植被覆盖度反演
实习7、地表反射率、温度的反演以及植被指数的计算

基本原理一)地表反射率是指地表物体向各个方向上反射的太阳总辐射通量与到达该物体表面上的总辐射通量之比。
反照率可以通过遥感成像提供的辐射亮度值L 或反照率p ,二向性反射率分布函数BRDF 来获得:地物反射率的光谱特征差异是从遥感影像中识别地表不同类型地物的基本依据,也是地表其他各种物理、生物物理参数反演的依据地表。
地表反射率的计算步骤:1、辐射定标:根据遥感影像DN 值计算到达传感器的各波段辐射亮度也就是将传感器记录的辐射量化值(Digital Number ,DN )转换成绝对辐射亮度值、表观反射率,或者表观温度的过程。
绝对定标:通过各种标准辐射源,建立辐射亮度值与辐射量化值(DN )之间的定量关系式中,辐射亮度值L 的常用单位为W/(m2.μm.sr),或者μW/(cm2.nm.sr) 。
1W/(m2.μm.sr)=0.1 μW/(cm2.nm.sr)2、各波段表观反射率计算3、大气辐射校正(ENVI FLAASH/QUAC )绝对大气辐射校正:消除大气辐射衰减效应,将遥感影像的DN 值转换为地表反射率、辐亮度、地表温度等的方法,此过程包含了辐射定标。
相对大气辐射校正:将遥感影像的DN 值转换为类似的整型数,同时消除大气辐射衰减效应。
FLAASH 是用数学建模辐射的物理行为,纠正波长在可见光至近红外和短波红外区域,最多3微米。
(对于热地区,使用基本工具>预处理>校准工具>热大气压校正菜单选项。
)不同于预先计算模拟结果的数据库内插辐射传输特性许多其他大气校正程序, FLAASH 采用了MODTRAN4辐射传输代码。
MODTRAN4并入ENVI FLAASH 的版本被修改,以校正在HITRAN -96水行参数的误差。
可以选择任何一种标准MODTRAN 大气模型和气溶胶类型,FLAASH 还包括以下功能:校正邻近效应(像素混合是由于表面反射辐射的散射) 计算场景的平均能见度(气溶胶/雾量)。
基于GIS的ndvi植被覆盖度的估算

1.绪论1.1 课题研究的目的与意义植被,包括森林、灌丛、草地和农作物,既是生态系统的主要组成部分,也是生态系统存在的基础,具有截流降雨、减缓径流、防沙治沙、保持水土等功能,联结着土壤、大气和水分等自然过程,在陆地表面的能量交换、生物地球化学循环和水文循环等过程中扮演着重要角色,是全球变化研究中的“指示器”[1]。
植被根据生态系统中水、气等的状况,调控其内部与外部的物质、能量交换。
植被覆盖与气候因子关系极为密切,研究植被覆盖变化对气候的影响是气候变化研究的主要内容之一,它影响着土壤湿度、地表温度和地表能量与水的循环(李苗苗,2004)。
植被覆盖度(v egeta tionfracti onalcover,简称FC)是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比[2]。
它是植被对地面的垂直投影比例,对于山坡进行植被覆盖度测量时,应该采用垂直于坡面的角度。
植被覆盖度具有强烈的尺度效应,同一片植被,因被纳入统计的范围不同而表现为不同的植被覆盖度。
如一个地区的植被覆盖度很高,但平均到全国水平就大大降低了[3]。
植被覆盖度在提示地表植被分布规律,探讨植被分布影响因子,分析评价区域生态环境,及时准确地掌握其动态变化, 分析其发展趋势对维护区域生态平衡等方面都具有重要意义。
[4]而城市植被则是城市生态系统重要的还原组织和最重要的元素,对于保护城市生态环境具有不可忽视的作用[5] ,如有效缓解城市“热岛效应”,改善城市区域小气候[5~7] 等。
城市化的迅速推进,带来了多样化的生态足迹,植被覆盖度,土壤污染率,地表侵蚀率,逐渐成为生态研究的热点,也成为环境保护的重点。
借助于高速发展的RS与GIS技术来进行植被覆盖度的估算,将是当前环境监测的必要步骤。
遥感生物量反演反演原理-概述说明以及解释

遥感生物量反演反演原理-概述说明以及解释1.引言1.1 概述遥感生物量反演是利用遥感技术对地表物质进行监测与测量,通过反演算法来估算生物量密度的一种方法。
在生态环境监测、资源管理和气候变化研究等领域具有重要的应用价值。
本文旨在探讨遥感生物量反演的原理及其在环境研究中的应用,以期为相关研究提供参考和借鉴。
遥感技术为生物量反演提供了全新的视角和手段,可以实现对辽阔地域范围内生物量的遥感监测和评估。
通过对地表反射、辐射和散射数据的提取和分析,结合地面实测数据和数学模型,可以精确地反演出不同植被类型的生物量分布情况。
这种非接触式的监测方法极大地提高了生物量反演的效率和精度,同时也为科学研究和资源管理提供了更加便捷的工具和手段。
在未来的发展中,随着遥感技术的不断创新和完善,遥感生物量反演将更加深入到生态环境监测、碳汇评估和气候变化研究等领域。
同时,对于生物量反演算法和模型的进一步优化和改进也将成为未来研究的重点之一。
希望通过本文的探讨和总结,可以为遥感生物量反演的研究和应用提供一定的参考和指导。
1.2 文章结构:本文将分为三个主要部分,即引言、正文和结论。
在引言部分,将对遥感生物量反演的概念进行概述,介绍文章的结构和目的。
在正文部分,将从遥感技术的概述开始,然后详细解释生物量反演的原理,最后探讨其应用与发展。
在结论部分,将总结生物量反演的原理,讨论其实际应用意义,并展望未来的发展方向。
通过这三个主要部分的论述,读者可以全面了解遥感生物量反演的反演原理及其在现实中的应用和未来的发展前景。
1.3 目的目的部分的内容:本文旨在深入探讨遥感生物量反演的反演原理,通过对遥感技术和生物量反演的基本概念进行介绍,进一步阐述生物量反演原理的相关理论与方法。
同时,通过对该技术在实际应用和发展趋势进行分析,探讨生物量反演在资源监测、环境保护和生态研究等领域的潜在意义。
最终,通过总结反演原理及其实际应用意义,展望未来遥感生物量反演技术的发展方向,为相关领域的研究提供参考和借鉴。
星载激光雷达GEDI_数据林下地形反演性能验证

第47卷㊀第2期2023年3月南京林业大学学报(自然科学版)JournalofNanjingForestryUniversity(NaturalSciencesEdition)Vol.47,No.2Mar.,2023㊀收稿日期Received:2022⁃01⁃26㊀㊀㊀㊀修回日期Accepted:2022⁃04⁃07㊀基金项目:国家自然科学基金面上项目(31870621,31971580);中央高校基本科研业务费专项资金项目(2572021BA08)㊂㊀第一作者:董瀚元(2406854898@qq.com)㊂∗通信作者:于颖(yuying4458@163.com),教授㊂㊀引文格式:董瀚元,于颖,范文义.星载激光雷达GEDI数据林下地形反演性能验证[J].南京林业大学学报(自然科学版),2023,47(2):141-149.DONGHY,YUY,FANWY.VerificationofperformanceofunderstoryterraininversionfromspacebornelidarGEDIdata[J].JournalofNanjingForestryUniversity(NaturalSciencesEdition),2023,47(2):141-149.DOI:10.12302/j.issn.1000-2006.202201041.