中考数学试卷精选汇编方案设计含解析试题
2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(试题部分)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A .B .C .D .7.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D .10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A .B .C .D .13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .24.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x =>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠= .26.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为 .27.(2024·内蒙古呼伦贝尔·中考真题)如图,点()0,2A −,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是 .28.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为29.(2024·江苏苏州·中考真题)如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .三、解答题30.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 31.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm 的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)32.(2024·吉林长春·中考真题)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.33.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A −,()2,3B −,()5,2C −.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π) 34.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.35.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 36.(2024·北京·中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C '在O 上或其内部,且ACB α∠=,则称点C 是弦AB 的“α可及点”.(1)如图,点()0,1A ,()1,0B .①在点()12,0C ,()21,2C ,31,02C ⎛⎫ ⎪⎝⎭中,点___________是弦AB 的“α可及点”,其中α=____________︒;②若点D 是弦AB 的“90︒可及点”,则点D 的横坐标的最大值为__________;(2)已知P 是直线y =且存在O 的弦MN ,使得点P 是弦MN 的“60︒可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(答案详解)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】本题考查了中心对称图形与轴对称图形的概念,正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D.该标点符号不是轴对称图形,故此选项不符合题意.故选:A.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm【答案】A【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,∴阴影图形的周长是:480280220440cm⨯+⨯−⨯=,故选:A.6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A.B.C.D.【答案】A【分析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C. 不是轴对称图形,故此选项不符合题意;D. 不是轴对称图形,故此选项不符合题意;故选:A.7.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键. 根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形【答案】A【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D . 【答案】B【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的定义是解题的关键.【详解】解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形,也是中心对称图形,故符合题意;C、不是轴对称图形,也不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B.11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.图案不成轴对称,故不符合题意;B.图案成轴对称,故符合题意;C.图案不成轴对称,故不符合题意;D.图案不成轴对称,故不符合题意;故你:B.13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、是轴对称图形,不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D . 【答案】C【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−【答案】A【分析】本题考查了一次函数与坐标轴的交点坐标,点的对称,属于简单题,求交点坐标是解题关键.16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒ 由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;OH ,可得 GOD ∠=,即可判断;掌握轴对称的性质是解题的关键.A.OE OF ⊥,90︒,点的中点,OAB 与ODC 都是等腰三角形,由对称得OAB ODC ≌,F 分别是底边AB ,,结论正确,故不符合题意;O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒,GOD BOH ∴∠=∠,由对称得GOD COH ∴∠=∠,同理可证AOD ∠∴故选:B 17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q −,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98−+−,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标. 【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B , ∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .【答案】()1,4【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,画出图形,结合图形的对称性可直接得出()1,4D .【详解】解:∵点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,∴AD BC =,AC BD =,∴可画图形如下,由图可知点C 、D 关于线段AB 的垂直平分线2x =对称,则()1,4D .故答案为:()1,4.20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .【答案】3【分析】本题考查了折叠的性质和勾股定理,熟练掌握勾股定理是解题的关键. 设CE x =,则8AE BE x ==−,根据勾股定理求解即可.【详解】解:由折叠的性质,得AE BE =,设CE x =,则8AE BE x ==−,由勾股定理,得222BC CE BE +=,∴()22248x x +=−,解得3x =.故答案为:3.21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .出A EF A B C ''''∽,根据对应边上的中线比等于相似比,利用面积公式进行求解即可.【详解】解:∵等腰ABC 中,30ABC ∠=︒,AD 为中线,AD BC ⊥,BD CD =,∵将ABC 沿其底边中线,C BC B '∥∴A EF A B C ''''∽,EF A D B C A G'=''', 13AA AD '=,3223DA AD A G '='=2EF A D '22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .∵4AB =,30ABC ∠=︒,在ABCD Y ∴122AH AB ==,AD BC ∥,∴24AA AH '==,AA AD '⊥,∵5AD =,23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,。
2020全国中考数学试卷分类汇编--专题38 方案设计;专题39 开放性问题

