水利水电毕业设计外文文献翻译

合集下载

毕业论文(设计)外文文献翻译及原文

毕业论文(设计)外文文献翻译及原文

金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。

一、引言各个国家的企业在显著不同的金融体制下运行。

金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。

然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。

这项研究结果解释表明企业投资受限于外部资金的可得性。

很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。

因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。

土木工程专业毕业设计外文文献及翻译

土木工程专业毕业设计外文文献及翻译

土木工程专业毕业设计外文文献及翻译Here are two examples of foreign literature related to graduation design in the field of civil engineering, along with their Chinese translations:1. Foreign Literature:Title: "Analysis of Structural Behavior and Design Considerations for High-Rise Buildings"Author(s): John SmithJournal: Journal of Structural EngineeringYear: 2024Abstract: This paper presents an analysis of the structural behavior and design considerations for high-rise buildings. The author discusses the challenges and unique characteristics associated with the design of high-rise structures, such as wind loads and lateral stability. The study also highlights various design approaches and construction techniques used to ensure the safety and efficiency of high-rise buildings.Chinese Translation:标题:《高层建筑的结构行为分析与设计考虑因素》期刊:结构工程学报年份:2024年2. Foreign Literature:Title: "Sustainable Construction Materials: A Review of Recent Advances and Future Directions"Author(s): Jennifer Lee, David JohnsonJournal: Construction and Building MaterialsYear: 2024Chinese Translation:标题:《可持续建筑材料:最新进展与未来发展方向综述》期刊:建筑材料与结构年份:2024年Please note that these are just examples and there are numerous other research papers available in the field of civil engineering for graduation design.。

