胆盐、维生素D、类固醇激素的重要原料,它们是相对固定而不能轻易变动的。

白色脂肪细胞棕色化:肥胖症及其相关代谢性疾病治疗的新靶点

白色脂肪细胞棕色化:肥胖症及其相关代谢性疾病治疗的新靶点

白色脂肪细胞棕色化:肥胖症及其相关代谢性疾病治疗的新靶点王相清【摘要】The brown adipose tissue( BAT )plays an important role in maintaining body temperature and energy balance.Recent studies demonstrated that brown-like adipocytes emerged in adults who have been exposed to the cold.The phenotype of this kind of cells is between white adipocytes and classic brown adipocytes.Therefore, the concept of browning of white adipocytes is put forward.A growing body of evidence indicates that several factors are proposed to be associated with the browning of the white adipocytes, including PPARγ ,myostatin,FGF21 and irisin.The browning of WAT can significantly promote the energy consumption, improve glucose and lipid metabolism.Therefore it might be the therapeutic target for obesity and its related metabolic disorders.%棕色脂肪组织(BAT)在维持体温恒定和调节能量代谢方面发挥着重要的生理作用.近年来研究发现,寒冷刺激可促进成人体内出现棕色样脂肪细胞,这种脂肪细胞的基因表达谱介于白色脂肪细胞和经典的棕色脂肪细胞之间,于是提出了"白色脂肪细胞棕色化"的概念,且认为过氧化物酶体增殖物激活受体γ、肌肉抑制素、成纤维细胞生长因子21、irisin等因子参与了这一过程.白色脂肪细胞棕色化后,能显著促进机体能量的消耗,改善机体糖脂代谢,因此,可能成为针对肥胖症及其相关代谢异常疾病治疗的新靶点.【期刊名称】《医学综述》【年(卷),期】2013(019)010【总页数】4页(P1729-1732)【关键词】棕色脂肪组织;白色脂肪细胞棕色化;过氧化物酶体增殖物激活受体γ;代谢性疾病【作者】王相清【作者单位】中国医学科学院,中国协和医科大学,北京协和医院内分泌科,卫生部内分泌重点实验室,协和转化医学中心,北京,100730【正文语种】中文【中图分类】R589.2棕脂肪组织(brown adipose tissue,BAT)是一个产热器官,小型哺乳动物和新生儿体内均有较丰富的BAT,在保持体温恒定、维持能量平衡方面发挥着重要作用。

棕色脂肪白色化研究进展

棕色脂肪白色化研究进展

网络出版时间:2020-12-1517:19 网络出版地址:https://kns.cnki.net/kcms/detail/34.1086.R.20201215.1120.010.html棕色脂肪白色化研究进展吴 倩,王 静,于亮宇,于丽秀,邓亚卉,黎维勇(华中科技大学同济医学院附属协和医院药学部,湖北武汉 430000)收稿日期:2020-08-20,修回日期:2020-10-16基金项目:国家自然科学基金资助项目(No81573509)作者简介:吴 倩(1996-),女,硕士生,研究方向:长期服用奥氮平诱导的胰岛素抵抗机制和通路,E mail:1015029704@qq.com;黎维勇(1966-),男,主任药师,博士生导师,研究方向:抗精神分裂症药物副作用及临床药物的药动学、新药研发,通讯作者,E mail:2621239868@qq.comdoi:10.3969/j.issn.1001-1978.2021.01.005文献标志码:A文章编号:1001-1978(2021)01-0022-05中国图书分类号:R318 02;R329;R589;R589 2摘要:棕色脂肪组织可以通过产生热量来消耗储存的化学能。

棕色脂肪白色化会损害它的产热功能造成肥胖和代谢紊乱相关的疾病,减缓或抑制棕色脂肪白色化进程具有重要意义。

该文综述了棕色脂肪白色化的诱导因素及关键调控因子,以期为肥胖及代谢紊乱相关疾病的预防和治疗提供新思路。

关键词:棕色脂肪组织;白色脂肪组织;棕色脂肪白色化;诱导因素;调控因子;代谢紊乱 脂肪组织在调节能量平衡和葡萄糖稳态中起着至关重要的作用[1]。

白色脂肪组织(whiteadiposetissues,WAT)由包含单个大脂质滴的WAT细胞组成,主要位于身体的皮下和腹部区域,以甘油三酸酯的形式存储多余的能量[1]。

棕色脂肪组织(brownadiposetissues,BAT)由富含大量线粒体的BAT细胞组成,主要位于啮齿动物的肩胛间区域,与WAT相比,BAT专门消耗能量来产生热量[2]。

【文献速递】脂肪组织科研“新宠”——Lipokines的现在及未来

【文献速递】脂肪组织科研“新宠”——Lipokines的现在及未来

【文献速递】脂肪组织科研“新宠”——Lipokines的现在及未来脂肪组织是重要的内分泌代谢器官,参与调节全身能量代谢及维持葡萄糖、脂质的稳态1。

其内分泌功能由脂肪分泌至血液循环的具有生物活性的因子介导。

既往关于脂肪组织分泌的研究主要集中在多肽类脂肪因子,包括瘦素、脂联素和降脂蛋白等2。

除了多肽类脂肪因子,脂肪组织还分泌多种非多肽类的生物活性因子,其中包括脂肪酸衍生的生物活性脂质。

一部分脂肪分泌的生物活性脂质被保留在局部脂肪组织环境中;另一部分则被主动分泌到血液循环中,被称为“Lipokines”3。

(图1)图1:脂肪分泌的生物活性因子示意图随着肥胖及其相关疾病(胰岛素抵抗、2型糖尿病、心血管疾病和非酒精性脂肪肝)的患者日渐增多,Lipokines作为一种新型内分泌调控因子,因其在全身代谢调控中的作用而备受关注。