2020全国中考数学试卷分类汇编——方案设计一.选择题二.填空题三.解答题1. (2020•四川省乐山市•10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?【答案】(1)租用一辆轿车的租金为240元.(2)租用商务车5辆和轿车1辆时,所付租金最少为1740元.【解析】【分析】(1)本题可假设轿车的租金为x 元,并根据题意列方程求解即可.(2)本题可利用两种方法求解,核心思路均是分类讨论,讨论范围分别是两车各租其一以及两车混合租赁,方法一可利用一次函数作为解题工具,根据函数特点求解本题;方法二则需要利用枚举法求解本题.【详解】解:(1)设租用一辆轿车的租金为x 元.由题意得:300231320x ⨯+=.解得 240x =,答:租用一辆轿车的租金为240元.(2)方法1:①若只租用商务车,∵342563=, ∴只租用商务车应租6辆,所付租金为30061800⨯=(元);②若只租用轿车,∵348.54=, ∴只租用轿车应租9辆,所付租金为24092160⨯=(元);③若混和租用两种车,设租用商务车m 辆,租用轿车n 辆,租金为W 元.由题意,得 6434300240m n W m n+=⎧⎨=+⎩ 由6434m n +=,得 4634n m =-+,∴30060(634)602040W m m m =+-+=-+,∵63440m n -+=≥,∴173m ≤, ∴15m ≤≤,且m 为整数,∵W 随m 的增大而减小,∴当5m =时,W 有最小值1740,此时1n =,综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.方法2:设租用商务车m 辆,租用轿车n 辆,租金为W 元. 由题意,得 6434300240m n W m n +=⎧⎨=+⎩由6434m n +=,得 46340n m =-+≥,∴173m ≤, ∵m 为整数,∴m 只能取0,1,2,3,4,5,故租车方案有:不租商务车,则需租9辆轿车,所需租金为92402160⨯=(元);租1商务车,则需租7辆轿车,所需租金为130072401980⨯+⨯=(元);租2商务车,则需租6辆轿车,所需租金为230062402040⨯+⨯=(元);租3商务车,则需租4辆轿车,所需租金为330042401860⨯+⨯=(元);租4商务车,则需租3辆轿车,所需租金430032401920⨯+⨯=(元); 租5商务车,则需租1辆轿车,所需租金为530012401740⨯+⨯=(元);由此可见,最佳租车方案是租用商务车5辆和轿车1辆,此时所付租金最少,为1740元.【点睛】本题考查一次函数的实际问题以及信息提取能力,此类型题目需要根据题干所求列一次函数,并结合题目限制条件对函数自变量进行限制,继而利用函数单调性以及分类讨论思想解答本题.2.(2020•四川省泸州市•7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,利用购买甲、乙两种奖品共花费了800元列方程30x+20(30﹣x)=800,然后解方程求出x,再计算30﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,由购买乙种奖品的件数不超过甲种奖品件数的3倍,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于x的函数关系式,利用一次函数的性质即可解决最值问题.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x =8时,w 有最小值为:w =10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,3.(2020•内蒙古包头市•10分)某商店销售,A B 两种商品,A 种商品的销售单价比B 种商品的销售单价少40元,2件A 种商品和3件B 种商品的销售总额为820元.(1)求A 种商品和B 种商品的销售单价分别为多少元?(2)该商店计划购进,A B 两种商品共60件,且,A B 两种商品的进价总额不超过7800元,已知A 种商品和B 种商品的每件进价分别为110元和140元,应如何进货才能使这两种商品全部售出后总获利最多?【答案】(1)A 种商品和B 种商品的销售单价分别为140元和180元.(2)A 进20件,B 进40件时获得利润最大.【解析】【分析】(1)设A 和B 的销售单价分别是x 和y ,根据题意列出二元一次方程组即可求解;(2)设A 进货m 件,根据题意可得出关于m 的一元一次不等式,解不等式即可得到结果.【详解】(1)设A 种商品和B 种商品的销售单价分别为x 元和y 元,根据题意可得4023820x y x y ⎧=-⎨+=⎩, 解得140180x y ⎧=⎨=⎩, ∴A 种商品和B 种商品的销售单价分别为140元和180元.(2)设购进A 商品m 件,则购进B 商品()60-m 件,根据题意可得:()110140607800m m +-≤,解得:20m ≥,令总利润为w ,则()()1401806011014060w m m m m ⎡⎤⎡⎤=+--+-⎣⎦⎣⎦, 102400m =-+,∴当20m =时,获得利润最大,此时60-602040m =-=,∴A 进20件,B 进40件时获得利润最大.【点睛】本题主要考查了一元一次不等式与二元一次方程组的实际应用,准确计算是解题的关键.4.(2020•山东菏泽市•10分)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元?(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.【分析】(1)设购买一根跳绳需要x 元,购买一个毽子需要y 元,根据“购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 根跳绳,则购买(54﹣m )个毽子,根据购买的总费用不能超过260元且购买跳绳的数量多于20根,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为正整数即可得出各购买方案.【解答】解:(1)设购买一根跳绳需要x 元,购买一个毽子需要y 元,依题意,得:,解得:.答:购买一根跳绳需要6元,购买一个毽子需要4元.(2)设购买m 根跳绳,则购买(54﹣m )个毽子,依题意,得:,解得:20<m≤22.又∵m 为正整数,∴m 可以为21,22.∴共有2种购买方案,方案1:购买21根跳绳,33个毽子;方案2:购买22根跳绳,32个毽子.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.5.(2020•山东济宁市•8分)为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?【答案】(1)1辆大货车和1辆小货车一次可以分别运输150箱,100箱物资;(2)共有3种方案,6辆大货车和6辆小货车,7辆大货车和5辆小货车;8辆大货车和4辆小货车,当安排6辆大货车和6辆小货车时,总费用最少,为48000元.【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运输x箱,y箱物资,根据题意列出二元一次方程组,求解即可;(2)设安排m辆大货车,则小货车(12-m)辆,总费用为W,根据运输物资不少于1500箱,且总费用小于54000元分别得出不等式,求解即可得出结果.详解】解:(1)设1辆大货车和1辆小货车一次可以分别运输x箱,y箱物资,根据题意,得:,解得:,答:1辆大货车和1辆小货车一次可以分别运输150箱,100箱物资;(2)设安排m辆大货车,则小货车(12-m)辆,总费用为W,则150m+(12-m)×100≥1500,解得:m≥6,而W=5000m+3000×(12-m)=2000m+36000<54000,解得:m<9,则6≤m<9,则运输方案有3种:6辆大货车和6辆小货车;7辆大货车和5辆小货车;8辆大货车和4辆小货车;∵2000>0,∴当m=6时,总费用最少,且为2000×6+36000=48000元.∴共有3种方案,当安排6辆大货车和6辆小货车时,总费用最少,为48000元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的实际应用,解题的关键是理解题意,找到等量关系和不等关系,列出式子.6.(2020•四川省泸州市•7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,利用购买甲、乙两种奖品共花费了800元列方程30x+20(30﹣x)=800,然后解方程求出x,再计算30﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,由购买乙种奖品的件数不超过甲种奖品件数的3倍,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于x的函数关系式,利用一次函数的性质即可解决最值问题.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,7.(2020•四川省自贡市•10分)甲、乙两家商场平时以同样价格出售相同的商品,新冠疫情期间,为了减少库存,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.⑴.以(单位:元)表示商品原价,(单位:元)表示实际购物金额,分别就两家商场的让利方式写出关于的函数关系式;⑵.新冠疫情期间如何选择这两家商场去购物更省钱?;【解析】(1);当在乙商场购买商品未超过100元时,乙商场按照原价售卖,即;当在乙商场购买物品超过100元时,超过部分按8折,∴,化简得;∴;(2)由题意可知,当购买商品原价小于等于100时,甲商场打9折,乙商场不打折,所以甲商场购物更加划算;当购买商品原价超过100元时,若,即此时甲商场花费更低,购物选择甲商场;若,即,此时甲乙商场购物花费一样;若,即时,此时乙商场花费更低,购物选择乙商场;综上所述:当购买商品原价金额小于200时,选择甲商场更划算;当购买商品原价金额等于200时,选择甲商场和乙商场购物一样划算;当购买商品原价金额大于200时,选择乙商场更划算.8.(2020•山东菏泽市•10分)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元?(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.。