星载激光雷达GEDI数据林下地形反演性能验证董瀚元,于㊀颖∗,范文义(森林生态系统可持续经营教育部重点实验室,东北林业大学林学院,黑龙江㊀哈尔滨㊀150040)摘要:ʌ目的ɔ新一代天基测高系统全球生态系统动力学调查(GEDI)对森林观测及经营具有重要意义,为探究GEDIV2(GEDI第2版)数据反演林下地形的性能,利用机载雷达数据验证林下地形反演精度,并探究反演精度的影响因素㊂ʌ方法ɔ分别以美国西波拉森林与中国帽儿山森林为研究对象,利用G⁃liht及帽儿山高精度机载雷达数据验证GEDIV2数据在针叶林及针阔叶混交林下反演地形的性能,并分析不同光束强度㊁光斑时间㊁坡度及植被覆盖度对地形反演精度的影响㊂ʌ结果ɔ美国西波拉针叶林地区地形反演精度均方根误差(RMSE)为2 33m,平均绝对误差(MAE)为1 48m;帽儿山针阔叶混交林地区地形反演精度RMSE为4 49m,MAE为3 33m㊂随着坡度㊁植被覆盖度增大,两种森林类型地形反演精度均降低㊂ʌ结论ɔGEDIV2数据反演针叶林林下地形精度要优于针阔叶混交林,强光束优于覆盖光束,湿润地区白天效果更优,干旱地区黑夜效果更优;平缓地区数据使用效果极好,陡峭地区精度降低;中低植被覆盖度区域地形反演精度较高,高植被覆盖区域地形测定性能有所下降㊂关键词:星载激光雷达;全球生态系统动力学调查(GEDI);林下地形;反演精度;坡度;植被覆盖度中图分类号:S771.8㊀㊀㊀㊀㊀㊀文献标志码:A开放科学(资源服务)标识码(OSID):文章编号:1000-2006(2023)02-0141-09VerificationofperformanceofunderstoryterraininversionfromspacebornelidarGEDIdataDONGHanyuan,YUYing∗,FANWenyi(KeyLaboratoryofSustainableForestEcosystemManagement,MinistryofEducation,CollegeofForestry,NortheastForestryUniversity,Harbin150040,China)Abstract:ʌObjectiveɔThenewgenerationofthespace⁃basedaltimetryglobalecosystemdynamicsinvestigation(GEDI)systemisofgreatsignificancetoforestobservationandmanagement.InordertoexploretheperformanceofGEDIversion2data(V2data)inversionofunderstorytopography,thisstudyusesairborneradardatatoverifytheaccuracyofunderstorytopographyinversion,andexploresthefactorsaffectingtheaccuracy.ʌMethodɔTakingtheCibolaforestintheUnitedStatesandtheMaoerMountainforestinChinaastheresearchobjects,theperformancesofGEDIV2datainconiferousforestsandmixedconiferousandbroad⁃leavedforestswereverifiedusingG⁃lihtandMaoerMountainhigh⁃precisionairborneradardata.Theeffectsofdifferentbeamintensities,spottimes,slopesandvegetationcoverageontheaccuracyofterraininversionwereanalyzed.ʌResultɔTherootmeansquareerror(RMSE)oftopographicinversionaccuracyintheCibolataigaareaoftheUnitedStateswas2.33m,andtheaverageabsoluteerror(MAE)was1.48m.TheRMSEvalueofthetopographicinversionaccuracyintheconiferousandbroad⁃leavedmixedforestareaofMaoerMountainwas4.49m,andtheMAEvaluewas3.33m.Withtheincreaseinslopeandvegetationcoverage,thetopographicinversionaccuracyofthetwoforesttypesdecreased.ʌConclusionɔTheGEDIV2datainversionaccuracyofunderstorytopographyinconiferousforestswashigherthanthatofmixedconiferousandbroad⁃leavedforests.Strongbeamswerebetterthancoveragebeams,andtheaccuracywashigherduringthedaytimeinhumidareas,andbetteratnightinaridareas.Theaccuracyofsteepareaswasreduced,theterraininversionaccuracywashigherinareaswith南京林业大学学报(自然科学版)第47卷mediumandlowvegetationcoverage,andtheperformancesofterraindeterminationinareaswithhighvegetationcoverageweredecreased.Keywords:spacebornelidar;globalecosystemdynamicsinvestigation(GEDI);terrainunderforest;inversionaccuracy;slope;vegetationcoverage㊀㊀森林是陆地生态系统中具有最大生物量和生物生产力的生态系统,约占全球陆地面积的25%[1-2],高精度的林下地形测量无论在森林经营管理还是大范围高精度数字高程模型(DEM)制作以及测绘工作等方面均有重要意义,是森林制图及林业科学等方面的关键组成部分㊂林下地形测量是林学㊁测绘科学㊁地图学等学科重点研究内容,在国家土地资源的管理与调研利用部分也具有举足轻重的地位㊂拥有对地观测能力的星载激光雷达系统可以提供全球范围内基于激光雷达的地面高度以及森林高度度量[3],且拥有大尺度㊁多时相的特性,为大范围地面观测㊁森林高度观测提供重要的基础数据㊂现有的星载激光雷达地形高度反演研究大多使用上一代卫星数据,ICESat/GLAS已广泛应用于森林冠层高度以及生物量的观测中[4-7],且在地面高程测量方面也有大量研究[8-10]㊂2018年,美国航空航天局NASA发射了两项新的天基测高系统,分别是2018年9月发射的ICESat⁃2[11]以及2018年12月发射的全球生态系统动力学调查(GEDI)雷达[12]㊂ICESat⁃2是以光子计数的方式进行测高的数据,而GEDI则是与ICESat/GLAS相同的线性体制全波形测高数据㊂GEDI搭载了全球首台用于高分辨率森林垂直结构测量的多波束线性体制的激光测高仪,主要用于热带和温带地区的森林冠层高度㊁垂直结构㊁地面高程等的精准测量㊂与IC⁃ESat/GLAS约70m的足迹大小相比,GEDI的光斑大小为25m左右,光斑密度更大,且在与其他类型数据如Landsat㊁TANDEM⁃X等结合使用时效果较好,更适合于进行森林结构㊁林下地形的观测㊂现今GEDI数据的研究尚处于初始阶段,Qi等[13]使用TANDEM⁃XINSAR与模拟的GEDIV1数据结合进行了森林结构制图㊂Adam等[14]利用机载激光雷达数据(AirborneLaserScanning,ALS)评价了德国中部图林根自由州两个温带森林研究区GEDIV1数据地面高程和冠层高度估计值的准确性,结果表明地形高度的平均绝对误差(MAE)为2.55m,冠层高度的MAE为3.10m㊂Guerra等[15]利用ALS数据和GEDIV1数据估计3个快速增长的森林生态系统的森林动态,评估了西班牙地区GEDIV1数据反演地形高度的精度,均方根差(RMSE)为4.48m㊂Liu等[16]利用NEON数据评价了美国地区GEDIV2以及ICESat⁃2数据地面高程及冠层高度估计值的准确性,得出在地面高程方面中低纬度地区ICESat⁃2以及GEDI的RMSE分别为2.24和4.03m,高纬度地区ICESat⁃2的RMSE为0 