扫描电镜的结构及原理

合集下载

扫描电镜工作原理

扫描电镜工作原理

扫描电镜工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,它利用电子束代替光束进行成像,可以观察到物质的表面形貌和微观结构。

下面将详细介绍扫描电镜的工作原理。

一、电子源扫描电镜的电子源通常采用热阴极电子枪,利用热电子发射原理产生高能电子束。

热阴极电子枪由电子发射体、聚焦极和加速极组成。

当电子发射体受到加热后,产生的热电子经过聚焦极的聚焦作用,形成一个细束电子束。

二、电子束的聚焦和加速经过电子源产生的电子束,会经过一系列的透镜系统进行聚焦和加速。

透镜系统由一组磁透镜和电透镜组成,它们分别通过调节磁场和电场来控制电子束的聚焦和加速。

通过透镜系统的调节,可以使电子束变得更加细致和聚焦,从而提高成像的分辨率。

三、样品的准备和固定在进行扫描电镜观察之前,需要对样品进行准备和固定。

通常情况下,样品需要经过化学固定、脱水、金属浸渍等处理步骤,以保持样品的形态结构和细节,并提高电子束的透射性。

四、样品的扫描和成像在样品固定后,将样品放置在扫描电镜的样品台上。

电子束从电子源发射出来后,经过透镜系统的聚焦和加速后,进入扫描线圈系统。

扫描线圈系统通过控制电子束的扫描范围和速度,使电子束在样品表面进行扫描。

扫描过程中,电子束与样品表面相互作用,产生多种信号。

五、信号的检测和处理样品与电子束相互作用后,会产生多种信号,包括二次电子、反射电子、背散射电子、X射线等。

这些信号被检测器接收到后,会转换成电信号,并经过放大和处理。

最终,通过将信号转换为图像,可以观察到样品表面的形貌和微观结构。

六、图像的显示和分析通过信号的检测和处理后,得到的图像可以通过显示器进行观察。

扫描电镜图像通常呈现出高对比度和高分辨率的特点,可以清晰地显示样品表面的细节和结构。

同时,还可以利用图像处理软件对图像进行后期处理和分析,如测量样品表面的尺寸、形状等。

总结:扫描电镜通过利用电子束代替光束进行成像,能够观察到物质的表面形貌和微观结构。

扫描电镜的结构及原理

扫描电镜的结构及原理

扫描电镜的结‎构及原理一、简介1特点:扫描电子显微‎镜主要特点是‎电子束在样品‎上进行逐点扫‎描,获得三维立体‎图像,图像观察视野‎大、景深长、富有立体感。

在观察样品表‎面形貌的同时‎,进行晶体学分‎析及成分分析‎。

常规的扫描电‎镜分辨本领通‎常为7~10nm,加速电压在1‎~50 kV范围。

生物样品一般‎用10~20kV,成像放大率几‎十倍至几十万‎倍。

2用途:扫描电镜可对‎样品进行综合‎分析,已成为重要分‎析工具,纤维、纸张、钢铁质量等,观察矿石结构‎、检测催化剂微‎观结构、观看癌细胞与‎正常细胞差异‎等。

3日本日立公‎司产品S-5200型为‎超高分辨率(ultra-highre‎soluti‎o n)扫描电镜,加速电压为1‎k V时,分辨率可达1‎.8nm,加速电压为3‎0kV时,分辨率高达0‎.5nm。

此外,还具有独特的‎电子信号探测‎系统,不但能观察样‎品三维形态结‎构甚至能看到‎样品的原子或‎分子结构,在使用性能方‎面已超越任何‎一种常规扫描‎电镜。

二、扫描电镜的结‎构扫描电镜的组‎成:(1)、电子光学系统‎:组成:①电子枪与透镜‎系统;②电子探针扫描‎偏转系统作用:产生直径为几‎十埃的扫描电‎子束,即电子探针,使样品表面作‎光栅状扫描。

①电子枪组成:阴极、阳极、栅极。

直径约为0.1mm钨丝制‎成,加热后发射的‎电子在栅极和‎阳极作用下,在阳极孔附近‎形成交叉点光‎斑,其直径约几十‎微米。

扫描电镜没有‎成像电镜,成像原理与透‎射电镜截然不‎同。

所有透镜皆为‎缩小透镜,起缩小光斑的‎作用。

缩小透几十镜‎将电子枪发射‎的直径约为3‎0μm电子束‎缩小成几十埃‎,由两个聚光镜‎和一个末透镜‎完成三个透镜‎的总缩小率为‎2000~3000倍。

两个聚光镜分‎别是第一聚光‎镜和第二聚光‎镜,可将在阳极孔‎附近形成的交‎叉点缩小。

聚光镜可动光‎阑位于第二聚‎光镜和物镜之‎间,用于控制选区‎衍射时电子书‎的发散角。

扫描电镜的结构原理与应用

扫描电镜的结构原理与应用

扫描电镜的结构原理与应用1. 概述扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种使用电子束来观察样品表面的高分辨率显微镜。

