数学名家之“代数学之父”─丢番图和“数学之父”─塞乐斯-(Thales)

数学名家之“代数学之父”─丢番图和“数学之父”─塞乐斯-(Thales)
数学名家之“代数学之父”─丢番图和“数学之父”─塞乐斯-(Thales)

“代数学之父”--丢番图

目前,初中数学主要分成代数与几何两大部分,其中代数学的最大特点是引入了未知数,建立方程,对未知数加以运算.而最早提出这一思想并加以举例论述的,是古代数学名著《算术》一书,其作者是古希腊后期数学家丢番图.这部著作原有13卷.1464年,在威尼斯发现了前6卷希腊文抄本,最近又在马什哈德(伊朗东北部)发现了4卷阿拉伯文译本.

在丢番图时代的古希腊,学者们的兴趣中心在几何,他们认为只有经过推理论证的命题才是可靠的.为了逻辑的严密性,一切代数问题,甚至简单的一次方程的求解,也都纳入了几何的模式之中,而丢番图把代数解放了出来.但是由于这一思想远远超出了同时代人的理解力而不为同时代人所接受,很快就湮没了,因此没有对当时数学的发展产生太大的影响.直到15世纪《算术》被重新发掘,鼓舞了一大批数学家在此基础之上把代数学大大向前推进了.其中最著名的当属费马(17世纪),他手持一本《算术》,并在其空白处写写画画,写下了费马大定理(直到20世纪90年代才被证明),把数论引上了近代的轨道.对于丢番图的生平事迹,人们知道得很少.但在一本《希腊诗文选》(公元500年前后,大部分由语法学家梅特罗多勒斯编写)中,收录了丢番图的墓志铭:“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研

究去弥补,又过四年,他也走完了人生的旅途.”

墓志铭的意思是:丢番图的一生,幼年时代占1/6,青少年时代占1/12,又过了其一生的1/7才结婚,5年后生了儿子,但很遗憾他的儿子比他还早4年去世,寿命只有他的一半.有兴趣的同学可以列方程算算丢番图到底活了多少岁.

(答案:丢番图享年84岁.)

数学之父─塞乐斯 (Thales)

塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法

教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。

在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,主要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理:

1.圆被任一直径二等分。

2.等腰三角形的两底角相等。

3.两条直线相交,对顶角相等。

4.半圆的内接三角形,一定是直角三角形。

5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。

这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。

塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。

塞乐斯的墓碑上列有这样一段题辞:"这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。"

俄罗斯教材《代数引论》的启迪

俄罗斯教材《代数学引论》的启迪(初稿) 庄瓦金 (漳州师范学院,福建,363000) 二十年前,北京大学三位教授根据1982年斯普林格出版社的英文版翻译了莫斯科大学A.И.柯斯特利金院士的《代数学引论》[1,2],使得国内同行们对俄罗斯高水平的代数教材有所认识。但鉴于中国国情,至今还没看到该书对中国大学本科代数教学有实质的影响。而今,在中国数学会、中国工业与应用数学学会、国家自然科学基金委员会的关注下,数学天元基金资助、高等教育出版社出版了庆祝莫斯科大学成立250周年而推出的一批优秀数学教材的中译本,其中有 A.И.柯斯特利金的《代数学引论》(第二、三版)三卷本[3~5](以下简称《引论》)。笔者看后,很受启发,现根据这几年来对高等代数研究的基础[17~23],对《引论》作些思索,为提升中国大学本科代数教学水平奉献余力。 一《引论》的特色 稍读[3~5],笔者认为,A.И.柯斯特利金之著有以下四大特色。 1 继承性 [1]的英文版译者指出:A.И.柯斯特利金“发展了莫斯科大学的代数课”,这从《引论》著者经历就可以看出。A.И.柯斯特利金1959年获莫斯科大学数理科学博士学位,1972年任莫斯科大学高等代数教研室主任,1976年升为教授,同年当选为苏联科学院通讯院士,1977-1980任莫斯科大学数学系主任,1991年起为莫斯科大学学术委员会成员,他的《引论》理所当然地继承了А.Г.库洛什等老一辈代数学家的代数教材,这还从[3~5]的补充文献也得到进一步证实。 在注意《引论》继承自己前辈工作之时,我们注意到《引论》三卷本与N.Jacobson的《抽象代数学》三卷本[6]在分卷上的相似性,这也多少说明[3~5]继承了国际上代数教材的遗产,使得这三卷本能够更好地贯串一条主线。因此,《引论》的继承性不仅是莫斯科大学的,而且也包涵了全世界各著名大学的。 值得一提的是,[3~5]的俄文版,第二卷2004年出版,第三卷2001年出版,估计第一卷也是2001年出版,也就是说:这三卷本是在著者去世之后出版的。记得Φ.Ρ.甘特马赫尔的《矩阵论》俄文第二版也是在著者去世后出版的。看来,这里说的继承性是莫斯科学派集体继承性,这是多么伟大的继承性,它体现了俄罗斯数学家的优良品格。 2 整体性 《引论》的特色不仅在于教材的系统性,更在于教材的整体性。首先是代数科学的整体性,中国的高等代数与抽象代数两门课程,在[3~5]中则整合为一,使整个代数教材的水平提高了一个层次,让学生尽早接触抽象代数思想,推进了学生对代数结构的理解。这显然对于学生的整个数学学习大有好处。其次是数学课程的整体性,《引论》第一卷的前言一开头就写到:“人们很早就感到有必要把代数、线性代数和几何放到一个统一的教程中。而教科书《代数学引论》自出版后的22年来可以看作是这种统一处理的初步考试。”因此,《引论》突出了代数与几何的统一;同时也注意了与分析的联系,特别是注意到了线性代数的两大后继课程:计算数学与泛函分析,这不仅在教材中有交代,而且在基本术语上相一致,如“线性变换”称为“线性算子”。再次是数学语言的整体性,在[1]中,著者就注