Lipokines能够直接与细胞内脂肪酸代谢通路相联系,将脂肪细胞内的能量状态传递给包括肝脏、肌肉和胰腺在内的其他非脂肪外周代谢组织。

(图2)Lipokines及其代谢通路可能成为未来慢性代谢性疾病治疗的新方向。

图2:脂肪分泌的生物活性脂质介导脂肪组织对其他外周代谢组织的作用示意图近期,Veronica等人在Diabetes杂志上发表了一篇关于Lipokines的综述3,举例介绍脂肪组织Lipokines的结构和功能差异(表1),并探讨了Lipokines作为血糖和血脂代谢内分泌调节因子的当前研究进展以及未来的研究方向。

表1:各类脂肪组织 Lipokines的分子结构、生理调控、靶器官及内分泌作用汇总自分泌运动因子(autotaxin, ATX)/溶血磷酯酸(Lysophosphatidic Acid,LPA):促进胰岛素抵抗1998年研究人员发现LPA,其可作用于位于前脂肪细胞表面的LPA受体,促进前脂肪细胞增殖4,5。

此后研究人员又发现ATX也是一种脂肪细胞分泌的酶,负责细胞外LPA的生物合成6。

棕色脂肪组织与糖代谢的关系论文

棕色脂肪组织与糖代谢的关系论文

of Hebei Medical眈觇巧毋,Shijiazhuang
050017,China
Corresponding author:Ma
Huijuan,Entail:huijuanma76@163.con
proved the presence of functional brown adipose
【Abstract】Studies
BAT与糖代谢
研究表明BAT的主要代谢底物是甘油三酯和葡 萄糖。BAT可清除循环中75%的葡萄糖和50%的甘 油三酯。Chondronikola等一1的研究指出,可检测到 BAT的受试者在长期寒冷暴露条件下,血浆葡萄糖 氧化占静息能耗增加量的30%,而血浆游离脂肪酸 氧化占静息能耗增加量的70%。所以BAT与糖、脂 代谢存在密切关系。
GLUT4。Orava等[15 3分析了人体BAT中与胰岛素信
的2一DG摄取完全消失,而心肌的2一DG摄取未改变。 表明NE可通过诱导UCPl表达,增强BAT对葡萄糖的
摄取‘川。
研究表明B,肾上腺素能受体激动剂可刺激小鼠 BAT活化,但在人类中相关阐述较少。Cypess等旧川 的研究通过应用米拉贝隆(用于膀胱过度活动症的 选择性p,肾上腺素能受体激动剂),探讨p,肾上 腺素能受体激动剂对人类BAT的作用。研究指出, 米拉贝隆可使人类BAT的代谢活性增加并使静息 代谢率增加(203±40)kcal/d,从而证明B3肾上腺 素能受体激动剂可促进人类BAT活化。另一项研究 指出B,肾上腺素能受体激动剂导致的BAT代谢活 性的长期增加,可降低血浆葡萄糖水平心2。。 2.3胰岛素、寒冷、甲状腺激素诱导的BAT摄取葡 萄糖的增加与BAT血流灌注的关系 寒冷条件下 BAT葡萄糖的摄取增加12倍伴随着血流灌注增加 2倍。胰岛素刺激时BAT摄取葡萄糖增加5倍,而与 血流灌注无关¨8|。甲状腺功能亢进症患者BAT的 葡萄糖摄取增加3倍,但不影响BAT的血流灌 注心…。表明胰岛素、寒冷、甲状腺激素诱导BAT活 化进而摄取葡萄糖的机制不同,胰岛素和甲状腺激 素刺激BAT活化时,葡萄糖摄取增加不依赖于血流 灌注,而寒冷刺激的BAT的活化以血流灌注依赖的 方式摄取葡萄糖。 综上所述,BAT在维持葡萄糖稳态和胰岛素敏 感性中具有重要的作用。而且BAT在人体糖代谢中 的作用独立于年龄、性别和体脂。空腹状态、胰岛 素、寒冷、NE均可促进BAT对葡萄糖的摄取。鉴于 BAT在人体葡萄糖代谢中的重要作用,增强BAT活 性或诱导WAT棕色化可作为改善糖代谢,治疗糖 尿病的新靶点。

脂肪酸转运蛋白家族FATPs综述

脂肪酸转运蛋白家族FATPs综述

Slc27a4上调[46]
25
三、FATPs家族成员介绍
Slc27a4的外显子3突变(p.C168X)会引起与Slc27a4敲除 小鼠类似表型的鱼鳞病早产综合征(IPS)[47],病人的角质
但调节肠脂肪酸吸收的机制存在争议
如条件删除脂肪细胞的Slc27a4的小鼠在高脂肪日粮下的
LCFA吸收没有变化,但呈现体重增加、皮下脂肪增多[45] ; 24
三、FATPs家族成员介绍
在Slc27a4敲除小鼠的角质形成细胞中过表达FATP4没有改变肠 LCFA的吸收和分泌速率[43]。
(4)与ACS关系
★虽然在部分组织或细胞中,LCFA可以通过膜受体传递
信号,但通常情况下它们需要穿过细胞质膜才能发挥生
理功能[2]
3
一、脂肪酸与脂肪酸转运体系
2.脂肪酸转运方式:
简单扩散(基于细胞膜和脂肪酸都是亲脂性)[3] 蛋白介导的竞争性的脂肪酸转运体系(由于长链脂肪酸的 摄取过程呈现出迅速、饱和、底物特异性以及受激素调节等 特点)[4]
脂肪酸转运蛋白家族 FATPs综述
主要内容
脂肪酸与脂肪酸转运体系 FATPs家族概述
FATPs家族成员介绍
FATP1-6
总结
2
一、脂肪酸与脂肪酸转运体系
细胞代谢重要能量来源 合成细胞质膜
1.脂肪酸(尤其长链脂肪酸,LCFA)生理作用与转运[1]:
多种信号分子(如前列腺素)前体
直接或间接调节如离子通道的激活、酶的功能、脂质代谢和 细胞分化的基因表达等细胞活动
★ FATPs的多重亚细胞定位表明了它们在脂肪酸吸收 和活化中的双重作用
9
二、FATPs家族概述
5.FATPs的作用
对FATPs的作用仍存在争议: (1)LCFA的直接转运蛋白 在鼠脂肪细胞中过量表达FATP1增加LCFA吸收[8],但 此作用需要FATP1形成同型二聚体[13] FATP2、FATP5增加肝细胞LCFA吸收[14、15] 其他FATPs的增加LCFA吸收是否需要形成二聚体未知 (2)活化LCFA的酶活性(类似ACS酶活性) FATP1缺失突变或FATP1中于ACS活性高度保守的序列 突变使ACS酶活性和LCFA吸收下降[16、17] (3)同时具有独立的转运载体和ACS酶活性 或与ACSL-1形成复合体[18] 10 或具有内在的ACS酶活性[19]