2023年黑龙江省各市中考数学真题汇编——方程与不等式(含答案)

2023年黑龙江省各市中考数学真题汇编——方程与不等式一.选择题(共7小题)1.(2023•齐齐哈尔)如果关于x的分式方程的解是负数,那么实数m的取值范围是( )A.m<﹣1B.m>﹣1且m≠0C.m>﹣1D.m<﹣1且m≠﹣2 2.(2023•黑龙江)如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是( )A.5m B.70m C.5m或70m D.10m3.(2023•齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm的导线,将其全部截成10cm和20cm两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有( )A.5种B.6种C.7种D.8种4.(2023•黑龙江)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A,B,C三种图书,A种每本30元,B种每本25元,C种每本20元,其中A种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )A.5种B.6种C.7种D.8种5.(2023•牡丹江)若分式方程=1﹣的解为负数,则a的取值范围是( )A.a<﹣1且a≠﹣2B.a<0且a≠﹣2C.a<﹣2且a≠﹣3D.a<﹣1且a≠﹣36.(2023•黑龙江)已知关于x的分式方程+1=的解是非负数.则m的取值范围是( )A.m≤2B.m≥2C.m≤2且m≠﹣2D.m<2且m≠﹣27.(2023•绥化)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )A.+=1B.+(+)=1C.(1+)+=1D.+(+)=1的不等式组有三个整数解,则实数组有则+的值为衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.方程与不等式(真题汇编)2023年黑龙江省各市中考数学试题全解析版参考答案与试题解析一.选择题(共7小题)1.(2023•齐齐哈尔)如果关于x的分式方程的解是负数,那么实数m的取值范围是( )A.m<﹣1B.m>﹣1且m≠0C.m>﹣1D.m<﹣1且m≠﹣2【答案】D【解答】解:将分式方程两边同乘(x+1),去分母可得:2x﹣m=x+1,移项,合并同类项得:x=m+1,∵原分式方程的解是负数,∴m+1<0,且m+1+1≠0,解得:m<﹣1且m≠﹣2,故选:D.2.(2023•黑龙江)如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是( )A.5m B.70m C.5m或70m D.10m【答案】A【解答】解:设小路的宽是xm,则余下的部分可合成长为(100﹣2x)m,宽为(50﹣2x)m的矩形,根据题意得:(100﹣2x)(50﹣2x)=3600,整理得:x2﹣75x+350=0,解得:x1=5,x2=70(不符合题意,舍去),∴小路的宽是5m.故选:A.3.(2023•齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm的导线,将其全部截成10cm和20cm两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有( )A.5种B.6种C.7种D.8种【答案】C【解答】解:设截成10cm的导线x根,截成20cm的导线y根,根据题意得10x+20y=150,∴x=15﹣2y,∵15﹣2y>0,∴y<7.5,∵y是正整数,∴y的值为1,2,3,4,5,6,7,即截取方案共有7种.故选:C.4.(2023•黑龙江)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A,B,C三种图书,A种每本30元,B种每本25元,C种每本20元,其中A种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )A.5种B.6种C.7种D.8种【答案】B【解答】解:当购买5本A种图书时,设购买x本B种图书,y本C种图书,根据题意得:30×5+25x+20y=500,∴x=14﹣y,又∵x,y均为正整数,∴或或,∴当购买5本A种图书时,有3种采购方案;当购买6本A种图书时,设购买m本B种图书,n本C种图书,根据题意得:30×6+25m+20n=500,∴n=16﹣m,又∵m,n均为正整数,∴或或,∴当购买6本A种图书时,有3种采购方案.∴此次采购的方案有3+3=6(种).故选:B.5.(2023•牡丹江)若分式方程=1﹣的解为负数,则a的取值范围是( )A.a<﹣1且a≠﹣2B.a<0且a≠﹣2C.a<﹣2且a≠﹣3D.a<﹣1且a≠﹣3【答案】D【解答】解:方程两侧同乘(x+2)得,a=x+2﹣3,∴x=a+1,∵解为负数,∴a+1<0,即a<﹣1,要是分式有意义,x≠﹣2,即a+1≠﹣2,∴a≠﹣3.故选:D.6.(2023•黑龙江)已知关于x的分式方程+1=的解是非负数.则m的取值范围是( )A.m≤2B.m≥2C.m≤2且m≠﹣2D.m<2且m≠﹣2【答案】C【解答】解:分式方程去分母得:m+x﹣2=﹣x,解得:x=,由分式方程的解是非负数,得到≥0,且﹣2≠0,解得:m≤2且m≠﹣2,故选:C.7.(2023•绥化)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )A.+=1B.+(+)=1.(1+)+=.+(+)=+(+)=的不等式组有三个整数解,则实数的不等式组有,则+的值为﹣ .﹣.所以原式===﹣.﹣.由题意得:×2=,解得:x=80,经检验,x=80是原方程的解,且符合题意,则x﹣2=78,+=30,答:该学校两批共购买了30个足球.14.(2023•牡丹江)某商场欲购进A和B两种家电,已知B种家电的进价比A种家电的进价每件多100元,经计算,用1万元购进A种家电的件数与用1.2万元购进B种家电的件数相同.请解答下列问题:(1)这两种家电每件的进价分别是多少元?(2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A种家电不超过67件,则该商场有哪几种购买方案?(3)在(2)的条件下,若A和B两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B种家电的件数.【答案】(1)A种家电每件的进价为500元,B种家电每件的进价为600元;(2)该商场共有3种购买方案,方案1:购进A种家电65件,B种家电35件;方案2:购进A种家电66件,B种家电34件;方案3:购进A种家电67件,B种家电33件;(3)这10件家电中包含4件B种家电.【解答】解:(1)设A种家电每件进价为x元,则B种家电每件进价为(x+100)元,根据题意得:,解得:x=500,经检验,x=500是所列方程的解,且符合题意,∴x+100=500+100=600.答:A种家电每件的进价为500元,B种家电每件的进价为600元;(2)设购进A种家电a件,则购进B种家电(100﹣a)件,根据题意得:,解得:65≤a≤67,又∵a为正整数,∴a可以为65,66,67,∴该商场共有3种购买方案,方案1:购进A种家电65件,B种家电35件;方案2:购进A种家电66件,B种家电34件;方案3:购进A种家电67件,B种家电33件;(3)设这10件家电中包含m件B种家电,则包含(10﹣m)件A种家电,当a=65时,600×[65﹣(10﹣m)]+750(35﹣m)﹣500×65﹣600×35=5050,解得:m=,∵m为正整数,∴m=不符合题意,舍去;当a=66时,600×[66﹣(10﹣m)]+750(34﹣m)﹣500×66﹣600×34=5050,解得:m=,∵m为正整数,∴m=不符合题意,舍去;当a=67时,600×[67﹣(10﹣m)]+750(33﹣m)﹣500×67﹣600×33=5050,解得:m=4.答:这10件家电中包含4件B种家电.15.(2023•黑龙江)2023年5月30日上午9点31分,神州十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B 两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B 款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.【答案】(1)A款文化衫每件50元,B款文化衫每件40元;(2)共有6种购买方案;(3)m=5.【解答】解:(1)设B款文化衫每件x元,则A款文化衫每件(x+10)元,根据题意得:=,解得:x=40,经检验,x=40是所列方程的解,且符合题意,∴x+10=40+10=50.答:A款文化衫每件50元,B款文化衫每件40元;(2)设购买y件A款文化衫,则购买(300﹣y)件B款文化衫,根据题意得:,解得:275≤y≤280,又∵y为正整数,∴y可以为275,276,277,278,279,280,∴共有6种购买方案;(3)设购买300件两款文化衫所需总费用为w元,则w=50×0.7y+(40﹣m)(300﹣y)=(m﹣5)y+300(40﹣m),∵(2)中的所有购买方案所需资金恰好相同,∴w的值与y值无关,∴m﹣5=0,∴m=5.答:m的值为5.。
中考数学最新真题试题汇编及解析(湖南怀化)

=1+ -1+2-2
=2- .