数学史

五上: 早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古 代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际 问题的史料。一直到三百年前,法国的数学家笛卡儿第一个提倡用x、y、 z 等字母代表未知数,才形成了现在的方程。 大约在两千年前,我国数学名著《九章算术》中的“方田章”就论 述了平面图形面积的算法。书中说:“方田术曰,广从步数相乘得积步。” 其中“方田”是指长方形田地,“广”和“从”是指长和宽,也就是说: 长方形面积= 长×宽。还说:“圭田术曰,半广以乘正从。”就是说: 三角形面积= 底×高÷2。 我国古代数学家刘徽利用出入相补原理来计算平面图形的面积。出入 相补原理就是把一个图形经过分割、移补,而面积保持不变,来计算出 它的面积。如下图所示,它们显示了平面图形的转化。 五下: 1、6 的因数有1、 2、 3、6,这几个因数的关系是:1+2+3=6。 像6 这样的数,叫做完全数(也叫做完美数)。 28 也是完全数,而8 则不是,因为1+2+4 ≠8。完全数非常稀少, 到2004 年,人们在无穷无尽的自然数里,一共找出了40 个完全数, 其中较小的有6、28、496、8128 等。 2、为什么判断一个数是不是2 或5 的倍数,只要看个位数?为什么 判断一个数是不是3 的倍数,要看各位上数的和? 24 = 20 +() 2485= 2480 +() 20、2480 都是2 或5 的倍 数,所以一个数是不是2 或5 的倍数,只要看? 24 = 2×10+4= 2×(9+1)+4= 2×9+(2)+(4) 2485= 2×1000+4×100+8×10+5 = 2×(999+1)+4×(99+1)+8×(9+1)+5 = 2×999+4×99+8×9+()+()+()+() 3、哥德巴赫猜想从上面的游戏我们看到:4=2+2,6=3+3,8=5+3,10=7+3,

代数学引论(聂灵沼_丁石孙版)第一章习题答案(可编辑修改word版)

第一章代数基本概念 1.如果群 G 中,对任意元素 a,b 有(ab)2=a2b2,则 G 为交换群. 证明: 对任意 a,bG,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群 G 为交换群. 2.如果群 G 中,每个元素 a 都适合 a2=e, 则 G 为交换群. 证明: [方法 1] 对任意 a,bG, ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此 G 为交换群. [方法 2] 对任意 a,bG, a2b2=e=(ab)2, 由上一题的结论可知 G 为交换群. 3.设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合条件: (1)a(bc)=(ab)c; (2)由 ab=ac 推出 a=c; 1

(3)由 ac=bc 推出 a=b; 证明 G 在该乘法下成一群. 证明:[方法 1] 设 G={a1,a2,…,a n},k 是1,2,…,n中某一个数字,由(2)可知若ij(I,j=1,2,…,n),有 再由乘法的封闭性可知a k a i a k a j<1> a i a k a j a k<2> G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n} <3> G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k} <4> 由<1>和<3>知对任意 a t G, 存在 a m G,使得 a k a m=a t. 由<2>和<4>知对任意 a t G, 存在 a s G,使得 a s a k=a t. 由下一题的结论可知 G 在该乘法下成一群. 下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。 [方法 2] 为了证明 G 在给定的乘法运算下成一群,只要证明 G 内存在幺元(单位元),并且证明G 内每一个元素都可逆即可. 为了叙述方便可设 G={a1,a2,…,a n}. (Ⅰ) 证明 G 内存在幺元. <1> 存在 a t G,使得 a1a t=a1.(这一点的证明并不难,这里不给证明); <2> 证明 a1a t= a t a1; 因为 2