棕色脂肪组织分化及调控的研究进展

肥胖是一种能量代谢失衡的慢性营养性疾病,主要是由于脂肪组织过多聚集而导致的。

肥胖是代谢综合征的危险因素,也是21世纪人们最关注的公共卫生问题[1]。

据有关调查数据显示,每年死于肥胖的成年人人数多达280万[2-3]。

肥胖儿童成年后更易患代谢综合征,说明肥胖与代谢综合征密切相关。

随着社会的进步,人们生活水平日益提高,儿童时期发生肥胖的概率更是逐年增长。

脂肪组织可以分为两大类:白色脂肪组织(white adipose tissue)和棕色脂肪组织(brown cell tissue)。

白色脂肪组织是一个器官,可储存一定的能量,也是人体中最大的内分泌器官,其脂肪细胞可分泌脂肪酸及细胞因子(cell factor)和转录因子(transcription factor )等其他物质,还可与人体的肝脏、大脑等进行对话,参与机体糖脂代谢。

因此,白色脂肪组织不仅可影响肥胖,也可对代谢综合征的发生及发展产生影响[4]。

棕色脂肪组织可与线粒体进行氧化呼吸解偶联作用,使得ATP转化为热能,从而实现热能的转化,消耗储存的能量。

治疗肥胖症患者的最好方式就是增加棕色脂肪组织的数量,并且这对代谢综合征患者的治疗也有很大的帮助[5]。

除了增加棕色脂肪组织的数量,加强其功能,也有利于疾病的治疗。

由此可见,研究棕色脂肪组织的分化及其调控机制十分重要,这也是目前许多学者关注的重点问题。

想要有效地治疗肥胖症患者,就要思考如何增加棕色脂肪组织的含量,并使其富有活性,现就这一问题进行综述,以期为临床治疗肥胖症患者提供具体思路。

1 棕色脂肪组织的结构及其分化1.1 结构和分化棕色脂肪组织具有非常复杂的组成结构,它的组成部分不仅有棕色脂肪细胞,还有毛细血管以及神经。

其中棕色脂肪细胞结构极为复杂,是一个多房的结构,而白色脂肪细胞是一个单房结构。

棕色脂肪细胞不仅有较多的线粒体,脂滴的含量也较多,且其脂解率比较高。

该组织之所以称为棕色脂肪组织,是由于其含有较为丰富的血管,每个脂肪细胞中一般都有5个毛细血管,丰富的血运及细胞色素使该组织呈现棕色。

改善肉猪体脂沉积的营养添加剂有哪些-

改善肉猪体脂沉积的营养添加剂有哪些?脂肪的过度沉积不仅影响了动物产品的品质,更为严重的是,食入过量的脂肪对人体健康造成伤害,由此导致的肥胖、糖尿病、动脉粥样硬化、脂肪肝、冠心病等“富贵病”发率提高。

广大畜牧工作者已开始注意到脂肪代谢对畜禽胴体品质影响的重要性,正着力通过遗传选育、使用激素、免疫和营养调控等技术手段来改善胴体品质,增加瘦肉产量。

本文主要从营养调控方面加以综述。

1 猪体脂沉积规律猪体脂分为棕色脂肪和白色脂肪两类,棕色脂肪主要分布在肩胛间、肩胛下、颈部、肾周、胸部动脉和下腔静脉周围。

白色脂肪主要分布在皮下、腹腔内,肌肉、结缔组织以及内脏器官周围。

猪的脂肪组织几乎承担了合成体内全部内源脂肪酸的任务。

成年后脂肪组织就会迅速在皮下和腹腔内大量增长。

猪体脂中2/3沉积在肌肉外部,剩余部分贮藏于肌肉间、肌肉内、肠及肾脏周围。

2 降低猪体脂的营养添加剂2.1 甜菜碱甜菜碱,最早是从甜菜糖蜜中分离出的一种天然物质(http://),它广泛存在于动、植物组织中。

在动物体内,甜菜碱是胆碱的氧化产物,它主要通过提供甲基合成多种营养物质间接参与体内的许多生理过程。

甲基是合成动物体内具有生理活性的物质所必需的基团,如核酸、肉碱、肌酸、肾上腺素等的合成。

由于动物体内的主要甲基供体之一――胆碱不能直接提供甲基,需通过肝细胞线粒体将其转化为甜菜碱后才能提供甲基。

动物体内另一甲基供体蛋氨酸,为限制性氨基酸之一。

甜菜碱对动物脂肪代谢的作用,一是甜菜碱提供甲基,部分替代胆碱合成磷脂酸胆碱,促进肝脏脂肪转运,抑制肝脏脂肪蓄积;二是甜菜碱提供甲基,部分替代蛋氨酸合成肉碱,促进动物脂肪氧化分解,从而产生降低动物体脂含量或重新分配体脂的作用。

在肥育猪饲料中添加 1750 mg/kg的甜菜碱,眼肌面积增大了 11.99%(P < 0.01);添加 1250 mg/kg的甜菜碱,使肥育猪背膘厚度降低15%,眼肌面积增大。