土木工程专业Dam坝大学毕业论文外文文献翻译及原文

土木工程专业Dam坝大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:坝文献、资料英文题目:Dam文献、资料来源:文献、资料发表(出版)日期:院(部):专业:土木工程班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业设计(论文)外文翻译DamA dam is a structure built across, river, or estuary to retain water. Its purposes are to meet demands for water for human consumption, irrigation, or industry; to reduce peak discharge of flood water; to increase available water stored for generating hydroelectric power; or to increase the depth of water in a river so as to improve navigation. An incidental purpose can be to propose can be to provide a lake for recreation.Auxiliary works at a dam may include spillways, gates, or valves to control the discharge of surplus water downstream form the dam; an intake structure conducting water to power station or to canals, tunnels, or pipelines for more distant use; provision for evacuating silt carried into the reservoir; and means for permitting ships or fish to pass the dam. A dam therefore is the central structure in a multipurpose scheme aiming at the conservation of water resources. The multipurpose dam holds special importance in the underdeveloped counties, where a small nation may reap enormous benefits in agriculture and industry from a single dam.Dams fall into several distinct classes, by profile and by building material. The decision as to which type of dam be build depends largely on the foundation conditions in the valley and the construction materials available. Basically, the choice of materials now lies between concrete, soils, and rockfill. Though a number of dams were built in the past of jointed masonry, this practice is now largely obsolete, The monolithic form of concrete dams permits greatervariations in profile, according to the extent water pressure is resisted by the deadweight of the structure, is transferred laterally to buttresses, or is carried by horizontal arching across the valley to abutments formed by the sides of the valley.Basic Problems in Dam DesignMost modern dams continue to be of two basic types: masonry (concrete) and embankment (earthfill). Masonry dams are typically used to block streams running through narrow gorges, as in mountainous terrain; though such dams may be very high, the total amount of material required is limited. Embankment dams sre preferred to control broad streams, where only a very large barrier, requiring a great volume of material, will suffice. The choice of masonry or embankment and the precise design depend on the geology and configuration of the site, the functions of the dam, and cost factors.Site investigation and testing. Investigation of a site for a dam includes sinking trial borings to determine the strata. The borings are supplemented by shafts and tunnels which, because of their cost, must be used as sparingly as possible. In the shafts and tunnels, tests can be made to measure strength, elasticity, permeability, and prevailing stresses in strata, with particular attention given to the properties of thin partings, or walls, between the more massive beds, The presence in groundwater of chemical solutions harmful to the materials to be used in the construction of the dam must be assessed. Sources of construction materials need exploration. As dams continue to increase in height, the study of foundation conditions becomes increasingly critical.Models are particularly useful in analysis of arch dams and in verifying analytical stress calculations. Various materials have been used for model tests; on some early tests for Hoover Dam, rubber was employed. The need for accurate reproduction of stress patterns in complex models is met by using material of low elasticity. In a sense, dams themselves are models for future design. The instruments built into them to record movements under load, strains within materials after construction, temperature and pressure changes, and other factors are installed primarily to study the performance of the structure and to warn of possible emergencies, but their value in confirming design assumptions is important.The digital computer has permitted considerable advance in analytical methods of design. Itsability to handle a great volume of data and to solve large sets of simultaneous equations containing many variables ha made practicable the method of Finite Element Analysis. In this method, a complicated structure is divided into a number of separate equilibrium conditions, and strains are rendered compatible, thus leading to a complete analysis of stress and strain distribution throughout the structure.Problems of materials. Each of the two basic dam materials, concrete and earth or rock fill, has a weakness that must be overcome by the proper design of the dam.Weaknesses of concrete.. Concrete is weak in tensile strength; that is, it can be pulled apart easily. Concrete dams must therefore be designed to place minimum tensile strain on the dam and to make use of concrete’s great compressive strength, or ability to support vertical loads. The chief constituent of concrete, cement, shrinks as it sets and hardens, due to water absorption in the crystalline structure, to evaporation of water to the atmosphere, and to cooling form the higher temperatures reached when the chemical reactions in the cement are in progress during hydration. Because of the large volume of concrete in a dam, shrinkage presents a serious cracking hazard.Various expedients are used to overcome the problem. Concrete is usually cast in separate blocks of limited height. Gaps may be left to permit heat losses and filled in later. Low-heat cements may be used; these are specially blended so that rates of heat evolution are retarded. Cement content can be safely reduced in the interior concrete in the dam, in which strength and resistance to climatic and chemical deterioration are less important. The cement content, and therefore the heat caused by hydrating, can also be reduced by using aggregate (the other major constituent of concrete) of larger stones. Another expedient is to use other fine-grained materials, such as fly ash (pulverized fuel), as filler, reducing the total cement volume in the concrete. Another is to use certain additives, surface-active agents, and air-entraining agents that permit using a lower water-to-cement ratio in mix by ice, circulating water through pipes laid in the concrete, and extracting excess water from surfaces by vacuum.Weaknesses of earth and rock fill. Soils and rock fragments lack the strength of concrete, are much more permeable, and possess less resistance to deterioration and disturbance by flowing water. These disadvantages are compensated for by a much lower cost and by the ability ofearth fill to adapt to deformation caused by movements in the dam foundation. This assumes, of course, sufficient usable soil available close to the dam site. In bare mountain country it may be necessary to quarry rock and construct a rockfill rather than an rarthfill dam. Earth fill is of course more economical, and often a suitable borrow area can be found close to the site. Soil consists of solid particles with water and air in between. When the soil is compressed by loading, as occurs in dam construction, some drainage of air and water takes place, causing an increase in pressures between the solid particles. When there is a high rate of seepage, the soil tends to develop differential pressures and reach a condition called quick, in which it behaves as a fluid. Even if it does not reach this condition, there is often some weakening of its structure, and steps must be taken to counter this.The earthquake problem. Many large dams have been built in the seismically active regions of the world, including Japan, the western United States, New Zealand, the Himalayas, and the Middle East. In 1968, the Tokachi earthquake damaged 93 dams in Honshu, the main Japanese Island; all were embankment dams of relatively small height.Despite a great deal of work on the distribution of seismic activity, the measurement of strong ground motions, and the response of dams to such motions, earthquake design of dams remains imprecise. The characteristics of strong ground motions at a given site cannot be predicted, and all types of dams possess some degree of freedom, imperfect elasticity, and imprecise damping. Nevertheless, the digital computer and model testing have given promise of considerable progress. It is now possible calculate the response of a concrete dam to any specified ground motion; this has been done for the Tang-e Soleyman Dam in Iran and the Hendrik Verwoerd Dam in South Africa.There has also been considerable advance in the theoretical estimation of the effects of ground motion on embankment dams.坝大坝是横跨在溪流,河流或河口之间用于储水的建筑物。

毕业设计外文文献翻译(原文+译文)

毕业设计外文文献翻译(原文+译文)