相比传统的光学显微镜,扫描电镜具有更高的放大倍数和更好的分辨率,能够观察到更细微的细节和表面形貌的特征。

本文将介绍扫描电镜的结构原理和应用领域。

2. 结构原理扫描电镜由以下几个基本组成部分构成:•电子枪:产生高速电子束的源头。

•准直系统:用于调节电子束的尺寸和形状,使其具有良好的准直性。

•聚焦系统:通过磁场对电子束进行聚焦,使其在样品表面形成高亮度的扫描点。

•扫描线圈:产生水平和垂直方向的扫描电场,控制电子束在样品表面的移动。

•探测器:用于检测样品表面所产生的信号,并转化为图像进行显示。

•显示器:将探测器所获得的信号转化为可见图像,并进行显示。

扫描电镜的工作过程如下:1.电子枪产生高能电子束。

2.准直系统和聚焦系统将电子束调整为合适的形状和大小。

3.扫描线圈控制电子束在样品表面进行扫描。

4.探测器检测样品表面所产生的信号,转化为图像进行显示。

5.显示器将图像进行显示和观察。

3. 应用领域扫描电镜在科学研究、工业生产和教育培训等领域有着广泛的应用。

以下是扫描电镜常见的应用领域:3.1 材料科学•表面形貌观察:扫描电镜可以观察材料表面的微观形貌特征,如纹理、孔洞和颗粒等。

•材料成分分析:通过能谱仪等附加装置,可以对材料进行成分分析,确定材料的化学组成。

3.2 生物科学•细胞观察:扫描电镜可以观察生物细胞的形态特征,揭示细胞的微细结构和功能。

•细菌病毒研究:通过扫描电镜可以观察细菌和病毒的形态和结构,研究其生长和传播机制。

3.3 纳米技术•纳米材料研究:扫描电镜可以观察纳米材料的形貌和结构,研究其物理和化学性质。

•纳米器件制备:扫描电镜可以用于观察和调控纳米级器件的制备过程和性能评价。

3.4 地质学•矿物鉴定:扫描电镜对地质样品进行观察和成分分析,有助于鉴定矿物种类和性质。

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理
扫描电子显微镜利用电子枪发射的电子束,经过几级电磁透镜缩小后,电子束到达样品,激发样品中的二次电子,二次电子被探测器接收,通过信号处理并调制显示器上一个像素发光,由于电子束斑直径是纳米级别,而显示器的像素是100微米以上,这个100微米以上像素所发出的光,就代表样品上被电子束激发的区域所发出的光。

实现样品上这个物点的放大。

如果让电子束在样品的一定区域做光栅扫描,并且从时空上一一对应调制显示器的像素的亮度,便实现这个样品区域微观形貌的放大成像。

细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。

扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。

扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。

扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。

扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。

扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。

扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。

必须抛光而不需腐蚀。

扫描电镜的结构原理及其操作使用课件

扫描电镜的结构原理及其操作使用课件
具有重要意义。
THANKS
感谢观看
材料内部结构分析
通过扫描电镜观察材料内部不同层次的结构,可以研究材 料的晶体结构、相组成、微织构等,对于材料的性能研究 和优化具有重要意义。
材料元素分布分析
扫描电镜配备的能谱分析仪可以测定材料中元素的种类和 分布情况,对于研究材料的化学成分和元素迁移行为具有 重要作用。
生物医学研究应用案例
01
细胞结构与功能研究
半导体器件结构与性能分 析
扫描电镜可以观察半导体器件的结构和性能 ,如芯片的微观电路结构、缺陷分析等,对 于半导体行业的产品研发和质量监控具有重 要意义。
半导体材料表面形貌与成 分分析
扫描电镜可以观察半导体材料表面的微观形 貌和成分,如硅片、锗片的表面粗糙度和化 学组成,对于半导体材料的研究和质量控制
特点
高分辨率、高景深、高灵敏度、多功能性等。
历史与发展
历史
SEM最早出现于1940年代,但真 正的发展和应用是在1950年代以 后。
发展
经历了多个阶段,从最初的简单 扫描电镜,到现在的场发射扫描 电镜、能量色散X射线谱仪等高级 配置。
应用领域
01
02
03
04
材料科学
用于研究材料的微观结构和性 能,如金属、陶瓷、高分子等
图像扭曲
可能是由于扫描电镜的电子束不稳定或样品表面不平整所 致。解决办法是调整扫描电镜的电子束稳定性或对样品表 面进行预处理。
样品烧蚀
可能是由于样品表面有金属杂质或样品放置不当所致。解 决办法是更换样品或调整扫描电镜的加速电压和电流。
05
扫描电镜应用案例展示
材料科学研究应用案例
材料表面形貌分析
扫描电镜可以用于研究材料表面的微观形貌,如表面粗糙 度、颗粒大小等,对于材料科学的基础研究和应用研究有 重要作用。