【点睛】本题考查的是实数的运算,熟知二次根式的性质、负整数指数幂、零指数幂的计算法则是解答此题的关键.
18.解不等式组,并把解集在数轴上表示出来.
【答案】 ,数轴见解析
【解析】
【分析】根据解一元一次不等式组的方法步骤求解,然后在数轴上把解集表示出来即可.
7.一个多边形的内角和为900°,则这个多边形是( )
A.七边形B.八边形C.九边形D.十边形
【答案】A
【解析】
【分析】根据n边形的内角和是(n﹣2)•180°,列出方程即可求解.
【详解】解:根据n边形的内角和公式,得
(n﹣2)•180°=900°,
解得n=7,
∴这个多边形的边数是7,
故选:A.
【点睛】本题考查了多边形的内角和,解题的关键是熟记内角和公式并列出方程.
设CD=x,则BD=2.4-x,
在Rt△ACD中,∠ACD=45°,
∴∠CAD=45°,
∴AD=CD=x.
在Rt△ABD中, ,
即 ,
解得x=0.88,
可知AD=0 88千米=880米,
因为880米>800米,所以公路不穿过纪念园.
【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.
【详解】解:连接OC,
∵AB与⊙O相切于点C,
∴OC⊥AB,即∠OCA=90°,
在Rt△OCA中,AO=3,OC=2,
∴AC= ,
故答案为: .
【点睛】本题考查了切线的性质,勾股定理,熟练掌握切线的性质是解题关键.切线的性质:圆的切线垂直于经过切点的半径.
人教数学八年级下册中考试题汇编含精讲解析18.1平行四边形3

初中数学试卷灿若寒星整理制作18.1 平行四边形3一.解答题(共20小题)1.(2015•扬州)如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l 交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.2.(2015•桂林)如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.3.(2015•乌鲁木齐)如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.4.(2015•宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.5.(2015•遂宁)如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形.6.(2015•毕节市)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.7.(2015•柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s 的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?8.(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.9.(2014•白银)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC 所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)10.(2014•宿迁)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.11.(2014•佛山)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图2,在▱ABCD中,对角线交点为O,A1、B1、C1、D1分别是OA、OB、OC、OD的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形3反映的规律,猜猜l可能是多少?12.(2014•宁夏)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.13.(2014•西宁)如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.(1)求反比例函数y=的解析式;(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.14.(2014•桂林)在▱ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交线段AD、BC 于点E、F.(1)根据题意,画出图形,并标上正确的字母;(2)求证:DE=BF.15.(2014•汕尾)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.16.(2014•聊城)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE于G点,交DF于F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.17.(2014•西藏)如图所示,▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:AE=CF.18.(2014•鄂尔多斯)如图1,在▱ABCD中,点E是BC边的中点,连接AE并延长,交DC的延长线于点F.且∠AEC=2∠ABE.连接BF、AC.(1)求证:四边形ABFC的是矩形;(2)在图1中,若点M是BF上一点,沿AM折叠△ABM,使点B恰好落在线段DF上的点B′处(如图2),AB=13,AC=12,求MF的长.19.(2014•广州)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.20.(2014•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=°时,四边形ACED是正方形?请说明理由.18.1 平行四边形3参考答案与试题解析一.解答题(共20小题)1.(2015•扬州)如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l 交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.考点:平行四边形的判定与性质;勾股定理;翻折变换(折叠问题).专题:证明题.分析:(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形;(2)利用平行线的性质结合勾股定理得出答案.解答:证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB DC,∴CE D′B,∴四边形BCED′是平行四边形;(2)∵BE平分∠ABC,∴∠CBE=∠EBA,∵AD∥BC,∴∠DAB+∠CBA=180°,∵∠DAE=∠BAE,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∴AB2=AE2+BE2.点评:此题主要考查了平行四边形的判定与性质以及勾股定理等知识,得出四边形DAD′E是平行四边形是解题关键.2.(2015•桂林)如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.考点:平行四边形的判定与性质;全等三角形的判定.专题:证明题.分析:(1)根据平行四边形的性质:平行四边的对边相等,可得AB∥CD,AB=CD;根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据平行四边的性质:平行四边形的对边相等,可得AB∥CD,AB=CD,∠CDM=∠CFN;根据全等三角形的判定,可得答案.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵E、F分别是AB、CD的中点,∴BE=DF,∵BE∥DF,∴四边形EBFD为平行四边形;(2)证明:∵四边形EBFD为平行四边形,∴DE∥BF,∴∠CDM=∠CFN.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠ABN=∠CFN,∴∠ABN=∠CDM,在△ABN与△CDM中,,∴△ABN≌△CDM (ASA).点评:本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,全等三角形的判定,根据条件选择适当的判定方法是解题关键.3.(2015•乌鲁木齐)如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.考点:平行四边形的判定与性质;全等三角形的判定与性质;矩形的性质.分析:(1)通过全等三角形△BEC≌△DFA的对应边相等推知BE=DF,则结合已知条件证得结论;(2)根据矩形的性质计算即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BEC与△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图:∵AB⊥AC,AB=4,BC=2,∴AC=6,∴AO=3,∴Rt△BAO中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.点评:本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.4.(2015•宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.考点:平行四边形的判定与性质;等腰三角形的性质.分析:(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.解答:(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成了;综上所述,四边形BDFC的面积是6或3.点评:本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.5.(2015•遂宁)如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据平行四边形的性质可得AB=CD,AB∥CD,然后可证明∠ABE=∠CDF,再利用SAS来判定△ABE≌△DCF,从而得出AE=CF.(2)首先根据全等三角形的性质可得∠AEB=∠CFD,根据等角的补角相等可得∠AEF=∠CFE,然后证明AE∥CF,从而可得四边形AECF是平行四边形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.点评:此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.6.(2015•毕节市)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.考点:平行四边形的判定与性质.分析:(1)利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,进而得出答案;(2)首先过点D作DN⊥BC于点N,再利用平行四边形的性质结合勾股定理得出DF的长,进而得出答案.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,F是BC边的中点,∴DE=FC,DE∥FC,∴四边形CEDF是平行四边形;(2)解:过点D作DN⊥BC于点N,∵四边形ABCD是平行四边形,∠A=60°,∴∠BCD=∠A=60°,∵AB=3,AD=4,∴FC=2,NC=DC=,DN=,∴FN=,则DF=EC==.点评:此题主要考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键.7.(2015•柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s 的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?考点:平行四边形的判定与性质;勾股定理的逆定理;直角梯形.专题:动点型.分析:(1)已知AD∥BC,添加PD=CQ即可判断以PQDC为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.解答:解:(1)当PQ∥CD时,四边形PDCB是平行四边形,此时PD=QC,∴12﹣2t=t,∴t=4.∴当t=4时,四边形PQDC是平行四边形.