2.2 肉碱肉碱,最早是在1947年于虫体内及幼虫发育的有关成分中被发现的,具有生理作用的是其左旋异构体即L一肉碱。

脂肪细胞综述

脂肪细胞及其细胞因子研究进展摘要:近期的科学研究显示:脂肪组织不仅是一个被动的储存能量的器官,它还是一个调节机体内分泌、能量代谢及炎症的内分泌器官。

脂肪组织可以分泌多种激素和细胞因子,这些分泌蛋白通称为脂肪细胞因子。

脂肪细胞因子是脂肪细胞产生的生物活性物质, 它们能参与人体其他组织的生物功能。

目前已知的脂肪细胞因子有: 肿瘤坏死因子(TNF2A) , 纤溶酶原激活物抑制剂( PAI) 21, 白介素26 ( IL26) ,瘦素(Leptin) , 血管紧张素原( Angiotensinogen) ,脂联素( adiponectin) , 抵抗素( resistin) 等。

近年发现的脂肪细胞因子-脂联素( adiponectin),脂肪细胞因子chemerin,视黄醇结合蛋白(RBP)4等等,本文将对以上脂肪细胞因子做相关性分析,简单介绍其对脂肪细胞的影响及研究进展。

关键词:脂肪细胞;细胞因子;研究进展Abstract: recent scientific research suggests that: adipose tissue is not only a passive storing energy, organ, it was a regulate the endocrine, energy metabolism and inflammation of the endocrine organs. Adipose tissue can secrete a variety of hormone and cytokines, these secrete proteins are generally called "adipose cell factors. Fat cells factor is fat cells to produce the biological activity material, they can participate in the rest of the human body organization of biological function. Present known fat cell factors include: tumor necrosis factor (TNF2A), fibrinolytic enzyme inhibitors (original activation content PAI interleukin 26 (21), IL26), Leptin (Leptin), Angiotensinogen (Angiotensinogen), adiponectin (adiponectin), resist hormone (resistin) etc. Recent discovery of fat cells factor - adiponectin (adiponectin), fat cells factor chemerin, retinol combined with seeral ribosomal proteins, RBPS 4, etc, the paper will be on the above adipose cell factors do, and briefly introduces the correlation analysis of the influence of fat cells are reviewed.Keywords: fat cells, Cell factors; Research progress一.脂肪细胞(adipocyte;fat cell)脂肪细胞在分子细胞生物学中的定义是脂肪组织的间充质细胞,是含有大的充满液态脂质的膜泡,每个成人体内大约含有300亿个白色脂肪,功能是将能量以脂肪细胞的形式储存起来。

综述——脂肪干细胞与脂肪移植

王岩斐自从美国加州大学洛杉矶分校(University of California, Los Angeles, UCLA)的研究人员在《细胞分子生物学》(Molecular Biology of the Cell)杂志介绍了这种新型成体干细胞群以后,脂肪干细胞(the adipose-derived stem cells, ADSCs)逐渐成为普遍应用于干细胞领域中的最受欢迎的干细胞群[1]。

由于其自身存在的多向分化潜能,和获取ADSCs的简单实用性,ADSCs将成为多能胚胎干细胞(pluripotent ES cells)的替代物,无论是在实验室仍是在临床应用中。

长期以来,对于各类原发的和继发的软组织缺损的医治一直是困扰整形外科医生的难题之一。

引发软组织缺损的原因有严重烧伤、感染、体表肿瘤切除术后、各类外伤和先本性疾病等[2]。

自体脂肪作为一种软组织填充物,由于其诸多的并发症曾一度被人们放弃,但随着组织工程技术及细胞生物学的发展,自体脂肪移植又逐渐被人们认可。

现将脂肪干细胞在脂肪移植中的作用及其临床应用现状综述如下。

1 脂肪移植的发展概况20世纪初,自体脂肪颗粒作为一种软组织填充材料开始应用于临床。

但是,由于其吸收率高、存活率低,且并发症较多,限制了其在临床中的普遍应用[3]。

21世纪初,通过改良脂肪获取技术,加速了脂肪血管化,提高了脂肪颗粒移植的成活率。

可是,坏死、吸收仍然是颗粒脂肪移植的主要并发症。

直到Zuk等[1]第一次从自体脂肪组织中分离取得具有多向分化潜能的细胞——ADSCs,脂肪移植的研究愈来愈深切,原因就是ADSCs来源丰硕,取材方便,且组织中干细胞含量丰硕(ADSCs在皮下白色脂肪组织中约占细胞总量的10%-20%[4]),不会引发伦理学争议等。