Environmental problems caused by Istanbul subway excavation and suggestionsfor remediation伊斯坦布尔地铁开挖引起的环境问题及补救建议Ibrahim Ocak Abstract:Many environmental problems caused by subway excavations have inevitably become an important point in city life. These problems can be categorized as transporting and stocking of excavated material, traffic jams, noise, vibrations, piles of dust mud and lack of supplies. Although these problems cause many difficulties,the most pressing for a big city like Istanbul is excava tion,since other listed difficulties result from it. Moreover, these problems are environmentally and regionally restricted to the period over which construction projects are underway and disappear when construction is finished. Currently, in Istanbul, there are nine subway construction projects in operation, covering approximately 73 km in length; over 200 km to be constructed in the near future. The amount of material excavated from ongoing construction projects covers approximately 12 million m3. In this study, problems—primarily, the problem with excavation waste(EW)—caused by subway excavation are analyzed and suggestions for remediation are offered.摘要:许多地铁开挖引起的环境问题不可避免地成为城市生活的重要部分。

毕业设计外文文献翻译范文

毕业设计外文文献翻译范文

毕业设计外文文献翻译专业学生姓名班级学号指导教师优集学院外文资料名称:Knowledge-Based Engineeri--ng Design Methodology外文资料出处:Int.J.Engng Ed.Vol.16.No.1附件: 1.外文资料翻译译文2.外文原文基于知识工程(KBE)设计方法D. E. CALKINS1.背景复杂系统的发展需要很多工程和管理方面的知识、决策,它要满足很多竞争性的要求。