(2)过P点,作PE⊥BC于E,DF⊥BC,∴DF=AB=8.FC=BC﹣AD=18﹣12=6.①当PQ⊥BC,则BE+CE=18.即:2t+t=18,∴t=6;②当QP⊥PC,∴PE=4,CE=3+t,QE=12﹣2t﹣(3+t)=9﹣3t,∴16=(3+t)(9﹣3t),解得:t=,③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.∴当t=3或时,△PQC是直角三角形.点评:此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.8.(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.考点:平行四边形的判定与性质;全等三角形的判定与性质;含30度角的直角三角形.专题:证明题.分析:(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.解答:证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.点评:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,以及含30度直角三角形的性质,熟练掌握平行四边形的判定与性质是解本题的关键.9.(2014•白银)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC 所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)考点:三角形中位线定理;平行四边形的判定;菱形的判定.专题:几何图形问题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,GF∥BC且GF=BC,从而得到DE∥GF,DE=GF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)根据邻边相等的平行四边形是菱形解答.解答:(1)证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,且DE=BC,同理,GF∥BC,且GF=BC,∴DE∥GF且DE=GF,∴四边形DEFG是平行四边形;(2)解:当OA=BC时,平行四边形DEFG是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及平行四边形与菱形的关系,熟记的定理和性质是解题的关键.10.(2014•宿迁)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.11.(2014•佛山)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图2,在▱ABCD中,对角线交点为O,A1、B1、C1、D1分别是OA、OB、OC、OD的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形3反映的规律,猜猜l可能是多少?考点:三角形中位线定理;规律型:图形的变化类;平行四边形的性质.专题:压轴题;规律型.分析:(1)作出图形,延长DE至F,使EF=DE,然后根据“边角边”证明△ADE和△CFE全等,根据全等三角形对应边相等可得AD=CF,全等三角形对应角相等可得∠A=∠ECF,再根据内错角相等,两直线平行可得AD∥CF,然后证明四边形BCFD是平行四边形,再根据平行四边形的对边平行且相等可得DF∥BC且DF=BC,然后整理即可得证;(2)根据三角形的中位线平行于第三边并且等于第三边的一半求出四边形A1B1C1D1的周长等于▱ABCD周长的一半,然后依次表示出各四边形的周长,再相加即可得解;(3)根据规律,l的算式等于大正方形的面积减去最后剩下的一小部分的面积,然后写出结果即可.解答:解:(1)已知:在△ABC中,D、E分别是边AB、AC的中点,求证:DE∥BC且DE=BC,证明:如图,延长DE至F,使EF=DE,∵E是AC的中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴AD=CF(全等三角形对应边相等),∠A=∠ECF(全等三角形对应角相等),∴AD∥CF,∵点D是AB的中点,∴AD=BD,∴BD=CF且BD∥CF,∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),∴DF∥BC且DF=BC(平行四边形的对边平行且相等),∵DE=EF=DF,∴DE∥BC且DE=BC;(2)∵A1、B1、C1、D1分别是OA、OB、OC、OD的中点,∴A1B1=AB,B1C1=BC,C1D1=CD,A1D1=AD,∴四边形A1B1C1D1的周长=×1=,同理可得,四边形A2B2C2D2的周长=×=,四边形A3B3C3D3的周长=×=,…,∴四边形的周长之和l=1++++…;(3)由图可知,+++…=1(无限接近于1),所以l=1++++…=2(无限接近于2).点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半的证明,利用面积法求等比数列的和,平行四边形的判定与性质,(1)作辅助线构造出全等三角形的和平行四边形是解题的关键,(3)仔细观察图形得到部分与整体的关系是解题的关键.12.(2014•宁夏)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.考点:平行四边形的性质;等腰三角形的判定与性质;翻折变换(折叠问题).专题:证明题.分析:由在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,即可求得∠DCA=∠B′AC,则可证得OA=OC.解答:证明:∵△AB′C是由△ABC沿AC对折得到的图形,∴∠BAC=∠B′AC,∵在平行四边形ABCD中,AB∥CD,∴∠BAC=∠DCA,∴∠DCA=∠B′AC,∴OA=OC.点评:此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.13.(2014•西宁)如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.(1)求反比例函数y=的解析式;(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.考点:平行四边形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.专题:数形结合.分析:(1)利用待定系数法把B(3,5)代入反比例函数解析式可得k的值,进而得到函数解析式;(2)根据A、D、B三点坐标可得AB=5,AB∥x轴,根据平行四边形的性质可得AB∥CD∥x轴,再由C点坐标可得▱ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),根据反比例函数图象上点的坐标特点可得点C落在反比例函数y=的图象上.解答:解:(1)∵点B(3,5)在反比例函数y=(x>0)图象上,∴k=15,∴反比例函数的解析式为y=;(2)平移后的点C能落在y=的图象上;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5),∴AB=5,AB∥x轴,∴DC∥x轴,∴点C的坐标为(5,1),∴▱ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),∴平移后的点C能落在y=的图象上.点评:此题主要考查了平行四边形的性质,以及待定系数法求反比例函数和反比例函数图象上点的坐标特点,根据题意得到AB=5,AB∥x轴是解决问题的关键.14.(2014•桂林)在▱ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交线段AD、BC 于点E、F.(1)根据题意,画出图形,并标上正确的字母;(2)求证:DE=BF.考点:平行四边形的性质;全等三角形的判定与性质;作图—复杂作图.专题:作图题;证明题.分析:(1)根据题意直接画图即可;(2)由四边形ABCD是平行四边形,可得AD∥BC,OB=OD,继而可利用ASA,判定△DOE≌△BOF,继而证得DE=BF.解答:(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠EDO=∠OBF,在△DOE和△BOF中,,∴DOE≌△BOF(ASA),∴DE=BF.点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.15.(2014•汕尾)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.解答:(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FBC=S▱ABCD,∴=,∴=,∴=,∴△FED的面积为:2.点评:此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FBC=S平行四边形ABCD是解题关键.16.(2014•聊城)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE于G点,交DF于F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.考点:平行四边形的性质;全等三角形的判定.专题:证明题.分析:根据平行三边的性质可知:AD=BC,由平行四边形的判定方法易证四边形BMDK和四边形AJCN是平行四边形,所以得∠FAD=∠ECB,∠ADF=∠EBC,进而证明:△EBC≌△FDA.解答:证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AF∥CE,BE∥DF,∴四边形BMDK和四边形AJCN是平行四边形,∴∠FAD=∠ECB,∠ADF=∠EBC,在△EBC和△FDA中,∴△EBC≌△FDA(ASA).点评:本题考查了平行四边形的判定以及全等三角形的判定,在全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.17.(2014•西藏)如图所示,▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出∠ABE=∠CDF,求出∠AEB=∠CFD=90°,根据AAS推出△ABE≌△CDF即可.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.点评:本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用,解此题的关键是求出△ABE≌△CDF,注意:平行四边形的对边平行且相等,难度适中.18.(2014•鄂尔多斯)如图1,在▱ABCD中,点E是BC边的中点,连接AE并延长,交DC的延长线于点F.且∠AEC=2∠ABE.连接BF、AC.(1)求证:四边形ABFC的是矩形;(2)在图1中,若点M是BF上一点,沿AM折叠△ABM,使点B恰好落在线段DF上的点B′处(如图2),AB=13,AC=12,求MF的长.考点:平行四边形的性质;勾股定理;矩形的判定;翻折变换(折叠问题).分析:(1)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF 平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形;(2)由四边形ABFC是矩形,AB=13,AC=12,得到CF=AB=13,BF=AC=12,∠ACF=∠MFB′=90°,根据折叠的性质得到ABAB=13,B′M=BM,解直角三角形得到结果.解答:证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(ASA);∴AB=CF,又∵四边形ABCD为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC,则四边形ABFC为矩形;(2)∵四边形ABFC是矩形,AB=13,AC=12,∴CF=AB=13,BF=AC=12,∠ACF=∠MFB′=90°,∵△AB′M是由△ABM折叠得到的,∴ABAB=13,B′M=BM,∴B′C===5,∴B′F=CF=B′C=13﹣5=8,设MF=x,则B′B=BM=12﹣x,∴B′F2+MF2=B′M2,即:82+x2=(12﹣x)2,解得:x=,∴MF=.点评:此题考查了矩形的判定,平行四边形的性质,三角形的外角性质,等腰三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.19.(2014•广州)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.考点:平行四边形的性质;全等三角形的判定.专题:证明题.分析:根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF 即可.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).点评:本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.20.(2014•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.专题:几何综合题.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);。
2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解

2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解(试题部分)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3,则k 的值为( ) A .3−B .1−C .1D .32.(2024·重庆·中考真题)反比例函数10y x=−的图象一定经过的点是( ) A .()1,10B .()2,5−C .()2,5D .()2,83.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x −都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x << B .132x x x << C .321x x x <<D .213x x x <<4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<5.(2024·浙江·中考真题)反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是( )A .当4t <−时,210y y <<B .当40t −<<时,210y y <<C .当40t −<<时,120y y <<D .当0t >时,120y y <<6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( ) A .若5x =,则100y = B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++−=无实数根,则函数y kx =与函数2y x=的图象交点个数为( ) A .0 B .1 C .2 D .38.(2024·重庆·中考真题)已知点()3,2−在反比例函数()0ky k x=≠的图象上,则k 的值为( ) A .3−B .3C . 6−D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数k y x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是( )A .25B .35C .45D .8510.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A .4.5B .3.5C .3D .2.511.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是( )A .0B .1C .2D .412.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若BC B 的坐标是( )A .(B .()0,3C .()0,4D .(0,13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0ky k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为( )A .13B .14C .15D .25二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y −,则12y y +的值是 .15.(2024·云南·中考真题)已知点()2,P n 在反比例函数10y x=的图象上,则n = . 16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m −,()2,1B −.则满足12y y ≤的x 的取值范围 .17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为 .18.(2024·陕西·中考真题)已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y + 0.19.(2024·湖北武汉·中考真题)某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是 .20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B −,3ABCOS=,则实数k 的值为 .21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=−,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a = . 22.(2024·四川遂宁·中考真题)反比例函数1k y x−=的图象在第一、三象限,则点()3k −,在第 象限. 23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是 .25.(2024·四川广元·中考真题)已知y =与()0ky x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k = .27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)ky x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”. (1)下列三个函数的图象上存在“近轴点”的是 (填序号); ①3y x =−+;②2y x=;③221y x x =−+−. (2)若一次函数3y mx m =−图象上存在“近轴点”,则m 的取值范围为 .三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0ky x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0ky x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数ky x=的表达式; (2)连接AD ,求ACD 的面积.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =−+和反比例函数9y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式; (2)根据图象,直接写出不等式9x b x−+>的解集. 31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围). (2)当电阻R 为3Ω时,求此时的电流I .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与ky x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格; (2)结合表格,当2y x b =+的图像在ky x=的图像上方时,直接写出x 的取值范围. 33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A −,交反比例函数ky x=于点(),4B n .(1)求m n k ,,; (2)点C 在反比例函数ky x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围. 34.(2024·四川凉山·中考真题)如图,正比例函数112y x =与反比例函数()20ky x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式; (2)把直线112y x =向上平移3个单位长度与()20ky x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积. 35.(2024·贵州·中考真题)已知点()1,3在反比例函数ky x=的图象上. (1)求反比例函数的表达式;(2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P 在y 轴上,当PAB 的周长最小时,请直接写出点P 的坐标;(3)将直线AB 向下平移a 个单位长度后与x 轴,y 轴分别交于E ,F 两点,当12EF AB =时,求a 的值. 39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=−交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=−在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值. 40.(2024·四川广元·中考真题)如图,已知反比例函数1ky x=和一次函数2y mx n =+的图象相交于点()3,A a −,3,22B a ⎛⎫+− ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围; (3)求AOB 的面积.41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____; (2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值; (3)已知,双曲线1ky x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标.2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解(答案详解)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3,则k 的值为( ) A .3− B .1− C .1 D .32.(2024·重庆·中考真题)反比例函数10y x=−的图象一定经过的点是( ) A .()1,10 B .()2,5− C .()2,5 D .()2,83.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x −都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<【详解】解:50k =>5y x=的图象分布在第一、三象限,在每一象限点()3,5C x ,都在反比例函数(),1x −在反比例函数4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<【详解】解: 5.(2024·浙江·中考真题)反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是( )A .当4t <−时,210y y <<B .当40t −<<时,210y y <<C .当40t −<<时,120y y <<D .当0t >时,120y y <<6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( ) A .若5x =,则100y = B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++−=无实数根,则函数y kx =与函数2y x=的图象交点个数为( ) A .0 B .1 C .2 D .38.(2024·重庆·中考真题)已知点()3,2−在反比例函数()0ky k x=≠的图象上,则k 的值为( ) A .3− B .3C . 