98m㊂以上研究大多使用V1版本数据,而对最新发布的V2版本数据研究并不充足,且缺少不同森林类型及气候等条件下的对比实验以及影响因素的具体探究,用于验证的ALS数据精度也各有不同,难以充分说明最新版本GEDI数据对于地形的测定能力㊂为充分验证最新版本GEDI数据反演林下地形的性能,本研究以L2AV2级数据为研究对象,选取不同森林气候类型及植被覆盖条件区域,探究不同时间下强光束与覆盖光束反演林下地面高程的精度,并研究坡度及植被覆盖率对于反演精度的影响㊂1㊀材料与方法1.1㊀研究区概况由于GEDI数据主要用于温带和热带地区的森林观测,为对不同森林类型㊁气候条件㊁植被覆盖条件下GEDIV2(第2版)数据进行验证,结合机载雷达数据获取情况,选取地区为美国新墨西哥州的西波拉森林,共选取了其中两个站点,其经纬度的范围分别为(106.456ʎ 106.365ʎW,35.156ʎ 35.253ʎN)㊁(108 162ʎ 108.108ʎW,35 103ʎ 35 234ʎN),以及中国黑龙江省尚志市帽儿山地区(127 424ʎ 127 759ʎE,45 207ʎ 45 486ʎN)㊂西波拉森林位于美国新墨西哥州西部和中部,占地面积超过65万hm2,属于半干旱沙漠气候,研究区海拔较高,在2000m以上,植被以道格拉斯冷杉(Pseudotsugamenziesii)㊁美国黄松(Pinusponderosa)㊁西南白松(Pinusstrobiformis)㊁白冷杉(Abiesconcolor)㊁蓝色云杉(Piceapungens)为主,森林类型为针叶林㊂帽儿山森林位于中国黑龙江省尚志市,地貌属低山丘陵区,属温带湿润地区㊂地势由南向北逐渐升高海拔范围250 805m,研究区植被以珍贵阔叶林㊁杨桦林㊁柞木林等为主的天然241㊀第2期董瀚元,等:星载激光雷达GEDI数据林下地形反演性能验证次生林与红松(Pinuskoraiensis)㊁落叶松(Larixgmelinii)㊁樟子松(P.sylvestrisvar.mongolica)等人工林镶嵌分布,森林类型为以阔叶树种为主的温带针阔叶混交林㊂两组研究区气候条件以及森林类型完全不同,海拔相差较大,光斑覆盖区域地势较为平缓,美国西波拉森林地区植被覆盖度大多在60%左右,而帽儿山森林地区植被覆盖度大多在80%以上(图1)㊂A.基于全球行政区划数据库GADM网站下载的2015年7月2.5版行政区划图制作㊂Basedontheadministrativedivisionmapversion2.5,July,2015,downloadedfromtheGADMwebsiteoftheglobaladministrativedivisiondatabase.B.底图审图号为GS(2020)4619BasedonthestandardmapnumberGS(2020)4619㊂图1㊀西波拉森林研究区站点及帽儿山研究区位置示意图Fig.1㊀ThemapofthesiteoftheCibolaforestresearchareaandthelocationoftheMaoerMountainresearcharea1.2㊀研究数据1.2.1㊀GEDIL2A数据GEDI搭载了全球首台用于高分辨率森林垂直结构测量的多波束线性体制激光测高仪,主要用于热带和温带地区的森林冠层高度㊁垂直结构㊁地面高程等的精准测量(表1㊁图2)㊂GEDI为全波形数据,共有8条光束轨道,分别为4条全功率光束以及4条覆盖光束,每个光斑直径约为25m,光斑中心点间隔60m,跨轨间距为600m,坐标系为WGS84地理坐标系,高程基准为WGS84基准面㊂与ICESat/GLAS约70m的足迹大小相比,光斑密度更大,且在与其他类型数据如Landsat㊁TANDEM⁃X等结合使用时效果较好,更适合于进行森林结构㊁林下地形的观测㊂数据从2019年3月25日开始发布,并在2021年4月16日发布了V2版本㊂其中L2A级别产品提供了每个光斑内的高度指标,可以从波形中提取出地面高程㊁冠层高度以及相对高度指标[17]㊂在本研究中使用最新的V2版本产品,收集了美国西波拉森林两个站点2019年6月至11月㊁2020年3月至6月以及中国帽儿山研究区2019年5月至11月间的GEDIL2AV2级别数据㊂GEDI传感器的运作模式见图2㊂表1㊀GEDI的技术指标参数Table1㊀TechnicalparametersofGEDI项目project参数parameter发射时间launchtime2018年12月5日周期cycle2a探测器detector硅雪崩光电二极管Si:APD脉冲激光波长pulsedlaserwavelengthpulsedlaserwavelength1064nm轨道倾角和覆盖范围orbitalinclinationandcoverage轨道倾角51.6ʎ;覆盖范围51.6ʎN 51.6ʎS轨道track3个激光器共8轨光束beam一束激光分裂为两束覆盖光束;另外两束为全功率,4束光束抖动为8条轨迹功率(全功率/覆盖)power(fullpower/coverage)15mJ/4.5mJ光斑直径spotdiameter25m沿轨间距distancealongthetrack60m跨轨间距cross⁃railspacing600m341南京林业大学学报(自然科学版)第47卷图2㊀GEDI运作模式Fig.2㊀TheGEDIoperationmode1.2.2㊀G⁃liht数据G⁃liht是Goddard航天飞行中心研发的便携式机载成像仪,共包含激光雷达㊁高光谱及热红外成像系统3个主要子系统,可搭载于各种机载平台上,测量包括地面高度㊁植被高度㊁叶片光谱等内容,空间分辨率高达1m[18]㊂本研究使用2018年西波拉森林地区G⁃liht激光雷达数据(https://gliht.gsfc.nasa.gov)根据KeyholeMarkupLanguage(KML)文件以及GEDI雷达的运行轨迹来确定研究的范围㊂G⁃liht数据发布了空间分辨率为1m的数字地面模型(DigitalTerrainModel,DTM),数据格式为Tiff,数据使用UTM投影坐标系,水平参考高程基准为EGM96水准模型㊂1.2.3㊀帽儿山地区机载Lidar数据帽儿山地区机载Lidar数据于2016年9月获取,传感器为RieglLMS⁃Q680i,波长1550nm,平均点云密度为5pts/m2,以1m的空间分辨率测量出地面及植被高度㊂坐标系为UTM投影坐标系,高程基准为WGS84基准面,总覆盖范围约360km2㊂1.2.4㊀辅助数据为评估植被覆盖度对于GEDI测高精度的影响,使用多光谱数据Landsat8作为辅助数据进行研究㊂Landsat8是美国陆地卫星计划(Landsat)的第8颗卫星,于2013年2月11号在加利福尼亚范登堡空军基地由Atlas⁃V火箭搭载发射成功㊂携带陆地成像仪(operationallandimager,OLI)和热红外传感器(thermalinfraredsensor,TIRS),其数据的空间分辨率为30m[19]㊂本研究中根据所用GEDI数据时间㊁云量选择使用的美国西波拉森林地区Landsat8数据采集时间为2019年10月13日及2019年10月27日,云量0.02%及0.04%;中国帽儿山地区Landsat8数据采集时间为2019年9月24日,云量0.57%㊂1.3㊀研究方法验证激光测高数据精度的方法主要分为:基于野外GPS实测点数据验证,利用其他类型高度数据验证㊂本研究为探究GEDI对于林下地面高的测量能力,选取GEDIL2AV2级别数据进行实验㊂提取研究区域内GEDI数据的高程,利用处理后的帽儿山ALS数据及G⁃liht数据验证两个研究区内GEDI数据提取高程的精度,并分析坡度㊁植被覆盖度对于高程提取精度的影响1.3.1㊀数据预处理1)G⁃liht数据:对G⁃liht的数字地面模型(DTM)数据进行坡度分析,基于1m空间分辨率的高程产品数据生成美国西波拉森林地区地形坡度图㊂2)ALS数据:为生成帽儿山森林地区高精度DEM,研究使用帽儿山2016年机载雷达点云数据,点云去噪处理后利用改进的渐进加密三角网滤波算法分类出地面点[20],利用反距离权重插值算法生成DEM数据,空间分辨率为1m㊂对DEM数据进行坡度分析,基于1m空间分辨率的高程产品数据生成中国帽儿山森林地区地形坡度图㊂3)GEDI数据:为使GEDI数据能与验证数据结合使用,首先将下载好的GEDIL2A数据按G⁃liht数据的KML文件以及帽儿山机载雷达数据范围进行空间裁剪,并将数据格式转换;其次,按参数quality_flag㊁保留值为1的光斑点为有效光斑点,其余光斑点全部删除,在美国西波拉森林地区共筛选可用光斑点4051个,中国尚志市帽儿山森林可用光斑点共7731个;由于GEDI雷达的位置参数坐标使用WGS84地理坐标,因此按G⁃liht数据及帽儿山机载雷达数据的投影坐标系将GEDI数据坐标系转换为对应的UTM投影坐标系,使数据位置相匹配㊂4)Landsat8数据:为获取研究区内植被覆盖度情况,使用2019年西波拉及帽儿山地区Landsat8数据,将Landsat8数据经辐射定标㊁大气校正并重采样为10m分辨率,计算出归一化植被指数,利用像元二分法提取植被覆盖度(fractionalvegetationcover,FVC)[21]㊂1.3.2㊀地形高度提取方法利用G⁃liht数据与帽儿山ALS数据对GEDI光斑所测高程进行验证,将转换坐标系后的GEDI441㊀第2期董瀚元,等:星载激光雷达GEDI数据林下地形反演性能验证数据与G⁃liht的DTM数据㊁帽儿山ALS数据生成的DEM位置匹配,按GEDI光斑大小对DTM㊁DEM数据裁剪,提取每个裁剪区内平均高程来作为验证㊂为了对高程数据进行一致性分析,高度必须参考相同的垂直基准,GEDI数据与帽儿山DEM数据垂直基准均为WGS84椭球,而G⁃liht的DTM数据垂直基准为EGM96高程基准,因此利用vdatum软件将GEDI数据的垂直基准转换为EGM96高程基准,使数据间垂直基准一致㊂1.3.3㊀地形提取精度验证参数elev_lowestmode代表GEDI光斑内平均高程,利用裁剪区内平均高程对其进行精度评估,将二者绝对高程差值在20m以上的数据剔除㊂由于强光束与覆盖光束穿透森林冠层能力不同,且不同时间的大气效应及噪声情况不同,因此比较分析不同时间段以及不同光束类型GEDI数据所测高程与G⁃liht数据㊁ALS数据之间关系,根据参数beam_flag㊁delta_time分为白天强光束㊁黑夜强光束㊁白天覆盖光束㊁黑夜覆盖光束进行分组验证,利用验证数据来衡量GEDI数据测地形高度的准确度㊂统计的内容包含:平均偏差[Bias,式中记为σ(Bias)]㊁平均绝对误差[MAE,式中记为σ(MAE)]㊁决定系数R2㊁均方根误差[RMSE,式中记为σ(RMSE)]㊂σ(Bias)=1nˑðni=1(xi-yi);(1)σ(MAE)=1nˑðni=1|xi-yi|;(2)R2=1-ðni=1(xi-yi)2ðni=1(yi- y)2;(3)σ(RMSE)=1nðni=1(xi-yi)2㊂(4)式中:xi为GEDI测定的地形高度值,yi为G⁃liht与ALS测定的地形高度参考值, y为参考值的平均值,n为样本数㊂1.3.4㊀影响因素分析1)坡度㊂为更直观对比分析,提取出裁剪区内的坡度信息,将数据按坡度分组为0ʎ 5ʎ㊁ȡ5ʎ 10ʎ㊁ȡ10ʎ 15ʎ㊁ȡ15ʎ 20ʎ㊁ȡ20ʎ 30ʎ㊁ȡ30ʎ,分别进行测高精度对比,提出坡度对于GEDI测高精度的影响㊂2)植被覆盖度㊂将美国西波拉森林地区及中国帽儿山森林地区植被覆盖度分组为:0% 20%㊁ȡ20% 40%㊁ȡ40% 60%㊁ȡ60% 80%㊁ȡ80%90%㊁ȡ90% 100%,分别进行测高精度对比,提出植被覆盖度对于GEDI测高精度的影响㊂2㊀结果与分析2.1㊀美国西波拉森林地区GEDI反演林下地形高度精度分析㊀㊀对于美国西波拉森林地区,将GEDI数据得出的地形高度值与G⁃liht数据的参考值进行比较,统计了西波拉森林地区强光束与覆盖光束㊁黑夜与白天的不同类型GEDI数据反演出林下地面高程的精度(图3)㊂图3㊀西波拉森林不同条件下GEDI数据反演地形精度Fig.3㊀ThetopographicaccuracyofGEDIdatainversionunderdifferentconditionsofCibolaforest541南京林业大学学报(自然科学版)第47卷㊀㊀美国西波拉森林地区4051个GEDI样本数据的地形高度RMSE为2 33m,MAE为1 48m㊂这个结果相对于文献[18]中研究结果表现出更低的RMSE㊁MAE㊂在分组实验当中,得出结果为:白天强光束所测地形高度MAE为1 03m,RMSE为1 93m;夜间强光束所测地形高度MAE为1 09m,RMSE为1 47m;白天覆盖光束所测地形高度MAE为1 82m,RMSE为2 72m;夜间覆盖光束所测地形高度MAE为1 89m,RMSE为2 59m㊂可见,夜间强光束测高性能最佳,强光束的能量为覆盖光束的3 3倍,穿透植被的能力更强,但覆盖光束也表现出了良好的测高性能,而时间的影响相对来说要更小,黑夜的采集效果要稍好于白天的采集效果㊂2.2㊀中国帽儿山地区GEDI反演林下地形高度精度分析㊀㊀对于中国帽儿山地区,将GEDI数据得出的地形高度值与帽儿山ALS数据的参考值进行比较,统计了帽儿山地区强光束与覆盖光束㊁黑夜与白天不同类型GEDI数据反演出林下地面高程的精度(图4)㊂图4㊀帽儿山地区不同条件下GEDI数据反演地形精度Fig.4㊀TopographicaccuracyofGEDIdatainversionunderdifferentconditionsinMaoerMountainarea㊀㊀中国帽儿山森林地区7731个GEDI样本数据的地形高度RMSE为4.49m,MAE为3.33m㊂在分组实验当中,得出的结果为:白天强光束所测地形高度MAE为2.86m,RMSE为3.90m;夜间强光束所测地形高度MAE为4.66m,RMSE为5.96m;白天覆盖光束所测地形高度MAE为2.85m,RMSE为3.81m;夜间覆盖光束所测地形高度MAE为5 