最近几年来,随着组织工程技术的迅速发展,为克服常规注射颗粒脂肪移植的问题,如吸收、囊肿、硬结等,Yoshimura等[5]又发明了细胞辅助的脂肪移植术(cell-assisted lipotransfer, CAL),该技术是将ADSCs与脂肪细胞混合,联合注射移植。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The International Journal of Biochemistry &Cell Biology 56(2014)123–132Contents lists available at ScienceDirectThe International Journal of Biochemistry&CellBiologyj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /b i o c elReviewMaintenance of white adipose tissue in man ଝMervi T.Hyvönen,Kirsty L.Spalding ∗Department of Cell and Molecular Biology,Karolinska Institute,Berzelius väg 35,Stockholm 171-77,Swedena r t i c l ei n f oArticle history:Received 14April 2014Received in revised form 30August 2014Accepted 9September 2014Available online 20September 2014Keywords:Preadipocytes AdipocytesAdipocyte progenitors Adipocyte turnover Obesitya b s t r a c tObesity is increasing in an epidemic manner in most countries and constitutes a public health problem by enhancing the risk for diseases such as diabetes,fatty liver disease and atherosclerosis.Together these diseases form a cluster referred to as the metabolic syndrome.Despite the negative health consequences associated with excess adipose tissue,very little is known about the origin and maintenance of white adipose tissue in man.In this review we discuss what is known about the turnover of adult human adipocytes and their precursors,as well as adipose tissue heterogeneity,plasticity and developmental origins.The focus of this review is human tissue,however in many cases human data are missing and are inferred from animal studies.As such,reference to animal studies are made where human data is not available.This article is part of a directed issue entitled:Regenerative Medicine:the challenge of translation.©2014Elsevier Ltd.All rights reserved.Contents 1.Introduction .........................................................................................................................................1242.Adipocyte turnover ..................................................................................................................................1242.1.Adipocyte number in man ...................................................................................................................1242.2.Adipocyte death .............................................................................................................................1253.Adipose tissue heterogeneity .......................................................................................................................1254.Plasticity of adipocytes and their precursors .......................................................................................................1264.1.Adipose tissue-derived stem/stromal cells..................................................................................................1264.2.Dedifferentiated adipocytes (dedifferentiated fat (DFAT)cells)............................................................................1274.3.White-to-brite adipocyte transdifferentiation ..............................................................................................1275.Developmental origins of adipocytes and adipocyte precursors ...................................................................................1275.1.Ectodermal origin ............................................................................................................................1275.2.Mesenchymal origin .........................................................................................................................1285.3.Endothelial origin ............................................................................................................................1295.4.Hematopoietic origin ........................................................................................................................1295.5.Origins of brite adipocytes...................................................................................................................1306.Conclusions ..........................................................................................................................................130References ...........................................................................................................................................130Abbreviations:ADSC,adipose tissue-derived stromal/stem cell(s);ASC,adipose-tissue stromal/stem cell(s);BAT,brown adipose tissue;C/EBP,CCAAT/enhancer-binding protein;DFAT cells,dedifferentiated fat cells;EGFP,enhanced green fluorescent protein;FABP4,fatty acid binding protein 4(aP2);GLUT4,glucose transporter 4;GFP,green fluorescent protein;HSL,hormone sensitive lipase;iPS,induced pluripotent stem cell;LPL,lipoprotein lipase;PDGFR,platelet-derived growth factor receptor;PPAR ␥,peroxisome proliferator-activated receptor ␥;SA-ASC,supraadventitial-adipose stromal cells;scWAT,subcutaneous white adipose tissue;SVF,stromal–vascular fraction;TNF-␣,tumor necrosis factor ␣;UCP1,uncoupling protein 1;vWAT,visceral white adipose tissue;WAT,white adipose tissue;scWAT,subcutaneous white adipose tissue;YFP,yellow fluorescent protein.ଝThis article is part of a directed issue entitled:Regenerative Medicine:the challenge of translation.∗Corresponding author.E-mail address:kirsty.spalding@ki.se (K.L.Spalding)./10.1016/j.biocel.2014.09.0131357-2725/©2014Elsevier Ltd.All rights reserved.124M.T.Hyvönen,K.L.Spalding/The International Journal of Biochemistry&Cell Biology56(2014)123–1321.IntroductionTwo general types of adipose tissue exist in humans,white (WAT)and brown(BAT).White adipocytes store triglycerides and cholesterol in a single large lipid droplet(unilocular appear-ance),while brown adipocytes are present mainly in infants, contain several smaller lipid droplets(multilocular appearance) and oxidize fatty acids for heat production(non-shivering ther-mogenesis).WAT is a highly dynamic tissue,i.e.capable of rapidly changing its mass according to the body’s energy sta-tus.Although mature adipocytes constitute the majority of WAT mass/volume,they account for less than20%of the total cells in WAT(Eto et al.,2009).The other cells,collectively referred to as the stromal–vascular fraction(SVF),are a heterogeneous population of endothelial cells,macrophages,fibroblasts,stem cells and lymphocytes.Although once considered merely as a site of passive energy storage,WAT is now recognized as an important endocrine organ,secreting adipokines,which regulate important physiological functions such as appetite,energy expen-diture,insulin sensitivity,inflammation and coagulation(Hauner, 2005).WAT is necessary for normal human physiology.Lipodystro-phies,characterized by loss and/or redistribution of fat in certain depots,are associated with insulin resistance,dyslipidemia,car-diovascular disease,and high blood pressure–i.e.the metabolic syndrome(Capeau et al.,2005).On the other hand,in most individuals obesity leads to metabolic syndrome,type2dia-betes and some types of cancer(Pedersen,2013;De Pergola and Silvestris,2013).To add further