设计被认为是决定产品最终形态、成本、可靠性、市场接受程度的首要因素。

高级别的工程设计和分析过程(概念设计阶段)特别重要,因为大多数的生命周期成本和整体系统的质量都在这个阶段。

产品成本的压缩最可能发生在产品设计的最初阶段。

整个生命周期阶段大约百分之七十的成本花费在概念设计阶段结束时,缩短设计周期的关键是缩短概念设计阶段,这样同时也减少了工程的重新设计工作量。

工程权衡过程中采用良好的估计和非正式的启发进行概念设计。

传统CAD工具对概念设计阶段的支持非常有限。

有必要,进行涉及多个学科的交流合作来快速进行设计分析(包括性能,成本,可靠性等)。

最后,必须能够管理大量的特定领域的知识。

解决方案是在概念设计阶段包含进更过资源,通过消除重新设计来缩短整个产品的时间。

所有这些因素都主张采取综合设计工具和环境,以在早期的综合设计阶段提供帮助。

这种集成设计工具能够使由不同学科的工程师、设计者在面对复杂的需求和约束时能够对设计意图达成共识。

那个设计工具可以让设计团队研究在更高级别上的更多配置细节。

问题就是架构一个设计工具,以满足所有这些要求。

2.虚拟(数字)原型模型现在需要是一种代表产品设计为得到一将允许一产品的早发展和评价的真实事实上原型的过程的方式。

虚拟样机将取代传统的物理样机,并允许设计工程师,研究“假设”的情况,同时反复更新他们的设计。

真正的虚拟原型,不仅代表形状和形式,即几何形状,它也代表如重量,材料,性能和制造工艺的非几何属性。

毕业设计外文翻译范例

毕业设计外文翻译范例

毕业设计外文翻译范例引言在大学生的学习生涯中,毕业设计是一项重要的任务。

它是对学生在大学期间所学知识的综合运用,也是对学生能力的一次全面考核。

外文翻译作为毕业设计的一部分,对于提高学生的英语水平和跨文化交流能力有着重要的作用。

本文将探讨毕业设计外文翻译的重要性、挑战以及解决方法。

毕业设计外文翻译的重要性外文翻译在毕业设计中具有重要的地位和作用。

首先,外文翻译可以帮助学生扩大知识面,并且了解国际上的研究动态和前沿技术。

通过翻译外文文献,学生可以学习到最新的研究成果和方法,为毕业设计提供参考和借鉴。

其次,外文翻译能够提高学生的英语水平。

通过翻译外文文献,学生可以锻炼自己的听、说、读、写能力,提高对英语的理解和应用能力。

在全球化的背景下,具备良好的英语能力对于学生的就业和未来发展具有重要意义。

最后,外文翻译可以培养学生的跨文化交流能力。

在进行外文翻译的过程中,学生需要了解不同文化背景下的表达方式和思维方式,从而更好地与其他文化背景的人进行沟通和交流。

这对于提高学生的跨文化合作能力和全球视野具有重要意义。

毕业设计外文翻译的挑战尽管毕业设计外文翻译具有重要的作用,但也面临一些挑战。

首先,外文翻译需要学生具备良好的英语水平和专业知识。

许多外文文献使用专业术语和复杂的句式,对学生的英语能力和专业知识提出了较高的要求。

同时,外文翻译还要求学生具备良好的分析能力和逻辑思维能力,能够准确理解和表达文献中的内容。

其次,外文翻译需要花费大量的时间和精力。

翻译一篇外文文献需要学生仔细阅读和理解原文,然后进行翻译和校对。

这个过程需要反复推敲和修正,耗费了学生大量的时间和精力。

在繁重的学业任务中,学生可能面临时间不足的问题,影响翻译质量和效率。

最后,外文翻译还可能面临文化差异和语言障碍。

不同的语言和文化有着不同的表达方式和思维方式,学生需要充分理解和融入到原文的语言和文化中,才能进行准确和恰当的翻译。

这对学生的跨文化交流能力提出了较高的要求。

土木工程专业毕业设计外文文献翻译2篇

土木工程专业毕业设计外文文献翻译2篇

土木工程专业毕业设计外文文献翻译2篇XXXXXXXXX学院学士学位毕业设计(论文)英语翻译课题名称英语翻译学号学生专业、年级所在院系指导教师选题时间Fundamental Assumptions for Reinforced ConcreteBehaviorThe chief task of the structural engineer is the design of structures. Design is the determination of the general shape and all specific dimensions of a particular structure so that it will perform the function for which it is created and will safely withstand the influences that will act on it throughout useful life. These influences are primarily the loads and other forces to which it will be subjected, as well as other detrimental agents, such as temperature fluctuations, foundation settlements, and corrosive influences, Structural mechanics is one of the main tools in this process of design. As here understood, it is the body of scientific knowledge that permits one to predict with a good degree of certainly how a structure of give shape and dimensions will behave when acted upon by known forces or other mechanical influences. The chief items of behavior that are of practical interest are (1) the strength of the structure, i. e. , that magnitude of loads of a give distribution which will cause the structure to fail, and (2) the deformations, such as deflections and extent of cracking, that the structure will undergo when loaded underservice condition.The fundamental propositions on which the mechanics of reinforced concrete is based are as follows:1.The internal forces, such as bending moments, shear forces, and normal andshear stresses, at any section of a member are in equilibrium with the effect of the external loads at that section. This proposition is not an assumption but a fact, because any body or any portion thereof can be at rest only if all forces acting on it are in equilibrium.2.The strain in an embedded reinforcing bar is the same as that of thesurrounding concrete. Expressed differently, it is assumed that perfect bonding exists between concrete and steel at the interface, so that no slip can occur between the two materials. Hence, as the one deforms, so must the other. With modern deformed bars, a high degree of mechanical interlocking is provided in addition to the natural surface adhesion, so this assumption is very close to correct.3.Cross sections that were plane prior to loading continue to be plan in themember under load. Accurate measurements have shown that when a reinforced concrete member is loaded close to failure, this assumption is not absolutely accurate. However, the deviations are usually minor.4.In view of the fact the tensile strength of concrete is only a small fraction ofits compressive strength; the concrete in that part of a member which is in tension is usually cracked. While these cracks, in well-designed members, are generally so sorrow as to behardly visible, they evidently render the cracked concrete incapable of resisting tension stress whatever. This assumption is evidently a simplification of the actual situation because, in fact, concrete prior to cracking, as well as the concrete located between cracks, does resist tension stresses of small magnitude. Later in discussions of the resistance of reinforced concrete beams to shear, it will become apparent that under certain conditions this particular assumption is dispensed with and advantage is taken of the modest tensile strength that concrete can develop.5.The theory is based on the actual stress-strain relation ships and strengthproperties of the two constituent materials or some reasonable equivalent simplifications thereof. The fact that novelistic behavior is reflected in modern theory, that concrete is assumed to be ineffective in tension, and that the joint action of the two materials is taken into consideration results in analytical methods which are considerably more complex and also more challenging, than those that are adequate for members made of a single, substantially elastic material.These five assumptions permit one to predict by calculation the performance of reinforced concrete members only for some simple situations. Actually, the joint action of two materials as dissimilar and complicated as concrete and steel is so complex that it has not yet lent itself to purely analytical treatment. For this reason, methods of design and analysis, while using these assumptions, are very largely based on the results of extensive and continuing experimental research. They are modified and improved as additional test evidence becomes available.钢筋混凝土的基本假设作为结构工程师的主要任务是结构设计。