38m,RMSE为6.72m㊂由中国帽儿山森林地区实验可知,白天强光束与覆盖光束效果几乎相同,且要明显好于夜间对地形高度的测量性能,在夜间的分组来说,强光束的测量效果要明显好于覆盖光束㊂2.3㊀坡度对于反演精度的影响由于GEDI为全波形数据,类似ICESat/GLAS数据,坡度是引起误差的重要因素,按GEDI地形高度残差与分组坡度绘制箱线图(图5)㊂统计出美国西波拉森林地区以及帽儿山地区不同坡度条件GEDI反演高程精度(表2)㊂表2㊀西波拉森林与帽儿山地区不同坡度下GEDI反演地形高程的精度Table2㊀AccuracyofterrainelevationinversionbyGEDIunderdifferentslopesinCibolaforestandMaoerMountainarea坡度/(ʎ)slopeMAE/mR2RMSE/m0 50.59/0.971.00/1.000.83/1.74ȡ5 100.98/1.751.00/1.001.42/2.59ȡ10 151.40/2.821.00/1.001.89/3.78ȡ15 201.94/3.641.00/1.002.64/4.66ȡ20 302.91/4.681.00/1.003.77/5.74ȡ304.24/5.801.00/1.005.37/6.95㊀㊀注:表格中数据分别为美国西波拉森林/中国帽儿山地区的精度统计数据㊂下同㊂ThedatainthetablearetheaccuracystatisticsoftheCibolaforest/MaoerMountainarea.Thesamebelow.㊀㊀美国西波拉森林地区:坡度0ʎ 5ʎ分组地形反演精度MAE为0.59m,RMSE为0.83m;ȡ5ʎ 10ʎ分组MAE为0.98m,RMSE为1.42m;ȡ10ʎ 15ʎ641㊀第2期董瀚元,等:星载激光雷达GEDI数据林下地形反演性能验证分组MAE为1.40m,RMSE为1.89m;ȡ15ʎ 20ʎ分组MAE为1.94m,RMSE为2 64m;ȡ20ʎ 30ʎ分组MAE为2.91m,RMSE为3.77m;30ʎ及以上分组MAE为4.24m,RMSE为5.37m㊂图5㊀不同坡度下GEDI反演地形高度统计Fig.5㊀StatisticsofterrainheightinversionbyGEDIunderdifferentslopes㊀㊀中国帽儿山地区:0ʎ 5ʎ分组地形反演精度MAE为0.97m,RMSE为1.74m;ȡ5ʎ 10ʎ分组MAE为1.75m,RMSE为2.59m;ȡ10ʎ 15ʎ分组MAE为2.82m,RMSE为3.78m;ȡ15ʎ 20ʎ分组MAE为3.64m,RMSE为4.66m;ȡ20ʎ 30ʎ分组MAE为4.68m,RMSE为5 74m;30ʎ及以上分组MAE为5.80m,RMSE为6.95m㊂可见,随着坡度增大,RMSE呈线性上升趋势,坡度对于GEDI数据地形测高精度影响较大,在平缓的地形下,GEDI提供了相对较为精确的测高效果,在坡度增大时测高的效果会出现较多的误差,在进行高精度测量时尽量避免坡度较大的区域,或使用科学的方法进行地形校正后再使用数据㊂2.4㊀植被覆盖度对于反演精度的影响由于植被覆盖会对GEDI光束造成影响,按GEDI地形高度残差与分组植被覆盖度绘制箱线图(图6)㊂统计出美国西波拉森林地区以及帽儿山地区不同坡度条件GEDI反演高程精度(表3)㊂由表3可见,在中低植被覆盖度范围内,GEDI能较好测量出地面高程,在植被覆盖度达到60%后,其精度会出现明显的下降,在80%以上植被覆盖度区域,出现了较高的RMSE,分析其原因可能为植被覆盖密集区域GEDI地面波形中会混杂较多低矮植被,导致测高精度下降㊂图6㊀不同植被覆盖度下GEDI反演地形高度统计Fig.6㊀StatisticsofterrainheightretrievedbyGEDIunderthedifferentvegetationcoverages741南京林业大学学报(自然科学版)第47卷表3㊀西波拉森林与帽儿山地区不同植被覆盖度下GEDI反演地形高程的精度Table3㊀AccuracyofterrainelevationinversionbyGEDIunderthedifferentvegetationcoverageinCibolaforestandMaoerMountainarea植被覆盖度/%vegetationcoverageMAE/mR2RMSE/m00.90/ 1.00/ 1.19/>0 201.24/1.151.00/1.001.73/1.26>20 401.25/1.321.00/1.001.99/1.46>40 601.07/1.401.00/1.001.64/1.91>60 801.38/2.171.00/1.002.21/3.13>80 901.57/2.841.00/1.002.50/3.91>90 1001.69/3.851.00/1.002.60/5.00㊀㊀注:表格中数据分别为美国西波拉森林/帽儿山地区的精度统计数据㊂ThedatainthetablearetheaccuracystatisticsoftheCibolaforestintheUnitedStates/MaoerMountainarea.㊀㊀综上,在影响因素方面,平缓的地形以及中低植被覆盖度的条件下,GEDI有着较好的地形高度测量能力,而陡峭的地形以及较高的植被覆盖度会明显导致精度的下降,在进行高精度测量时,要进行地形校正以及波形分解处理后再使用㊂3㊀讨㊀论对比西波拉森林与帽儿山森林的结果,GEDIV2版本数据在针叶林地区测量精度误差RMSE为2 33m,在以阔叶树种为主的针阔叶混交林地区RMSE为4 49m,可见针叶林区域地形测定效果要明显好于以阔叶树种为主的针阔叶混交林地区,在时间与波束对比的实验中,美国亚热带地区的针叶林实验结果与Liu等[16]研究结果类似:强光束性能要好于覆盖光束,且夜间采集数据精度要好于白天所采集数据㊂帽儿山针阔叶混交林地区的实验结果与美国西波拉森林的结果有明显的不同,实验中白天强光束地区植被覆盖度为91 6%,白天覆盖光束地区植被覆盖度为86 7%,黑夜强光束地区植被覆盖度为90 73%,黑夜覆盖光束的植被覆盖度为90 35%,结合其他研究情况考虑原因为白天覆盖光束轨道所经区域植被相对稀疏引起,与针叶林地区结果不矛盾,因此出现白天覆盖光束精度略微高于强光束,而夜间强光束精度优于覆盖光束的情况,GEDI探测器的本底噪声要高于太阳噪声,因此太阳背景噪声不会成为白天与夜间性能差异的主要原因,由于帽儿山为温带湿润气候,美国西波拉地区为亚热带干旱到半干旱沙漠气候,原因考虑为湿润与干旱气候造成白天及黑夜不同云量及温差㊁雨水等因素引起误差,GEDI数据白天与黑夜的性能并非固定,要具体视当地气候因素来确定,湿润地区白天性能更佳,干旱地区黑夜性能更佳㊂坡度因素以及植被覆盖度均为影响GEDI数据性能的重要因素,在坡度20ʎ以下及植被覆盖度60%以下的区域,地形反演的精度很高,随着坡度增大㊁植被覆盖度增加,GEDI数据反演林下地形的性能会变弱,原因为陡峭地区全波形数据由于地面回波与植被回波信息混合在一起造成波形混淆,因此会出现坡度增加㊁反演精度降低的情况,高植被覆盖度区域GEDI激光能量会在穿透冠层时有所损耗,且多层级的冠层会更大程度地影响精度,因此出现植被覆盖度增加反演精度降低的情况㊂4㊀结㊀论1)GEDIV2数据反演林下地形的效果为针叶林要优于针阔叶混交林,强光束要优于覆盖光束,湿润地区白天效果更优,干旱地区黑夜效果更优㊂2)随着地面坡度提升,GEDIV2的测高精度会出现线性下降趋势,平缓地区数据使用效果极好,陡峭地区地面回波与植被回波混叠造成精度降低㊂3)GEDIV2数据在中低植被覆盖度区域地形反演精度较高,在高植被覆盖区域对于林下地形高度的测定性能会有所下降㊂参考文献(reference):[1]蒋有绪.世界森林生态系统结构与功能的研究综述[J].林业科学研究,1995,8(3):314-321.JIANGYX.Onstudyofstructureandfunctionofworldforestecosystem[J].ForestRes,1995,8(3):314-321.