complexity,WAT is not the same in all body depots.An increased amount of visceral adi-pose tissue(vWAT)results in a much higher risk for the metabolic syndrome than an increased amount of subcutaneous adipose tissue(scWAT)(Patel and Abate,2013).In fact,increased subcu-taneous fat deposition might even protect against the metabolic syndrome(Snijder et al.,2003).In addition,the morphology of WAT has a clear clinical relevance.Adipocyte hypertrophy (increased cell size)is associated with decreased insulin sensitiv-ity,even in lean subjects(Arner et al.,2010).Moreover,adipocyte hypertrophy is an independent risk factor for developing type 2diabetes,and individuals with hypertrophic obesity have a poorer metabolic profile than those with hyperplastic(increased number of cells)obesity(Arner et al.,2010;Hoffstedt et al., 2010).Recently a third type of adipocyte has been characterized and termed‘brite’,for its‘br own-i n-whi te’phenotype(Petrovic et al.,2010).Brite cells(also referred to as beige,inducible, recruitable,brown-like or paucilocular cells)are interspersed in white adipose tissue and can activate UCP-1mediated thermo-genic activity following cold induction or administration of agonists of the␤-adrenergic receptor or peroxisome proliferator-activated receptor-␥(PPAR␥)(Ohno et al.,2012;Wu et al.,2012;Lee et al., 2012,reviewed in Giordano et al.,2014;Lee and Cowan,2013; Rosenwald and Wolfrum,2014).Based on their initial character-ization these cells are collectively referred to as brite here,unless discussing a specific body of work where the authors have chosen a different term.Wolfrum and colleagues recently showed that there is a direct interconversion between brite adipocytes and mature white adipocytes,demonstrating that brite-stimulated cell expres-sion is an inducible and reversible event(Rosenwald et al.,2013). Given the energy-dissipating nature of brown and brite adipocytes, much interest is focused on targeting cells that can be induced to become brite as a means of increasing energy expenditure and com-bating obesity(van der Lans et al.,2013;van Marken Lichtenbelt et al.,2009;Virtanen et al.,2009,reviewed in Harms and Seale, 2013;Lee and Cowan,2013).2.Adipocyte turnover2.1.Adipocyte number in manAdipocyte number in WAT in man is remarkably stable in adult-hood.Weight loss,resulting in a significant reduction in adipose tissue,occurs as a result of a decrease in the average size of adipocytes and not due to a decrease in cell number(Salans et al., 1971;Björntorp et al.,1975;Häger et al.,1978;Spalding et al., 2008).For many years such observations supported the notion that adipocytes represent a terminally differentiated,non-turning over population of cells that respond to changes in the energy balance by increasing or decreasing their lipid content.Recent studies,how-ever,have shown that adipocytes in adult humans turn over,at rates ranging from10%(Spalding et al.,2008)to100%(Strawford et al.,2004)per year.Differences in adipocyte turnover estimates most likely reflect differences in the methods used to measure cell turnover.The14C labeling method of Spalding et al.(2008),retro-spectively determines the age of cells across the entire lifespan of an individual,which is in contrast to Strawford et al.(2004)who use short-term labeling studies,administering deuterated water for pulse periods to label newly synthesized DNA.Radiocarbon dat-ing and heavy water labeling are thus complementary approaches suitable for detecting cell turnover in the older,mature adipocyte fraction(14C)as well as the faster turnover of the proliferating fraction(heavy water).This data suggests that most proliferating pre-adipocytes do not permanently join the mature adipocyte pop-ulation(Spalding et al.,2008).Such a dynamic turnover of adipocytes raises the question as to why,when one significantly adjusts the energy balance in favor of weight loss(decreased calorie intake,increased energy expen-diture)does the body continue to produce the same number of new adipocytes per year?It seems that adipocyte number,at least in the case of weight loss,is tightly regulated and independent of the energy balance.One theory explaining the tight control of adipocyte number in humans is the“thrifty genotype”theory.This theory proposes that humans have undergone a positive selec-tion for genes that favor energy storage,as part of an evolutionary adaption to survive times of famine and promote energy storage for times of need(Need,1999;Sellayah et al.,2014).This,com-bined with a sedentary lifestyle and a diet high in saturated fats and refined carbohydrates,contributes to the obesity epidemic we see today.Whilst adipocyte number seems to be tightly regulated in weight-stable adults and during weight loss,which may have some evolutionary advantage,it is less clear how adipocyte num-ber is affected in obesity.Much needed longitudinal studies,where individuals are followed with and without weight gain over many years,is sorely missing from the literature.Short-term studies of weight gain,however,provide some insight.Salans et al.(1971) looked at short-term weight gain(3–4months)in lean men and reported a significant increase in adipocyte size following weight gain,however no increase in adipocyte number.Adipocyte number was calculated by dividing total body fat by the average amount of fat per cell,taken from femoral,abdominal and tricep adipose biopsies(Salans et al.,1971).Since regional information on fat mass was not known,fat cell number for individual depots was not able to be calculated and was instead calculated using an aver-age from all three depots.Recently Jensen and colleagues,using dual-energy X-ray absorptiometry(DEXA)and computed tomogra-phy(CT)imaging to determine the size of abdominal and femoral adipose depots,showed regional differences in adipose cellular-ity following diet-induced weight gain(Tchoukalova et al.,2010). In this study short-term weight gain(8weeks)in female subjects demonstrated a significant increase in adipocyte number in the femoral sc depot.Interestingly,no significant change in adipocyteM.T.Hyvönen,K.L.Spalding/The International Journal of Biochemistry&Cell Biology56(2014)123–132125number was seen in the abdominal sc adipose tissue,suggesting a region-specific regulation of fat cell number.Lipectomy studies in animals(for review see Mauer et al.,2001)and humans(Finzi, 2003;Yun et al.,2003;Frew et al.,2005;Van der Lei et al.,2007) demonstrate a compensatory recovery of body fat,suggesting the existence of a body fat regulatory system.In nearly all species stud-ied,regrowth at the excision site does not occur,rather adiposity levels are restored(or partially restored)via compensatory hyper-trophy,without accompanying weight gain(Mauer et al.,2001). In studies by Scarborough and Bisaccia(Bisaccia and Scarborough, 1990;Scarborough and Bisaccia,1991)it was observed that40% of women who have abdominal liposuction,increase one or more cup sizes.Multiple studies have since confirmed these results, demonstrating that abdominal fat excision increases breast size and that this increase