毕业论文外文文献翻译要求

毕业论文外文文献翻译要求

毕业论文外文文献翻译要求
一、翻译的外文文献可以是一篇,也可以是两篇,但英文字符要求不少于2万
二、翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并在中文译文首页用“脚注”形式注明原文作者及出处,外文原文后应附中文译文。

三、中文译文的基本撰写格式为:
1.题目:采用三号、黑体字、居中打印;
2.正文:采用小四号、宋体字,行间距一般为固定值20磅,标准字符间距。

页边距为左3cm,右2.5cm,上下各2.5cm,页面统一采用A4纸。

四、英文的基本撰写格式为:
1.题目:采用三号、Times New Roman字、加黑、居中打印
2.正文:采用小四号、Times New Roman字。

行间距一般为固定值20磅,标准字符间距。

页边距为左3cm,右2.5cm,上下各2.5cm,页面统一采用A4纸.
3.脚注:五号,Times New Roman,顺序为作者.题目.出处,
五、封面格式由学校统一制作(注:封面上的“翻译题目”指中文译文的题目,封面中文小四号宋体,英文小四号Times New Roman),
六、装订:左侧均匀装订,上下共两个钉,并按“封面、外文原文、译文”的顺序统一装订。

七、忌自行更改表格样式
大连工业大学艺术与信息工程学院
毕业设计(论文)外文文献
外文题目
翻译题目
系别
专业班级
学生姓名
指导教师
大连工业大学艺术与信息工程学院
毕业设计(论文)开题报告
题目名称
系别
专业班级
学生姓名
指导教师
开题报告日期年月日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水工建筑物,29卷,9号,1995 旋涡隧道溢洪道.液压操作条件

M 。 A .戈蓝,B。 zhivotovskii,我·诺维科娃,V . B .罗季奥诺夫,和NN罗萨娜娃

隧道式溢洪道,广泛应用于中、高压液压工程。因此研究这类溢洪道这是一个重要的和紧迫的任务,帮助在水工建筑中使用这些类型的溢洪道可以帮助制定最佳的和可靠的溢洪道结构。有鉴于此,我们希望引起读者的注意,基本上是新的概念(即,在配置和操作条件),利用旋涡流溢洪道[1,2,3,4 ].一方面,这些类型的溢洪道可能大规模的耗散的动能的流动的尾段。因此,流量稍涡旋式和轴向流经溢洪道的尾端,不会产生汽蚀损害.另一方面,在危险的影响下,高流量的流线型面下降超过长度时,最初的尾水管增加的压力在墙上所造成的离心力的影响。一些结构性的研究隧道溢洪道液压等工程rogunskii,泰瑞,tel’mamskii,和tupolangskii液压工程的基础上存在的不同的经营原则现在已经完成了。这些结构可能是分为以下基本组:

—涡旋式(或所谓的single-vortex型)与光滑溢洪道水流的消能在隧道的长度时的研究的直径和高度的隧道;参看。图1),而横截面的隧道是圆或近圆其整个长度。涡旋式溢洪道—与越来越大的能量耗散的旋涡流在较短的长度— <(60——80)高温非圆断面导流洞(马蹄形,方形,三角形),连接到涡室或通过一个耗能(扩大)室(图2)[ 5,6 ]或手段顺利过渡断[ 7];—溢洪道两根或更多互动旋涡流动耗能放电室[ 8 ]或特殊耗能器,被称为“counter-vortex耗能”[ 2,4 ]。终端部分尾水洞涡流溢洪道可以构造的形式,一个挑斗,消力池,或特殊结构取决于流量的出口从隧道和条件的下游航道。液压系统用于链接的流量的尾管可能涉及可以使用overflowtype或自由落体式结构。涡旋式溢洪道光滑或加速[ 7 ]能量耗散的整个长度的水管道是最简单和最有前途的各类液压结构。设计技术涡溢洪道已开发和出版了许多研究[ 2,7,8 ];特别是,技术是目前可用于计算液压阻力的路线和流动率,涡旋式流量和压力.然而,每一个实际工程设计结构也必须进行评估。模型调查手段,因为它仍然是不可能评估所有的因素的操作溢洪道计算方式。因此,让我们一起关注一些重要理论问题。熟悉这些主题可以协助设计和研究涡式溢洪道。 评价设计溢洪道的尺寸。选择一个特定的溢洪道类型取决于很多因素,如有效的水头,巨大的escapage放电,这是配置的液压项目(例如,使用一个河引水隧道在运营期间或的水管道水力发电厂在施工期间),在放电的流入尾水渠道,地形及地质特征(特别是可能的长度,尾水腿),和技术经济特点。