扫描电镜的工作原理和应用

扫描电镜的工作原理和应用

扫描电镜的工作原理和应用1. 扫描电镜的工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束与样品相互作用来获取图像的仪器。

相比传统的光学显微镜,扫描电镜具有更高的分辨率和更大的深度感,可以观察到更细微的细节。

扫描电镜的工作原理如下:1.电子发射: 扫描电镜通过热发射或场发射的方式产生高能电子束。

这个电子束经过加速电压,使电子获得足够大的能量。

2.聚焦: 电子束经过一系列的聚焦透镜,使其在样品表面形成一个非常小的聚焦点,以提高分辨率。

3.扫描: 电子束通过控制扫描线圈的方式,沿着样品表面进行扫描。

在每一个扫描点,样品上的电子与电子束发生相互作用。

4.信号检测: 所有与电子束相互作用的信号都被收集和检测,包括次级电子、反射电子、散射电子等。

5.图像生成: 通过扫描电镜的控制系统将所有收集到的信号转换为图像。

这些图像可以显示出样品表面的形貌、结构和组成。

2. 扫描电镜的应用扫描电镜广泛应用于各个领域,包括材料科学、生物学、医学等。

下面列举一些常见的应用:1.纳米材料研究: 扫描电镜可以观察到纳米级别的材料结构和形貌,对于纳米材料的制备和性质研究非常重要。

2.生物学研究: 扫描电镜可以观察生物样品的微观结构,如细胞、细胞器和微生物等。

它可以帮助研究者了解生物体的形态、组织和功能。

3.医学检测: 扫描电镜可以用于医学领域中的病理学研究和临床诊断。

例如,可以观察病毒、细菌、组织断面等微小结构,帮助医生进行疾病诊断和治疗。

4.材料表征: 扫描电镜能够观察材料的粗糙度、晶体结构、颗粒分布等参数,对于材料研究和工程应用具有重要意义。

5.环境科学研究: 扫描电镜可以用于观察和分析大气颗粒物、水中微生物和污染物等的形貌和组成,有助于环境污染的起因和后果研究。

6.艺术文物保护: 扫描电镜可以帮助对文物进行分析,如绘画的颜料、雕塑的材料等。

这对于文物的保护和修复具有重要价值。

扫描电镜工作原理科普

扫描电镜工作原理科普扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察材料表面形貌和获得微观结构图像的仪器。