in breast size is positively correlated to the amount of abdominal adipose tissue removed(Finzi,2003;Yun et al.,2003;Frew et al.,2005;Van der Lei et al.,2007).Whilst this indirectly supports the lipostatic theory,that is that total adipos-ity is centrally regulated,extensive abdominal liposuction results in peripheral changes in the estrogen-to-androgen ratio(with a relative increase in estrogen effect),providing an alternative expla-nation for increases in breast size.2.2.Adipocyte deathImmunohistochemical staining of macrophage markers in WAT from insulin-resistant individuals identify“crown-like structures”, which are dead/dying adipocytes surrounded by macrophages. Necrosis-like cell death and associated recruitment of macrophages is increased up to30-fold in obese humans and mice,and has been implicated in the metabolic complications of obesity(Cinti et al., 2005).As opposed to apoptotic cell death,where cells die in a con-trolled non-inflammatory manner,necrosis involves macrophage proliferation and recruitment with a subsequent inflammatory response.Hypertrophic obesity is associated with an inflammatory response,characterized by high serum IL-6,TNF-␣and C-reactive protein(CRP)levels and low adiponectin levels(Bahceci et al., 2007).The rate of adipocyte death is positively correlated with adipocyte size in obese mice and humans and in hormone-sensitive lipase-deficient(HSL−/−)mice,a model of adipocyte hypertrophy without increased adipose mass(Cinti et al.,2005).WAT of HSL−/−mice exhibit a15-fold increase in necrotic-like adipocyte death and formation of crown-like structures,coincident with increased inflammatory gene expression.Recent studies in mice suggest that the polarization sig-nature of macrophages recruited to adipose tissue determines subsequent metabolic consequences(Lee et al.,2013).Classically polarized macrophages(M1)appear to induce insulin resistance by triggering local and systemic inflammatory signaling,whereas alternatively activated(M2)macrophages enhance insulin sensitiv-ity via PPAR␥-signaling(Heilbronn and Campbell,2008).Adipose tissue macrophages not only arise from the recruitment of blood monocytes,but recently it has been shown that local macrophage proliferation contributes significantly to obesity-induced increases in macrophage number(Amano et al.,2014;Jenkins et al.,2011; Hashimoto et al.,2013;Qiu et al.,2014;Yona et al.,2013).Haase et al.(2014)demonstrate that local macrophage proliferation in crown-like structures leads to an increase in M2macrophages during obesity-induced inflammation.These studies suggest a dif-ferent recruitment mechanism of classically activated(M1)and alternatively activated(M2)macrophages in obesity.Macrophages have also recently been implicated in the activa-tion of brite fat in mice.Chawla and colleagues show that acute cold stress results in M2activation in WAT,which results in the local secretion of catecholamines that induce brite-fat activation (Nguyen et al.,2011).Spiegelman and colleagues demonstrate that meteorin-like(Metrnl),a hormone secreted following exer-cise in skeletal muscle and cold exposure in adipose tissue,leads to the recruitment of eosinophils into adipose tissue(Rao et al., 2014).Eosinophils are the major source of cytokines IL-4and IL-13,shown previously by Nguyen et al.(2011)to stimulate the induction of beige fat thermogenic genes.Chawla and col-leagues(Qiu et al.,2014)simultaneously report that M2activated macrophages,recruited to cold-stressed WAT(Nguyen et al.,2011), are the core integrators of eosinophil and IL-4and IL-13regu-lated beige fat development.Blocking IL-4production in scWAT (using4get- dblGATA mice,which lack eosinophils)results in the failure to cold-induce a thermogenic gene expression profile in scWAT.IL-4and IL-13signalling via the IL-4R␣in macrophages (the receptor which mediates the known biological effects of IL-4/13)was shown to be required for the development of func-tional beige/brite fat in cold-housed animals(Qiu et al.,2014).The generation of brite adipocytes from progenitors in response to␤3-adrenergic receptor signaling has also been shown to be preceded by white adipocyte death and subsequent removal by M2-polarized macrophages(Lee et al.,2013).The recruited macrophages secreted osteopontin,which acts as a chemokine for brite adipocyte precur-sors.These studies demonstrate the role of alternatively activated macrophages in the development and activity of brite/beige fat. 3.Adipose tissue heterogeneityDistinct WAT depots possess dramatic heterogeneity,differ-ing substantially in their gene expression profiles,cell size and response to physiological factors such as hormones(Gil et al.,2011). Depot heterogeneity is apparent,for example,in most lipodys-trophies,which are characterized by loss of fat in certain body locations,while fat in other areas is unaffected or even expanded (Capeau et al.,2005).Differences between vWAT and scWAT have been recognized for a long time and research is ongoing in this field due to the well-known relationship between increased vis-ceral adiposity and insulin resistance.Although visceral adipocytes are smaller than subcutaneous adipocytes,they exhibit higher rates of fatty acid turnover and lipolysis,and are less responsive to the antilipolytic effect of insulin(Engfeldt and Arner,1988),leading to a greater release of free fatty acids into the circulation.They also secrete more inflammatory factors such as tumor necrosis factor␣(TNF-␣)and leptin(Wronska and Kmiec,2012).An inter-esting study with inducible labeling of mature adipocytes using the AdipoChaser mouse indicates that epididymal(visceral)fat responds to a high-fat diet preferentially by inducing adipogen-esis from precursors,whereas subcutaneous fat initially undergoes hypertrophy of existing adipocytes(Wang et al.,2013).Thisfind-ing is in agreement with the notion that adipocytes from visceral depots have a lower capacity to enlarge than those from subcuta-neous depots.Regional differences in WAT composition and function also include variations in the SVF population,vasculature and inner-vation.Tchkonia et al.(2001)showed that cloned human preadipocytes from subcutaneous depots have a higher adipogenic capacity than omental preadipocytes from the same individual.The group also identified920transcripts that differed among the cloned preadipocytes from abdominal subcutaneous,mesenteric and omental depots(Tchkonia et al.,2007).In later experiments they showed that the expression of adipogenic transcription factors per-oxisome proliferator-activated receptor␥2(PPAR␥2)and CCAAT-enhancer binding protein␣(C/EBP␣)is greater in abdominal subcutaneous tissue than femoral,in lean and obese adult women (Tchoukalova et al.,2010;for review see Tchkonia et al.,2013). It appears that depot-specific differences in preadipocyte pheno-type are established early during development.Gene expression126M.T.Hyvönen,K.L.Spalding/The International Journal of Biochemistry&Cell Biology56(2014)123–132analyses have revealed changes in genes that regulate early embry-onic development such as homeotic genes(Gesta et al.,2006; Cartwright et al.,2010;Yamamoto et al.,2010).These genetic dif-ferences seem to be maintained for several passages and are not affected by nutritional status,suggesting that each depot has its own unique gene expression signature.Interestingly,studies by Roncari et al.