入口(入口段的形式,表面或地下输).入口的设计是根据设计规范。其目的在保持其运输能力时,运作中的水能自由下泄.轴(垂直或倾斜)。轴的直径是由近等于尾水管的直径。最大平均流量在一个轴的范围是15 - 20米/秒。涡流产生装置.整个长度的尾段溢洪道,以及一定程度的洪水的轴(即,其水力工况Q这是负责运输能力和流动制度基本的条件。最简单的设计的涡的流动是一个节点,包括在建设一个涡流发生器(平面或平行船中体;参见。1和2)。基本特点是一个涡流发生器在钢筋混凝土是距离隧道轴线为重心的“关键”的部分地区。;尾水隧道管道以外的涡流发生器;倾斜角度轴引水管道的涡轴发电机。运动学特征旋涡流动和运输能力取决于一个重要的溢洪道.对涡流产生装置的设计.该系数的tangential-type涡流生成脑电图=安全装置.,图(图3);这里是平均流量在一个圆形出口段的涡流节点).应该指出的是,涡流节点设计=空调机作用,哪里是问是价值的几何参数该涡流发生器需要维持所需的预旋流动.例如,tupolangskii涡旋式溢洪道,Areq=1.4;为tel'mamskii水利工程,Areq =0。6;并为rogunskii溢洪道,应安排为:Areq =1。1.

另一个特征参数的旋转度对溢洪道的尾段,是积分流旋转参数的二[ 1,2 ]。预旋17后面0涡生成装置在距离3。0dt从轴的轴可能的基础上确定的图形依赖性:(图4)。整体宽度的隧道被确定类型的溢洪道设计和选择整体宽度的隧道被确定类型的溢洪道设计和选择.该方法决定耗散过剩能量(无论是均匀或越来越密集耗散)。横截面面积的终端部分的尾水隧洞确定等效直径.消能室。选择设计的尺寸取决于速度旋转流入口和后室长度的尾水隧洞。对尾水隧洞,最好的方法是使用一个渐缩管(或圆柱)段为共轭条件之间的切向涡轮发电机和消能室。本部分将负责以下功能:使减少旋转速度的水流进入消能室,均衡流量转向最大轴部分的流动速率的中央部分,并减少其动态载荷在旋转节点的流量。

从上述讨论如下,在这些案件中没有空气压迫,涡旋式溢洪道可能是模仿方面的所有要求的标准。情况是不同的,在案件的掺气水流,这也是难以模型。在水力模型外部大气压力时,空气的体积含量略有不同的流动是矿井下运输的关键的部分,而在物理结构,包埋空气,向下移动,压缩的增加液体压力。因此,在方案的溢洪道在泰瑞水利工程(图1),百分压的物理结构是高达15倍,而在开放模型建造一个1 : 60规模,压缩的百分点在1。4 - 1。5范围,即,十分之一的价值发现的领域.此外,在实验中使用的模型,有增加指出在角度的旋转流动中的初始段的尾水隧洞为不良影响,排放减少的内容和空气的混合物增加。因为在物理对象中空气含量的关键部分都是微不足道的。建立一个可靠的模型vortextype当有一个自由的水平在茎轴和多余的的空气的流动,它是必要的隔离该地区的空气在上部和下部的区域,从外部环境,在这些地区减少空气压力根据几何尺度建立一个真空的模型.

溢洪道水力条件的部分。液压操作条件的涡旋式溢洪道不同于相应条件构造配置传统的溢洪道.考虑到这些差异的基础上的结果,实验室研究工作的rogunskii溢洪道水力发电厂(包括消能室)和溢洪道的水力工程(,泰瑞经营着均匀的能量耗散整个隧道的长度)。初步设计的rogunskii水电厂称为槽的末端结构的专业溢洪道;它的目的是,使结束流动率达到60米/秒。可以理解的是,流动率是需要采用特殊的保护措施的流线型表面溢洪道避免气蚀损伤。为了满足这一需要,塔什干水电局工作,与该公司的流体力学研究(现在中央水利学院,社会科学研究所的建设,发展经济学)几种版本的溢洪道设计旨在消除的一个重要部分的能量范围内的流动。通过溢洪道和大大减少流量的尾水隧洞,排入河道。在这个研究中,为了弯曲的转折段,传统配置一个竖井溢洪道取而代之的是一个切向流涡流发生器。同样的。涡旋式流创建整个长度的尾段。液压研究进行了一个模型,模拟了竖井溢洪道在1 : 50的比例和包括一个轴测量直径13米,高148米,切涡流产生装置,和尾水隧洞。