与传统的光学显微镜相比,扫描电镜能够提供更高的分辨率和更大的放大倍数,因此在材料科学、生物学、纳米技术等领域被广泛应用。

下面将从工作原理、构成和应用角度对扫描电镜进行科普。

一、工作原理:扫描电镜的工作原理主要是利用电子的特性来实现高分辨率成像。

其基本原理可以概括为以下几个步骤:1.电子束的产生:扫描电镜中使用的是电子束而非光线,电子束通过热发射、场致发射等方式产生。

2.电子束的聚焦:电子束通过聚焦系统进行聚焦,使其能够更准确地照射到样品表面。

3.电子束的扫描:电子束通过扫描系统进行规律的扫描,以便覆盖样品表面的各个区域。

4.电子束与样品的相互作用:电子束照射到样品表面时,会与样品中的电子、原子发生相互作用,产生散射、透射、反射等现象。

5.信号的采集:根据与样品相互作用产生的信号,通过相应的探测器进行采集。

6.图像的生成:通过采集到的信号,经过信号处理和图像重构,最终生成样品的形貌图像。

二、构成:扫描电镜由以下几部分组成:1.电子枪:用于产生电子束的装置,通常采用热阴极或场致发射阴极。

2.聚焦系统:用于将电子束进行准确的聚焦,以便更好地照射到样品表面。

3.扫描系统:用于对样品表面进行规律的扫描,以便获取样品的整体形貌图像。

4.样品台:用于固定和导热样品,通常具有多种移动方式,以适应不同样品的观察需要。

5.检测器:用于采集样品与电子束相互作用所产生的信号,常用的检测器有二次电子检测器和反射电子检测器等。

6.显示和控制系统:用于显示图像、实时调节仪器参数以及采集和处理数据等。

三、应用:扫描电镜在科学研究、工业材料分析和教学实验等领域具有广泛的应用。

其主要应用如下:1.材料科学:扫描电镜可以用于研究材料的表面形貌、结构和成分,对于纳米材料、金属和非金属材料等的表面缺陷、晶体结构以及纳米结构等进行观察和分析。

扫描电镜的基本结构和工作原理教材

扫描电镜的基本结构和工作原理教材扫描电镜的基本结构和工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察物质表面形貌和成分的高分辨率显微镜。

相比传统光学显微镜,扫描电镜具有更高的放大倍率和更好的分辨率,能够观察到更细微的细节。

一、基本结构扫描电镜主要由电子枪、电子透镜系统、样品台、探测器和显示器等组成。

1. 电子枪:电子枪是扫描电镜的核心部件之一,负责产生高能电子束。

电子枪由热阴极和阳极组成,热阴极通过加热产生热电子,经过加速电场加速后形成电子束。

2. 电子透镜系统:电子透镜系统由多个透镜组成,用于控制电子束的聚焦和聚束。

电子束经过电子透镜系统后,能够形成较小的束斑并具有较高的聚焦度,从而提高分辨率。

3. 样品台:样品台是放置待观察样品的平台,通常由金属材料制成。

样品台上的样品通过调整样品台的位置和角度,可以在电子束下进行观察。

4. 探测器:探测器是用来接收经过样品表面反射或散射的电子信号,并将其转化为图像信号。

常见的探测器有二次电子探测器和反射电子探测器等。

5. 显示器:显示器用于显示扫描电镜观察到的图像,将电子信号转化为可见的图像。

二、工作原理扫描电镜的工作原理基于电子和物质的相互作用。

当高能电子束照射到样品表面时,会与样品中的原子和电子发生相互作用,产生各种信号。

1. 二次电子信号:当电子束照射到样品表面时,会激发样品表面的原子和电子,使其发射出较低能量的二次电子。

二次电子信号的强度与样品表面形貌和成分有关,通过探测器接收并放大二次电子信号,可以得到样品表面形貌的图像。

2. 反射电子信号:部分电子束会被样品表面反射回来,形成反射电子信号。

反射电子信号的强度与样品表面的原子排列和晶体结构有关,通过探测器接收反射电子信号,可以得到样品的晶体结构信息。

3. 辐射光谱:当电子束与样品表面相互作用时,还会产生X射线、荧光和透射电子等辐射。

通过分析这些辐射信号,可以获取样品的元素成分和化学状态等信息。

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,它通过扫描样品表面并利用电子束与样品相互作用来获取样品的表面形貌和成分信息。