[2]LONGTF,ZHANGZM,HEGJ,etal.30mresolutionglobalannualburnedareamappingbasedonlandsatimagesandgoogleearthengine.[J].RemoteSens,2019,11(5):489.DOI:10.3390/rs11050489.[3]李然,王成,苏国中,等.星载激光雷达的发展与应用[J].科技导报,2007,25(14):58-63.LIR,WANGC,SUGZ,etal.DevelopmentandapplicationsofSpaceborneLiDAR[J].Sci&TechnolRev,2007,25(14):58-63.DOI:10.3321/j.issn:1000-7857.2007.14.010.[4]LEFSKYMA,HARDINGDJ,KELLERM,etal.EstimatesofforestcanopyheightandabovegroundbiomassusingICESat[J].GeophysResLett,2005,32(22):L22S02.DOI:10.1029/2005gl023971,2005.[5]DOLANK,MASEKJG,HUANGCQ,etal.RegionalforestgrowthratesmeasuredbycombiningICESatGLASandLandsatdata[J].JGeophysRes,2009,114(G2):G00E05.DOI:10.1029/2008JG000893,2009.[6]BALLHORNU,JUBANSKIJ,SIEGERTF.ICESat/GLASdataasameasurementtoolforpeatlandtopographyandpeatswamp841㊀第2期董瀚元,等:星载激光雷达GEDI数据林下地形反演性能验证forestbiomassinKalimantan,Indonesia[J].RemoteSens,2011,3(9):1957-1982.DOI:10.3390/rs3091957.[7]HAYASHIM.ForestcanopyheightestimationusingICESat/GLASdataanderrorfactoranalysisinHokkaido,Japan[J].ISPRSJPhotogrammandRemoteSens,2013,81:12-18.DOI:10.1016/j.isprsjprs.2013.04.004.[8]SHUMANCA,ZWALLYHJ,SCHUTZB.E,etal.ICESatAntarcticelevationdata:preliminaryprecisionandaccuracyas⁃sessment[J].GeophysResLett,2006,33(7):L07501.DOI:10.1029/2005gl025227,2006.[9]DONGCHENE,SHENQ,XUY,etal.High⁃accuracytopo⁃graphicalinformationextractionbasedonfusionofASTERstereo⁃dataandICESat/GLASdatainAntarctica[J].SciChinaSerDEarthSci,2009,52(5):714-722.DOI:10.1007/s11430-009-0055-6.[10]JAWAKSD,LUISAJ.SynergisticuseofmultitemporalRAMP,ICESatandGPStoconstructanaccurateDEMoftheLarsemannHillsregion,Antarctica[J].AdvSpaceRes,2012,50(4):457-470.DOI:10.1016/j.asr.2012.05.004.[11]ABDALATIW,ZWALLYHJ,BINDSCHADLERR,etal.TheICESat⁃2laseraltimetrymission[J].ProcIEEE,2010,98(5):735-751.DOI:10.1109/JPROC.2009.2034765.[12]DUBAYAHR,BLAIRJB,GOETZS,etal.Theglobalecosys⁃temdynamicsinvestigation:high⁃resolutionlaserrangingoftheEarth sforestsandtopography[J].SciRemoteSens,2020,1(C):100002.DOI:10.1016/j.srs.2020.100002.[13]QIW,DUBAYAHRO.CombiningTandem⁃XInSARandsimu⁃latedGEDIlidarobservationsforforeststructuremapping[J].RemoteSensEnviron,2016,187:253-266.DOI:10.1016/j.rse.2016.10.018.[14]ADAMM,URBAZAEVM,DUBOISC,etal.Accuracyassess⁃mentofGEDIterrainelevationandcanopyheightestimatesinEu⁃ropeantemperateforests:influenceofenvironmentalandacquisi⁃tionparameters[J].RemoteSens,2020,12(23):3948.DOI:10.3390/rs12233948.[15]GUERRAHJ,PASCUALA.UsingGEDIlidardataandairbornelaserscanningtoassessheightgrowthdynamicsinfast⁃growingspecies:ashowcaseinSpain[J].ForEcosyst,2021,8(1):14.DOI:10.1186/s40663-021-00291-2.[16]LIUA,CHENGX,CHENZQ.PerformanceevaluationofGEDIandICESat⁃2laseraltimeterdataforterrainandcanopyheightre⁃trievals[J].RemoteSensEnviron,2021,264:112571.DOI:10.1016/j.rse.2021.112571.[17]DUBAYAHR,HOFTONM,BLAIRJ,etal.GEDIL2AelevationandheightmetricsdataglobalfootprintlevelV002[R].NASAEOSDISLandProcessesDAAC,2021-05-07.DOI:10.5067/GEDI/GEDI02_A.002.[18]COOKB,CORPL,NELSONR,etal.NASAgoddard sLiDAR,hyperspectralandthermal(G⁃liht)airborneimager[J].RemoteSens,2013,5(8):4045-4066.DOI:10.3390/rs5084045.[19]ROYDP,WulderMA,LovelandTR,etal.Landsat⁃8:scienceandproductvisionforterrestrialglobalchangeresearch[J].RemoteSensEnviron,2014,145:154-172.DOI:10.1016/j.rse.2014.02.001.