(1981)indicated that omental preadipocytes isolated from massively obese subjects had higher capacity to proliferate and differentiate in vitro than cells from lean subjects,whereas others reported that there was no difference in the preadipocyte replication and differentiation rates between moderately obese and lean subjects(Pettersson et al.,1985;Hauner et al.,1988).These and other studies(see Farooqi,2006for a review)show that some individuals have a high genetic predisposition to develop massive obesity,especially the early-onset type.Adipocytes and their precursors possess heterogeneity also within the same depots.Mice having WAT-specific knockout of the insulin receptor(FIRKO)or hormone-sensitive lipase(HSL)exhibit two distinct populations of adipocytes,small and large,instead of a normal Gaussian distribution(Blüher et al.,2002;Fortier et al., 2005).The presence of at least two adipocyte populations is also evident in mice treated with the PPAR␥ligand,pioglitazone(de Souza et al.,2001).Gene expression arrays and proteomic profiling indicates that small and large adipocytes of both FIRKO and wild-type mice differ dramatically in the expression of genes involved in lipogenesis,lipolysis and inflammation.The transcriptome and proteome of large and small adipocytes from the same depot also differ in humans(Jernås et al.,2006).Moreover,cloning of human preadipocytes from a single depot revealed two distinct clones, with one displaying higher replication and adipogenic capacity and decreased sensitivity to apoptosis(Tchkonia et al.,2005,2006). These clones retained most of their properties even after40pop-ulation doublings.Collectively thesefindings suggest that at least two different lineages give rise to white adipocytes.4.Plasticity of adipocytes and their precursors4.1.Adipose tissue-derived stem/stromal cellsSVF cells from WAT were isolated for thefirst time by Rodbell in 1964using proteolytic enzymes and centrifugation(Rodbell,1964). Nowadays there are several commercial automated devices for the isolation and concentration of SVF cells from WAT that can be achieved within2h(Aronowitz and Ellenhorn,2013).The WAT SVF is a rich source of stem cells that are capable of differentiating into all mesenchymal lineages(adipogenic,osteogenic,chondrogenic, myogenic and cardiomyogenic)as well as angiogenic,epithelial, hepatic and neurogenic(Zuk et al.,2001;Gimble et al.,2007).The existence of multipotent cells in WAT is also supported by the exist-ence of progressive osseous heteroplasia,a disease where ectopic bone forms within adipose tissue(Shore and Kaplan,2010).In 2009,Sun and colleagues generated induced pluripotent stem cells (iPS)by viral transduction of human adipose-derived stem/stromal cells,finding it to be faster and more efficient than induction of pluripotency in humanfibroblasts(Sun et al.,2009).In the litera-ture,many terms are used for these cells,such as adipose-derived stem/stromal cells(ADSC)and adipose stem/stromal cells.How-ever,since ADSCs are obtained by plating and selecting for plastic-adherent SVF cells,they are a heterogeneous population and display little adipogenic potential when transplanted into mice(Zheng et al.,2006).For human ASCs,stimulation of adipogenesis in vitro is needed before they are able to form WAT in vivo(Hong et al.,2006).Regardless of some limitations,WAT represents an attrac-tive source of adult human stem cells for regenerative therapy due to its abundance,surgical accessibility and high content of Table1Some published clinical trials of adipose tissue-derived stromal cells.Trial acronymand referenceDisease/cause Trial name/purposeAdipoCellKim et al.(2011)Depressed scar“Safety and efficacy of autologouscultured adipocytes in patientswith depressed scar”APOLLOHoutgraafet al.(2012)Acute myocardialinfarction“A Randomized Clinical Trial ofAdiPOse-derived Stem ceLLs in theTreatment of Patients WithST-elevation myOcardialInfarction”Ra et al.(2011)Spinal cord injury“Autologous Adipose Derived MSCsTransplantation in Patient WithSpinal Cord Injury”ANTG-ASC-210Garcia-Olmoet al.(2009)FATT1Herreroset al.,2012Complex perianalfistula“Clinical Trials of AutologousCultured Adipose-derived StemCells on Complex Fistula““Fistula Advanced Therapy Trial1”RESTORE-2Pérez-Canoet al.(2012)Partial mastectomy“A clinical evaluation of adiposederived Regenerative cells in thetreatment of patients with brEastdeformities post Segmental breastresection(lumpectomy)with Orwithout Radiation therapy.A phaseIV post market study–theRESTORE2trial”Kølle et al.(2013)Radicalmastectomy“Lipofilling with MSC enriched fat,a permanent autologousfiller?”Thesleff et al.(2011)Cranial injury Cranioplasty with adipose-derivedstem cells and biomaterial:a novelmethod for cranial reconstruction Cervelli et al.(2012)Rombergsyndrome,hemifacial atrophy,chemical injuries,burn sequelaePlatelet-rich plasma greatlypotentiates insulin-inducedadipogenic differentiation ofhuman adipose-derived stem cellsthrough a serine/threonine kinaseAkt-dependent mechanism andpromotes clinical fat graftmaintenanceHULPVASMarino et al.(2013)Chronic ulcers ofthe lower limbs“Clinical trial phase IIa to safetytreating critical ischemianon-revascularizable lower limbby mesenchymal stem cells.”multipotential progenitor cells.While mesenchymal stem cells comprise only a minor fraction of all nucleated cells in the bone marrow(0.0001–0.01%)(Pittenger et al.,1999),human adipose tis-sue contains around100,000stem cells per gram(Sen et al.,2001). Moreover,graft rejection is not a concern,because the cells can be isolated from the same person they are administered to.Several clinical trials are in progress around the world(Table1).As clini-cal applications are increasingly reported,there is growing concern that clinical practices have not been validated by adequate scientific evidence.The use of ADSCs has also raised the question of whether the transplanted cells could promote cancer development.Several studies have been published,with some reports demonstrating that transplanted ADSC’s promote tumor growth and others that they do not(Akimoto et al.,2013;Kølle et al.,2013;Nowicka et al.,2013; Ra et al.,2011;Rowan et al.,2014).Another drawback in the clini-cal use of ADSCs might be that they primarily undergo osteogenic and chondrogenic differentiation in vivo(Zheng et al.,2006),which could result,for example,in calcification in target tissues.Indeed, one study found that the use of ADSCs in an autologous lipoinjec-tion was associated with cyst formation and tissue calcification in 4of70patients(Yoshimura et al.,2008).However,another study where SVF purified ADSC’s were co-transplanted with adipose tis-sue in breast augmentation surgery,reported no calcification in surgical follow up(Wang et al.,2014).Achieving consistent and。

相关文档
最新文档