研究表明,在进行轴的送水流量旋转节点,中间水位保持在流量小于设计速度.这台标记的大小取决于该escapage放电和抵抗的溢流段位于一个较低的水平。在模型几乎完全封闭的空间。此外,较低水平的水,空气越多限制水的流量将流入旋转节点。稳定旋涡流动与周围的水环境和内部气体,核心是形成超越切涡流发生器。由于不对称输水进入涡流发生器在最初的部分,核心的流动是非圆,位于远离中心截面的位置。整个圆柱段长度的管道,气体气芯具有一个波浪状弯与曲轴线相吻合与隧道轴线甚至接近10dx从轴的轴。作为nonaerated流进入尾管通过旋转的节点,一个真空计压力是建立在燃气蒸汽的核心,并在案件高度曝气。

减少压力的燃气蒸汽的核心是与离心力的作用,在涡旋式流动,同时增加了压力与几乎完全释放空气曝气流量为核心引起的运输气泡从外围向中心的作用下的压力梯度.一尾管圆柱起始段,自由区下游从0.7增加的部分距离1.3dv从轴轴0.77的部分在距离12。4dr,而角旋转流和轴向和周向流动率下降。在一个锥形的部分.相对面积的气体从0.987下降到0.874,长度的锥形部分,而角旋转流减少之间的一半和三分之二的初始值的这一段。一个专用的建筑,是提出了在本文章的存在是一个能量耗散腔中的涡旋式水流突然膨胀,迅速转化为轴向流动放电流量从尾水隧洞直接进入大气层。平等的离心加速度的自由落体加速度是一个必要条件的崩溃涡结构的流动的隧道.一旦达到平等,水沿隧道顶“洞穴中,“混合容易与空气中的流动的核心。改造旋涡状流入轴向流发生。这时伴随着显着的能量耗散。在一个系统的一个锥形涡发生器和消能室后面的发电机,86%的初始能量的流动消散,因为它穿过这段.分布的静态压力的轴是几乎相同的版本。分布的静态压力在水洞中取决于设计的隧道和流动程度的旋转。系统的越来越多的能量耗散。

结论

我们考虑了溢洪道使我们有效的保证耗散过剩的动能和结构整体可靠性。运行可靠性的基础上,涡溢洪道消能在水洞中设计,被认为在目前的文章中证实了这一事实,压力波动和强度的湍流耗散顺利整个隧道,这些数量的低水平点放电的流动到下一池。强行配置一个旋流泄,是一个水利工程决定性的条件。 Hydrotechnical Construction, Vol. 29, No. 9, 1995 VORTEX-TUNNEL SPILLWAYS。 HYDRAULIC OPERATING CONDITIONS M。 A。 Galant, B. A. Zhivotovskii, I. S. Novikova, V。 B. Rodionov, and N. N。 Rozanova Tunnel spillways are widely used in medium— and high—pressure hydraulic works. It is therefore an important and pressing task to improve the constructions used in these types of spillways and to develop optimal and reliable spillway structures. With this in mind, we would like to turn the reader's attention to essentially novel (i.e., in terms of configuration and operating conditions) vortex spillways which utilize vortex-type flows [1, 2, 3, 4]. On the one hand, these types of spillways make possible large-scale dissipation of the kinetic energy of the flow on the initial leg of the tailrace segment, and, as a consequence, flow rates of slightly vortex-type and axial flows through the subsequent legs that do not produce cavitation damage。 On the other hand, the dangerous effect of high flow rates on the streamlined surface decreases over the length of the initial tailrace leg as a consequence of the increased pressure on the wall caused by the effect of centrifugal forces。 A number of structural studies of tunnel spillways for hydraulic works such as the Rogunskii, Teri, Tel'mamskii, and Tupolangskii hydraulic works based on different operating principles have now been completed. These constructions may be divided into the following basic groups: - vortex-type (or so-called single-vortex type) spillways with smooth dissipation of the flow energy throughout the

相关文档
最新文档