[20]柳红凯,徐昌荣,徐晓.基于渐进加密三角网机载LIDAR点云滤波改进算法研究[J].江西理工大学学报,2016,37(3):50-55,60.LIUHK,XUCR,XUX.Studyonimprovedalgo⁃rithmofpointcloudsfromairbornescannerbasedonprogressiveencryptionTIN[J].JJiangxiUnivSciTechnol,2016,37(3):50-55,60.DOI:10.13265/j.cnki.jxlgdxxb.2016.03.009.[21]佟斯琴,包玉海,张巧凤,等.基于像元二分法和强度分析方法的内蒙古植被覆盖度时空变化规律分析[J].生态环境学报,2016,25(5):737-743.TONGSQ,BAOYH,ZHANGQF,etal.SpatialtemporalchangesofvegetationcoverageinInnerMongoliabasedonthedimidiatepixelmodelandintensityanalysis[J].EcolEnvironSci,2016,25(5):737-743.DOI:10.16258/j.cnki.1674-5906.2016.05.002.(责任编辑㊀李燕文)941。
遥感实习报告植被覆盖率

一、实习目的本次遥感实习旨在通过学习遥感技术,掌握遥感图像处理与分析的方法,了解植被覆盖率的遥感反演技术,并运用所学知识对实习区域的植被覆盖率进行定量分析和评价。
二、实习内容1. 遥感图像数据获取本次实习所使用的遥感图像数据为Landsat 8 OLI/TIRS影像,时间范围为2018年7月15日,空间分辨率为30米。
数据来源于美国地质调查局(USGS)的地球观测系统数据和信息(EOSDIS)。
2. 遥感图像预处理(1)辐射校正:对遥感图像进行辐射校正,消除传感器辐射响应误差和大气影响,使图像数据更加真实。
(2)几何校正:对遥感图像进行几何校正,消除图像畸变,使图像与实际地面位置一致。
(3)波段组合:将遥感图像的可见光、近红外、短波红外等波段进行组合,提高图像信息含量。
3. 植被覆盖率反演(1)选择植被指数:选取适合植被覆盖度反演的植被指数,如归一化植被指数(NDVI)、植被指数(VI)等。
(2)植被指数计算:根据遥感图像数据,计算所选植被指数。
(3)植被覆盖率反演:利用植被指数与植被覆盖率之间的相关性,建立植被指数与植被覆盖率的反演模型,对植被覆盖率进行反演。
4. 植被覆盖率评价(1)统计分析:对反演得到的植被覆盖率进行统计分析,如计算平均值、标准差等。
(2)空间分布分析:分析植被覆盖率在空间上的分布规律,识别植被覆盖度较高的区域。
(3)对比分析:将反演得到的植被覆盖率与实地调查数据进行对比,验证反演结果的准确性。
三、实习结果与分析1. 植被覆盖率反演结果通过遥感图像处理与植被覆盖率反演,得到实习区域的植被覆盖率分布图。
结果显示,实习区域植被覆盖率总体较高,大部分区域植被覆盖率在70%以上。
2. 植被覆盖率评价(1)统计分析:实习区域植被覆盖率平均值为75.6%,标准差为15.3%。
这表明实习区域植被覆盖率总体较高,但存在一定的差异。
(2)空间分布分析:植被覆盖率在空间上呈现明显的地域性差异,山区植被覆盖率较高,平原地区植被覆盖率相对较低。
ENVI下利用ETM+数据反演地表温度

ENVI下利用ETM+数据反演地表温度地表温度作为地球环境分析的重要指标,而遥感技术作为现代重要的对地观测手段,使得基于遥感图像的地表温度反演的研究越来越多。
主要的地表温度反演方法有:大气校正法,单窗算法,单通道法等等。
本文介绍用辐射传输方程法对地表温度进行反演。
技术流程:例子数据为2002年9月2日的襄樊市Landsat ETM+数据。
根据数据的特点以及地表温度反演研究的技术要求,采用的技术路线为:先对Landsat ETM+数据进行预处理:数据读取、辐射定标、大气校正、襄樊区域裁剪,利用大气校正,即:辐射传输方程法对其影像热红外波段数据进行操作反演,实现襄樊市地区的地表真实温度的反演研究。
具体的处理流程如下:具体的实现步骤如下:第一步:准备数据热红外数据使用的是Landsat的第六波段,已经做了传感器定标、几何校正、工程区裁剪,详细流程参考上面的流程图。
文件为TM6-rad-subset-jz-xiangfan.img。
由TM影像(已经过大气校正)生成的NDVI数据,已经利用主菜单->BasicTools->Resize Data(SFatial/SFectral)重采样为60米分辨率,与TMi6数据保持一致,文件名为:TM-NDVI-60m.img。
第二步:地表比辐射率计算物体的比辐射率是物体向外辐射电磁波的能力表征。
它不仅依赖于地表物体的组成,而且与物体的表面状态(表面粗糙度等)及物理性质(介电常数、含水量等)有关,并随着所测定的波长和观测角度等因素有关。
在大尺度上对比辐射率精确测量的难度很大,目前只是基于某些假设获得比辐射率的相对值,本文主要根据可见光和近红外光谱信息来估计比辐射率。
(一)植被覆盖度计算计算植被覆盖度Fv采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下:F V = (NDVI- NDVI S)/(NDVI V - NDVI S) (2)其中,NDVI为归一化差异植被指数,取NDVI V = 0.70和NDVI S = 0.00,且有,当某个像元的NDVI大于0.70时,F V取值为1;当NDVI小于0.00,F V取值为0。
基于Landsat影像的NDVI与RVI反演结果实验与分析
宝成铁路 成绵高速 旌阳区界 绵远河 一环路
0 3 6 km
c 2014 年 NDVI
2018-04-02
N
图例 6.12 0.97
宝成铁路 成绵高速 旌阳区界 绵远河 一环路
0 3 6 km
d 2014 年 RVI
图例
0.68 0.00
宝成铁路 成绵高速 旌阳区界 绵远河 一环路
0 3 6 km
e 2018 年 NDVI
扇形平原,海拔高程为 468 ~ 561 m。旌阳区属常绿阔 叶林植被带,植被多为天然次生林和人工林,森林覆 盖率约为 20 %。研究区地理位置如图 1 所示,遥感影 像来源于德阳市 2018 年 OLI 影像的 432 波段合成。
N 剖面
2018年4月3日 波段组合432
图例 绵远河 一环路 旌阳区界 宝成铁路 成绵高速
RVI 能充分刻画植被在近红外波段和红光波段反 射率的差异,还可增强植被与土壤背景之间的辐射差 异,是植被长势和丰度估算的主要手段之一;但其对 大气状况反应很敏感,当植被覆盖度小于 50 % 时分辨 能力下降显著。算法模型公式为:
RVI = NIR / R
(2)
式中,NIR 为近红外波段(TM 为Band4,OLI 为Band5); R 为红光波段(TM 为 Band3,OLI 为 Band4)。
Landsat 9卫星影像预处理方法及应用——以南京市植被生态遥感监测为例
Landsat 9卫星影像预处理方法及应用——以南京市植被生
态遥感监测为例
彭继达;马治国;吴作航
【期刊名称】《海峡科学》
【年(卷),期】2022()5
【摘要】植被状况对生态环境有重要影响,特别是在城市生态环境中。
该文以Landsat 9卫星特征为切入点,研究Landsat 9卫星影像的预处理方法及植被覆盖
度定量反演方法。
以江苏省南京市为例,利用Landsat 9陆地成像仪(OLI-2)影像反演植被覆盖度空间分布情况。