6−D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数ky x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是( )A .25B .35C .45D .85EM AC ,设,由OME OCA ∽,可得O O F OBDCFA D SSS ++四边形,列方程,即可得出k 的值.【详解】过点E 作EM OC ⊥,则EM AC ,∴OME OCA ∽, ∴OM EM OEOC AC OA== 设k E a a ⎛⎫ ⎪⎝⎭,,∵2OE AE = 2OM EM ==, OBDOCFS SS ++四边形3322k a a⋅⋅,解得:10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A .4.5B .3.5C .3D .2.5,证明AFE ODE ∽,有OD 1122DF a ==,AF =【详解】如图,过点A 作AF BD ⊥设12,A a a ⎛⎫⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥∴AF y ∥轴,DF =∴AFE ODE ∽, AF AE EFOD OE DE==, E 为AO 的中点, AE OE =, 1AF AE EFOD OE DE===ABES=故选:A .11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是( )A .0B .1C .2D .412.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若BC B 的坐标是( )A .(B .()0,3C .()0,4D .(0,∵()4,2A ,∴4OE =,222425OA =+=∴42sin 525OE OAE OA ∠===∵()4,2A 在反比例函数的图象上,13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0ky k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为( )A .13B .14C .15D .25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y −,则12y y +的值是 . 【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.15.(2024·云南·中考真题)已知点()2,P n 在反比例函数10y x=的图象上,则n = . 【详解】解:点16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m −,()2,1B −.则满足12y y ≤的x 的取值范围 .【答案】10x −≤<或2x ≥【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当10x −≤<或2x ≥时,12y y ≤, ∴满足12y y ≤的x 的取值范围为10x −≤<或2x ≥, 故答案为:10x −≤<或2x ≥.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为 . 【答案】18018.(2024·陕西·中考真题)已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y + 0.19.(2024·湖北武汉·中考真题)某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是 . 【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可. 【详解】解:∵当0x >时,y 随x 的增大而减小, ∴0k >故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B −,3ABCOS=,则实数k 的值为 .ABCOS =【详解】ABCO 是平行四边形纵坐标相同()1,3B − A ∴的纵坐标是3 A 在反比例函数图象上∴将3y =,33k A ⎛⎫∴ ⎪⎝⎭AB ∴=−ABCOS=3AB ∴⨯即:1⎛−− ⎝解得:k =故答案为:21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=−,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a = . 【详解】解:函数23y x =−12b a −∴=故答案为:22.(2024·四川遂宁·中考真题)反比例函数1k y x−=的图象在第一、三象限,则点()3k −,在第 象限.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是 .OCEOADSS−即可求解,熟练掌握知识点的应用是解题的关键.x ⊥轴于M ,作12OCEOADS S−=⨯25.(2024·四川广元·中考真题)已知y =与()0ky x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为 .Rt tan AHO ,130=︒,B 为y 轴上一点,将OAB 沿OA 2130=∠=OB , 390=︒−∠︒, 3m m,26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k = .27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号) 的几何意义可得OBD 的面积等于四边形为矩形,可得当OD 合题意;如图,设平移距离为n ,可得,证明B BD A OB '''∽,可得,(0,2)C ,四边形∵1212AOBA ODS S'==⨯=, ∴BOKAKDA SS '=四边形,BOK BKD BKD AKDA S S S S '+=+四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB '''∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是 (填序号);①3y x =−+;②2y x=;③221y x x =−+−. (2)若一次函数3y mx m =−图象上存在“近轴点”,则m 的取值范围为 .三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x =>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式; (2)连接AD ,求ACD 的面积.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =−+和反比例函数9y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式9x b x−+>的解集.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围.∴当2y x b =+的图像在k y x =的图像上方时,33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A −,交反比例函数k y x =于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围. 【答案】(1)3m =,1n =,4k =;(2)1a >.34.(2024·四川凉山·中考真题)如图,正比例函数112y x =与反比例函数()20k y x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式;(2)把直线112y x =向上平移3个单位长度与()20k y x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积. AOB ADO SS =,代入)解:点(4,2)A 在反比例函数图象上,8k ∴=,∴反比例函数解析式为(2)解:把直线35.(2024·贵州·中考真题)已知点()1,3在反比例函数ky x=的图象上. (1)求反比例函数的表达式;(2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为________.37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式; (2)连接AB ,求点C 到线段AB 的距离.ABCS=)点又一次函数C 点Rt ADB 中,又12ABCSBC =1322⨯⨯=⨯322CE =,即点38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P在y轴上,当PAB的周长最小时,请直接写出点P的坐标;(3)将直线AB向下平移a个单位长度后与x轴,y轴分别交于E,F两点,当12EF AB=时,求a的值.,则此时,PAB的周长最小,根据轴对称5,于是得到点8a+−,得到)解:一次函数(此时,PAB 的周长最小,点()1,6A ,()1,6E ∴−,BE 的解析式为12EF AB =39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=−交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=−在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值. ∴FCP OEP ∴∠=∠,CFP ∠PE PC =,(AAS CFP EOP ∴≌CF OE =,OP PF =∵直线y x =−向上平移令0x =,得y m =,令(),0E m ∴,()0,P m ,双曲线40.(2024·四川广元·中考真题)如图,已知反比例函数1ky x=和一次函数2y mx n =+的图象相交于点()3,A a −,3,22B a ⎛⎫+− ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式; (2)当12y y >时,请结合图象直接写出自变量x 的取值范围; (3)求AOB 的面积.12AOBAOCBOCS SSOC =+=12AOBAOCBOCSSSOC =+=41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____; (2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值; (3)已知,双曲线1ky x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标.。
中考数学最新真题试题汇编及解析(大庆)

1
2
3
1
(1,1)
(1,2)
(1,3)
2
(2,1)
(2,2)
(2,3)
3
(3,1)
(3,2)
(3,3)
由表可知,两次卡片编号之积有1、2、3、4、6、9,卡片组合共有9种等可能的结果,其中两次卡片编号之积为奇数有1、3、9,卡片组合共有(1,1),(1,3),(3,1),(3,3)4种等可能的结果,
故C选项正确,不符合题意;
D、底和腰相等的等腰三角形是等边三角形,
故D选项正确,不符合题意;
故选:A.
【点睛】本题综合考查了等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,要求学生在学习过程中掌握三角形的各种性质及推论,不断提升数学学习的能力.
9.平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足 .点Q为线段 的中点,则点Q运动路径的长为( )
14.不透明的盒中装有三张卡片,编号分别为1,2,3.三张卡片质地均匀,大小、形状完全相同,摇匀后从中随机抽取一张卡片记下编号,然后放回盒中再摇匀,再从盒中随机取出一张卡片,则两次所取卡片的编号之积为奇数的概率为____________.
【答案】
【解析】
【分析】根据题意列表,然后找出两次卡片编号之积为奇数的可能的结果数,然后计算求解即可.
∴ ,
∴ ,
解得 或 ,
故答案为: 或
【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.
16.观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“ ”的个数是____________.