下面将详细介绍扫描电镜的基本结构和工作原理。

一、基本结构1. 电子枪:扫描电镜的电子枪是电子束的发射源,它由热阴极和加速电极组成。

热阴极通过加热发射电子,加速电极则用于控制电子束的能量和聚焦。

2. 准直系统:准直系统包括准直磁铁和透镜,主要用于聚焦电子束并使其垂直于样品表面。

3. 扫描线圈:扫描线圈用于控制电子束在样品表面的扫描范围,通过改变扫描线圈的电流,可以实现对样品不同区域的扫描。

4. 检测系统:检测系统主要包括二次电子检测器和后向散射电子检测器。

二次电子检测器用于检测样品表面的二次电子发射信号,后向散射电子检测器则用于检测样品表面的后向散射电子。

5. 显示和记录系统:显示和记录系统用于将检测到的信号转化为图像,并显示在显示器上或记录在存储介质上。

二、工作原理扫描电镜的工作原理主要分为以下几个步骤:1. 电子束的发射:扫描电镜中的电子束是通过热阴极发射的。

热阴极受到加热,产生高能电子。

2. 电子束的聚焦:经过准直系统的调节,电子束被聚焦为一个细小的束流,并且垂直于样品表面。

3. 电子束的扫描:扫描线圈控制电子束在样品表面的扫描范围。

电子束按照预设的扫描模式在样品表面扫描,扫描过程中,电子束与样品表面相互作用。

4. 信号的检测:样品表面与电子束相互作用后,会产生一系列的信号,包括二次电子和后向散射电子。

二次电子检测器和后向散射电子检测器将这些信号转化为电信号。

5. 图像的生成:检测到的电信号经过放大和处理后,转化为图像信号。

这些图像信号经过显示和记录系统的处理,最终生成可见的样品表面形貌图像。

扫描电镜的基本结构和工作原理使其能够在高分辨率下观察样品的表面形貌和成分信息。

相比传统的光学显微镜,扫描电镜具有更高的放大倍数和更高的分辨率,可以观察到更细微的细节。

扫描电镜的基本结构和工作原理讲解

扫描电镜的基本结构和工作原理讲解扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,用于观察和研究微观世界中的样品。

它通过利用电子束与样品的相互作用,获取样品表面的形貌和成分信息。

本文将详细介绍扫描电镜的基本结构和工作原理。

一、基本结构扫描电镜主要由以下几个部分组成:1. 电子枪(Electron Gun):电子枪是扫描电镜的核心部件之一,它产生高能电子束。

电子束的形成是通过热发射或场发射的方式,通过加热或加电场使金属阴极发射电子。

2. 准直系统(Condenser System):准直系统用于聚焦和准直电子束。

它由准直透镜和聚焦透镜组成,能够将电子束聚焦成细小的束斑并准直。

3. 样品台(Sample Stage):样品台是放置待观察样品的平台。

它通常具有微动装置,可以在水平和垂直方向上移动样品,以便于观察不同区域。

4. 扫描线圈(Scan Coils):扫描线圈用于控制电子束在样品表面的扫描。

通过调节扫描线圈的电流,可以控制电子束的位置和扫描速度。

5. 检测器(Detector):检测器用于接收样品表面反射、散射或发射的信号。

常用的检测器包括二次电子检测器和反射电子检测器。

6. 显示器和计算机系统:显示器用于显示扫描电镜获取的图像,计算机系统用于图像的处理和分析。

二、工作原理扫描电镜的工作原理可以简单概括为以下几个步骤:1. 电子束的产生:电子束由电子枪产生,通过加热或加电场的方式使金属阴极发射电子。

电子枪通常采用热阴极或场发射阴极。

2. 电子束的准直和聚焦:电子束经过准直系统的聚焦透镜和准直透镜,被聚焦成细小的束斑并准直。

3. 电子束与样品的相互作用:准直后的电子束通过扫描线圈控制在样品表面的扫描。

当电子束与样品相互作用时,会发生多种相互作用,包括二次电子发射、反射电子、散射电子等。

4. 信号的检测:样品表面反射、散射或发射的信号被检测器接收。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描电镜的结构及原理
一、简介
1特点:扫描电子显微镜主要特点是电子束在样品上进行逐点扫描,获得三维立体图像,图像观察视野大、景深长、富有立体感。

在观察样品表面形貌的同时,进行晶体学分析及成分分析。

常规的扫描电镜分辨本领通常为7~10nm,加速电压在1~50 kV范围。

生物样品一般用10~20kV,成像放大率几十倍至几十万倍。

2用途:扫描电镜可对样品进行综合分析,已成为重要分析工具,纤维、纸张、钢铁质量等,观察矿石结构、检测催化剂微观结构、观看癌细胞与正常细胞差异等。

3日本日立公司产品S-5200型为超高分辨率(ultra-highresolution)扫描电镜,加速电压为1kV时,分辨率可达1.8nm,加速电压为30kV时,分辨率高达0.5nm。

此外,还具有独特的电子信号探测系统,不但能观察样品三维形态结构甚至能看到样品的原子或分子结构,在使用性能方面已超越任何一种常规扫描电镜。

二、扫描电镜的结构
扫描电镜的组成 :
(1)、电子光学系统:
组成:①电子枪与透镜系统;②电子探针扫描偏转系统
作用:产生直径为几十埃的扫描电子束,即电子探针,使样品表面作光栅状扫描。