监测统计结果显示,南京市植被覆盖度均值为60.17%。
分区域统计显示,浦口区植被覆盖度最高,江宁区植被覆盖度次之,而六合区、市区(包括栖霞区、鼓楼区、秦淮区、玄武区、雨花台区和建邺区)和高淳区植被覆盖度相对较低。
【总页数】6页(P3-7)
【作者】彭继达;马治国;吴作航
【作者单位】福建省气象科学研究所
【正文语种】中文
【中图分类】P407.6
【相关文献】
ndsat 8卫星OLI遥感影像在生态环境监测中的应用研究
2.环境卫星CCD与Landsat TM影像质量及生态监测应用比对研究——以青海湖区域为例
3.基于
Landsat5-TM遥感影像植被监测方法研究4.高分1号卫星影像在福州市植被\r生态遥感监测中的应用5.基于Landsat遥感卫星影像的南京市植被动态变化研究
因版权原因,仅展示原文概要,查看原文内容请购买。
基于像元二分模型的应用
基于像元二分模型的黄土高原陕北地区草地覆盖度定量估算及时空变化分析作品简介一、作品概述(一)、作品背景党中央、国务院高度重视地理国情监测工作。
2011年5月23日,中央政治局常委、国务院副总理李克强在视察中国测绘创新基地时的讲话中,重点强调要组织开展地理国情监测工作;在几次对测绘地理信息工作的重要批示中,也着重提出加强地理国情监测。
2011年9月国务院同意在全国实施地理国情监测,2012年9月财政部正式立项。
地理国情普查是开展地理国情监测的前提和基础,对于准确掌握国情国力,提高政府管理的科学性、规范性和前瞻性,推进生态文明建设和重大战略、重大工程实施,充分发挥地理国情信息在全面建成小康社会中的作用等意义重大。
(二)、选题动机及目的本项目拟以解决地理国情普查中高、中、低覆盖度草地识别过程中存在的主观性较强的问题为研究目标,凝练研究内容,基于应用较为广泛的像元二分模型反演覆盖度,在此基础上实现天然草地类型的定量化识别,构建基于覆盖度反演的天然草地类型定量化细分的方法,期望在地理国情普查和监测中得到一定程度的应用,从而提高天然草地的识别提取精度。
二、需求分析地表覆盖分类数据的采集是地理国情普查中最基本、最重要、任务量最大且精度要求较高的一项工作,做好地表覆盖分类将为后续的动态监测奠定坚实的基础。
草地是指以草本植物为主连片覆盖的地表。
包括草被覆盖度在10%以上的各类草地和林木覆盖度在10%以下的疏林草地。
(《GB/T24255-2009沙化土地监测技术规程》和《GBT20483-2006土地荒漠化监测方法》)。
地理国情普查中一般将草地分为天然草地和人工草地。
天然草地是以天然生长或半人工培育的草本植物为主覆盖度的地表。
依据植被覆盖度可细分为高覆盖度草地、中覆盖度草地及低覆盖度草地。
其中,高覆盖度草地指覆盖度大于50%的天然草地,此类草地一般水分条件较好,草被生长茂密;中覆盖度草地指覆盖度为20%-50%的天然草地,此类草地一般水分不足,草被较稀疏;低覆盖度草地指覆盖度为10%-20%的天然草地,此类草地水分缺乏,草被稀疏。
植被覆盖度的提取方法研究
的植被覆盖度常用估算方法,对比分析了它们的优缺点
。
4 植被覆盖度的提取方法
VFC的估算方法主要分为地面测量和遥感监测。地面测 量主要包括目估法、采样法、仪器法和模型法等。这种方法主 要受野外作业,受时间、区域等的限制,精度不高且需要花费
巨大人力、财力,一般情况下特定的模型只适用于特定的区域
崔天翔等(2013年)以华北内陆典型的淡水湿 地——北京市野鸭湖湿地自然保护区为研究对象,以 中等分辨率的 Landsat TM 影像为数据源,基于线性光 谱混合模型( LSMM) 对研究区的植被覆盖度进行了估 算。 于秀娟等(2013年)在三江源区植被覆盖度的定量估 算与动态变化研究中为了有效提取和定量评价V F C 及 其变化信息,在像元分解模型的基础上,采用G u t m a n 等提出的混合像元二分模型和改进的N D V I 参数确定 方法定量估算了三江源区2 0 0 0 ~ 2 0 0 9 年的V F C , 计算精度表明该方法适应于区域植被覆盖信息的提取。
研究意义
植被覆盖度是反映植被基本情况的客观指标,在许 多研究中常将其作为基本的参数或因子。植被覆盖度 及其精准测算研究主要具有以下重要意义:
(1)作为科学研究必要的基础数据,为生态、水保、土
壤、水利、植物等领域的定量研究提供基础数据,确保
相关研究结果、模型理论更加科学可信;
(2)作为生态系统变化的重要标志,为区域或全球性地
4.1.4 模型法
模型法是对地面的实际测量数据进行分析,利用数理统计 的方法得到植被覆盖度的时空分布规律,并对其进行分析,得 到相关经验模型的测量方法,该方法只适用于某一特定的区域 与植被类型,不易推广。
4.2 遥感监测方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:植被遥感监测具有很长的历史,植被遥感中植被覆盖反演是主要内容之一,线性分解模型是混合像元分解法的一种,根据混合像元分解及线性分解模型的原理,利用红碱淖2016年6月17日Landsat8 OLI数据,求取研究区植被覆盖度(写出详细计算过程和步骤)。
一、操作思路:
端元代表影像中的纯净像元,求取植被覆盖度即求取端元的丰度,因此采用混合像元分解及线性分解模型进行混合像元分解,得到端元以及相应的丰度影像,即为植被覆盖度影像。
二、操作步骤:
1.影像预处理
由于操作时间的限制和硬件设备的不允许,将影像选取一定的区域进行裁剪,感兴趣区域为roi1文件,得到裁剪后影像2016new文件,导入影像,进行影像的预处理,包括辐射定标和大气校正步骤,辐射定标采用Radiometric Calibration 工具,大气校正采用FLAASH工具,分别得到辐射定标结果2016_rad1和2016_ref 文件。
2.MNF变换
采用MNF变换工具,可将数据波段进行“降维”,提取出有用信息集中的波段,去除噪声信息集中的波段,利用Forward MNF Estimate Noise Statistic将数据进行MNF变换,得到MNF变换结果2016_MNF和噪声文件MNF_Noise和统计文件MNF_Statistic文件。
3.PPI变换
纯净像元指数法指像元被标记为纯净像元的次数,可以将混合像元进行分解,有效的提取出端元。
由于操作时间的限制和硬件设备的不允许,将MNF变换后影像与原影像选取一定的同样区域进行裁剪,感兴趣区域选择ROI2文件,得到裁剪结果为2016_MNF_sub和2016new_sub文件。
在MNF变换后发现有用信息集中在1、2、3波段,因此利用Pixel Purity Index 工具,将MNF变换后影像选择1、2、3波段进行端元提取,阈值设为3.00,操作的结果为2016_PPI文件。
4.N维可视化
利用N维可视化工具可以将端元更好的显示,有利于更加直观的确定端元,在N维可视化窗口中,选中1、2、3波段,在显示窗口中将较为集中的区域定为端元,进行类(class)的划定,一共确定三类,利用mean all工具将三类端元的波谱显示出来,并保存为波谱库2016_sli文件。
5.端元识别
利用Endmember Collection工具将波谱库2016_sli与已知波谱库USGS_min.sli进行端元识别,得到每一种端元最匹配的地物类型,将端元进行重新命名,再保存为波谱库2016_new_sli文件。
6.波谱库重采样
利用Forward MNF convert工具将端元识别后的波谱库进行重采样,使其能够完美匹配,操作的结果为2016_new_sli_resize文件。
7.线性分解
利用线性分解工具将数据进行线性分解,输入MNF变换后的统计文件,得出混合像元线性分解结果2016_Mix文件,即植被覆盖度影像。