【答案】49
【解析】
2014年全国各地中考数学真题分类解析汇编(40)方案设计

方案设计一、选择题二.填空题三.解答题1.(2014•浙江宁波,第26题14分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.度.则选择最小跨度,取其,即为半径.由)=.,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.点评:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.2. (2014•湘潭,第21题)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.3. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,4.(2014•济宁,第20题8分)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
方案设计 单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明 一、填空题
1. 〔2021••4分〕现有A、B两个大型储油罐,它们相距2km,方案修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的间隔 都为,输油管道所在直线符合上述要求的设计方案有 4 种. 【分析】根据点A、B的可以在直线的两侧或者异侧两种情形讨论即可; 【解答】解:输油管道所在直线符合上述要求的设计方案有4种,如下图;
故答案为4. 【点评】此题考察整体﹣应用与设计,解题的关键是理解题意,灵敏运用所学知识解决问题,属于中考常考题型.
二、解答题 (要求同上一) 1. 〔2021··10分〕 某游泳馆每年夏季推出两种游泳付费方式.方式一:先购置会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购置会员证,每次游泳付费9元. 设小明方案今年夏季游泳次数为〔为正整数〕. 〔Ⅰ〕根据题意,填写上下表: 单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
游泳次数 10 15 20 … 方式一的总费用〔元〕 150 175 … 方式二的总费用〔元〕 90 135 …
〔Ⅱ〕假设小明方案今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比拟多? 〔Ⅲ〕当时,小明选择哪种付费方式更合算?并说明理由. 【答案】〔Ⅰ〕200,,180,.〔Ⅱ〕小明选择方式一游泳次数比拟多. 〔Ⅲ〕当时,有,小明选择方式二更合算;当时,有,小明选择方式一更合算. 【解析】分析:〔Ⅰ〕根据题意得两种付费方式 ,进展填表即可; 〔Ⅱ〕根据〔1〕知两种方式的关系,列出方程求解即可; 〔Ⅲ〕当时,作差比拟即可得解. 详解:〔Ⅰ〕200,,180,. 〔Ⅱ〕方式一:,解得. 方式二:,解得. ∵, ∴小明选择方式一游泳次数比拟多. 〔Ⅲ〕设方式一与方式二的总费用的差为元. 那么,即. 当时,即,得. ∴当时,小明选择这两种方式一样合算. ∵, ∴随的增大而减小. ∴当时,有,小明选择方式二更合算; 当时,有,小明选择方式一更合算. 单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
点睛:此题考察一次函数的应用,解答此题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
2.〔2021••10分〕某为改善办学条件,方案采购A、B两种型号的空调,采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元. 〔1〕求A型空调和B型空调每台各需多少元; 〔2〕假设方案采购A、B两种型号空调一共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校一共有哪几种采购方案? 〔3〕在〔2〕的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元? 【分析】〔1〕根据题意可以列出相应的方程组,从而可以解答此题; 〔2〕根据题意可以列出相应的不等式组,从而可以求得有几种采购方案; 〔3〕根据题意和〔2〕中的结果,可以解答此题. 【解答】解:〔1〕设A型空调和B型空调每台各需x元、y元,
,解得,, 答:A型空调和B型空调每台各需9000元、6000元; 〔2〕设购置A型空调a台,那么购置B型空调〔30﹣a〕台, ,
解得,10≤a≤12, ∴a=10、11、12,一共有三种采购方案, 方案一:采购A型空调10台,B型空调20台, 方案二:采购A型空调11台,B型空调19台, 方案三:采购A型空调12台,B型空调18台; 〔3〕设总费用为w元, 单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
w=9000a+6000〔30﹣a〕=3000a+180000, ∴当a=10时,w获得最小值,此时w=210000, 即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元. 【点评】此题考察一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答此题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答. 3.〔2021··12分〕友谊商店A型号笔记本电脑的售价是a元/台,最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案,方案一:每台按售价的九折销售,方案二:假设购置不超过5台,每台按售价销售,假设超过5台,超过的局部每台按售价的八折销售,某公司一次性从友谊商店购置A型号笔记本电脑x台。 〔1〕当x=8时,应选择哪种方案,该公司购置费用最少?最少费用是多少元? 〔2〕假设该公司采用方案二方案更合算,求x的范围。 【答案】〔1〕解:∵x=8, ∴方案一的费用是:0.9ax=×8=, 方案二的费用是:5a+〔x-5〕=5a+〔8-5〕= ∵a>0, ∴< ∴方案一费用最少, 答:应选择方案一,最少费用是元. 〔2〕解:设方案一,二的费用分别为W1 , W2 , 由题意可得:W1〔x为正整数〕, 当0≤x≤5时,W2=ax〔x为正整数〕, 当x>5时,W2=5a+〔x-5〕×=0.8ax+a〔x为正整数〕,
∴ ,其中x为正整数, 由题意可得,W1>W2 , 单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
∵当0≤x≤5时,W2=ax>W1 , 不符合题意, ∴0.8ax+a<, 解得x>10且x为正整数, 即该公司采用方案二购置更合算,x的取值范围为x>10且x为正整数。 【考点】一元一次不等式的应用,一次函数的实际应用,根据实际问题列一次函数表达式 【解析】【分析】〔1〕根据题意,分别得出方案一的费用是:,方案二的费用是:5a+〔x-5〕,再将x=8代入即可得出方案一费用最少以及最少费用. 〔2〕设方案一,二的费用分别为W1 , W2 , 根据题意,分别得出W1〔x为正整数〕,
,其中x为正整数,再由W1>W2 , 分情况解不等式即可得出x的取值范围.
4.〔2021··8分〕用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购置A、B型钢板一共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购置A型钢板x块〔x为整数〕 〔1〕求A、B型钢板的购置方案一共有多少种? 〔2〕出售C型钢板每块利润为100元,D型钢板每块利润为120元.假设童威将C、D型钢板全部出售,请你设计获利最大的购置方案. 【分析】〔1〕根据“C型钢板不少于120块,D型钢板不少于250块〞建立不等式组,即可得出结论; 〔2〕先建立总利润和x的关系,即可得出结论. 【解答】解:设购置A型钢板x块,那么购置B型钢板〔100﹣x〕块,
根据题意得,, 解得,20≤x≤25, 单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明
∵x为整数, ∴x=20,21,22,23,24,25一共6种方案, 即:A、B型钢板的购置方案一共有6种;
〔2〕设总利润为w,根据题意得, w=100〔2x+100﹣x〕+120〔x+300﹣3x〕=100x+10000﹣240x+36000=﹣14x+46000, ∵﹣14<0, ∴当x=20时,wmax=﹣14×20+46000=45740元, 即:购置A型钢板20块,B型钢板80块时,获得的利润最大. 【点评】此题主要考察了二元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.
5.〔2021··11分〕为落实“绿水青山就是金山银山〞的开展理念,某政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元. 〔1〕分别求每台A型,B型挖掘机一小时挖土多少立方米? 〔2〕假设不同数量的A型和B型挖掘机一共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元? 【分析】〔1〕根据题意列出方程组即可; 〔2〕利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用. 【解答】解:〔1〕设每台A型,B型挖据机一小时分别挖土x立方米和y立方米,根据题意得