①电子枪组成:阴极、阳极、栅极。

直径约为0.1mm钨丝制成,加热后发射的电子在栅极和阳极作用下,在阳极孔附近形成交叉点光斑,其直径约几十微米。

扫描电镜没有成像电镜,成像原理与透射电镜截然不同。

所有透镜皆为缩小透镜,起缩小光斑的作用。

缩小透几十镜将电子枪发射的直径约为30μm电子束缩小成几十埃,由两个聚光镜和一个末透镜完成三个透镜的总缩小率为2000~3000倍。

两个聚光镜分别是第一聚光镜和第二聚光镜,可将在阳极孔附近形成的交叉点缩小。

聚光镜可动光阑位于第二聚光镜和物镜之间,用于控制选区衍射时电子书的发散角。

提高角分辨率。

被聚光镜缩小的光斑再由物镜进一步缩小,使光斑直径为几十埃。

然后汇聚在样品上。

物镜有两个极靴,分别为上级靴和下级靴。

上下级靴的形状不对称,极靴孔径也不同,以适应不同需要。

为在物镜上级靴孔内装扫描线圈、消像散器,也为降低球差和色差,上级靴孔径稍大些。

为避免透镜磁场对二次电子图像及磁性材料观察的影响,下级靴孔径稍小些。

物镜可动光栅用于调整电子探针孔径角,缩小电子束斑直径,以获得最大探针电流。

在观察二次电子图像时,调整物镜可动光栅可获得焦深大的电子显微图像。

②电子探针扫描偏转系统
电子探针扫描偏转系统是扫描电镜特殊部件。

采用上下两对偏转线圈,放在物镜上级靴孔中,其中上下各有一对线圈产生X方向扫描,成为行扫,另外上下各有一对线圈产生Y方向扫描,成为帧扫。

因要求电子探针在样品上扫描,与电子束在显像管荧光屏上扫描同步,通常用一个扫描发生器驱动扫描线圈及显像管扫描偏转线圈。

(2)电子讯号收集、处理和显示
扫描电镜束与样品作用后可产生多种讯号:①二次电子②背散射电子③X射线④吸收电子⑤俄歇电子⑥阴极发光⑦电子-空穴对⑧透射电子。

各种讯号由特定的检测系统收集检测,形成不同电子图像。

二次电子探测器是扫描电镜的重要部件之一,结构图如下:
二次电子收集系统的组成:①栅网②聚焦环③闪烁体
栅网上加+250V电压,用来吸引二次电子。

通过调整聚焦环位置可改变闪烁体前加速电场分布,使二次电子比较集中打到加有+12kV 的高压的闪烁体上。

二次电子大部分信号穿过栅网,打到闪烁体上,转换成光信号,经光导管传递到光电倍增管进行信号放大,将光电倍增管输出的电流信号接到视频放大器,再稍加放大后即可用来调制显像管亮度,从而
获得图像。

扫描电镜图像显示在显像管上并由照相机记录。

扫描电镜一般有两个显示通道,一个用于观察,一个用于照相记录。

用于观察的显像管分辨率较低,边长10cm荧光屏上有500条线。

用于照相记录的显像管分辨率较高,边长10cm荧光屏上有800~1000条。

(3)样品室、真空及电气系统
扫描电镜样品室位于镜筒下方,装有冷阱附件,冷阱内冷却片端部位于样品与物镜极靴之间。

工作时放入液氮以冷却冷却片,在样品周围造成低温环境,减少污物污染镜筒及样品。

冷阱主要在X射线分析时使用。

扫描电镜真空系统与透射电镜基本相同。

包括机械泵扩散泵、气动碟阀、真空管道和真空测量装置等。

机械泵与油扩散泵串接,将镜筒抽成高真空状态,真空要求高于1.33×10-4Pa。

电气系统有高压电源、透射电源、光电倍增管电源,扫描部件、微电流放大器和低电压电源等,要求具有高稳定度。

三、扫描电镜的工作原理
在5~30 KV 加速电压作用下,电子枪发出几十微米直径的电子束,经第一、第二光镜及末透镜缩小成直径约几十埃的电子探针,会聚在样品上。

在位于第二聚光镜和物镜之间的扫描线圈作用下,电子探针在样品表面作光栅状扫描并激发多种电子信号。

这些电子信号被相应地收集检测系统收集,经放大并转换成电信号,被送到显像管栅极用以调制显像管的亮度。

显像管中的电子束在荧光屏上也作光栅
状扫描,这种扫描运动与样品表面电子束扫描运动严格同步。

所以,由探测器逐点检测的电子信号,将一一对应调制显像管相应点的亮度。

即电子束在样品表面与显像管的严格同步扫描,使得电子像衬度与所接收信号强度一一对应,由此获得反应样品表面形貌或成分特征的扫描电子显微图像。

相关文档
最新文档