数学史复习资料

一、单项选择题 1.关于古埃及数学的知识,主要来源于( )。 A.埃及纸草书和苏格兰纸草书 B.兰德纸草书和莫斯科纸草书 C.莫斯科纸草书和希腊纸草书 D. 兰德纸草书和尼罗河纸草书 2.以“万物皆数”为信条的古希腊数学学派是( )。 A.爱奥尼亚学派 B.伊利亚学派 C.诡辩学派 D.毕达哥拉斯学派 3.最早记载勾股定理的我国古代名著是( )。 A.《九章算术》 B.《孙子算经》 C.《周髀算经》 D.《缀术》 4.首先使用符号“0”来表示零的国家或民族是( )。 A.中国 B.印度 C.阿拉伯 D.古希腊 5.欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是( )。 A.斐波那契 B.卡尔丹 C.塔塔利亚 D.费罗 6.对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是( )。 A.伽利略 B.哥白尼 C.开普勒 D.牛顿 7.对古代埃及数学成就的了解主要来源于( ) A.纸草书 B.羊皮书 C.泥版 D.金字塔内的石刻 8.公元前4世纪,数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?( ) A.不可公度数 B.化圆为方 C.倍立方体 D.三等分角 9.《九章算术》中的“阳马”是指一种特殊的( ) A.棱柱 B.棱锥 C.棱台 D.楔形体 10.印度古代数学著作《计算方法纲要》的作者是( ) A.阿耶波多 B.婆罗摩笈多 C.马哈维拉 D.婆什迦罗 11.射影几何产生于文艺复兴时期的( ) A.音乐演奏 B.服装设计 C.雕刻艺术 D.绘画艺术 12.微分符号“d”、积分符号“”的首先使用者是( ) A.牛顿 B.莱布尼茨 C.开普勒 D.卡瓦列里 13.作为“非欧几何”理论建立者之一的年轻数学家波尔约是( )

小学生经典数学故事几何之父

小学生经典数学故事几何之父查字典数学网为大家整理了小学生经典数学故事几何 之父,希望对大家有所帮助和练习。 我们现在学习的几何学,是由古希腊数学家欧几里得(公元前330-前275)创立的。他在公元前300年编写的《几何原本》,2019多年来都被看作学习几何的标准课本,所以我们称欧几里得为几何之父。 欧几里得生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。 我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文 水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来

就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里得汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。这本书是历史上曾经出现过的最成功的教科书。它刚一问世就取代了所有以前的教科书,从此以后一直使用了2019多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其

数学史资料

§5.2阿拉伯数学 5.2.1阿拉伯文明概况 阿拉伯国家指以阿拉伯民族为主体的国家,大多分布在亚洲西部和北非一带,一般使用阿拉伯语,信奉伊斯兰教。然而“阿拉伯数学”并非指阿拉伯国家的数学,而是指8-15世纪阿拉伯帝国统治下的中亚西亚地区的数学,是穆斯林、希腊人、波斯人和基督徒等所写的阿拉伯文数学著作。 穆斯林在默罕莫得(mohammed)的鼓舞下,在默罕莫得死后(632)不到半个世纪的时间内征服了从印度到西班牙,乃至北非和南意大利的大片土地,到7世纪初,阿拉伯半岛基本统一。661年,叙利亚总督摩阿维亚(muawiyah)被选为哈里发后改为世袭制,开始了倭马亚王朝(umayyads, 661-750).755年阿拉伯帝国分裂为两个独立王国。750年阿布尔·阿拔斯(abū'l-abbās,722-754)推翻倭马亚王朝,建立了东部王国阿拔斯王朝,762年迁都巴格达。756年,逃亡到西班牙的倭马亚王朝后裔阿卜杜·拉曼(abdal-rahmān) 宣告建立西部阿拉伯王国,定首都西班牙的哥尔多华。909年,伊斯兰什叶派脱离巴格达,在北非突尼斯建立一个新的哈里发国家,973年迁都埃及开罗。 11世纪开始,阿拉伯帝国受到外民族的侵略,11世纪初东亚突厥人一支的塞尔柱(seljuk)人入侵阿拉伯,并于1055年在巴格达建立素丹政权;1097年十字军东征,开始了基督教欧洲对穆斯林亚洲的征服;1258年,蒙古人旭烈兀(1219-1265)占领巴格达,建立伊儿汗国,从此阿拉伯帝国灭亡。 在世界文明史上,阿拉伯人在保存和传播希腊、印度甚至中国的文化,最终为近代欧洲的文艺复兴准备学术前提方面作出了巨大贡献。阿拉伯建国后,东西两个帝国的哈里发都十分重视科学与艺术事业,他们曾经从拜占庭帝国收买过大量希腊人手稿,他们还延请各地科学家到他们的首都从事科学研究,巴格达成为当时的科学文化中心与商业中心,那里设有学院、图书馆、天文台等科学机构。6世纪柏拉图学院被罗马王封闭后,很多希腊学者转入波斯,这样具有希腊学术传统的波斯文化后来成为阿拉伯文化的一部分。埃及的亚历山大里亚城曾是希腊的学术中心,被阿拉伯征服后,也成为留给阿拉伯人的重要文化遗产,而且叙利亚学派所在的安提阿、大马士革与基督教景教派所在地以得撒,都在阿拉伯帝国的统治下。这样阿拉伯获得印度、希腊、近东等多地区的文化,大多来源于希腊人的手稿或叙利亚与希伯来文译本。今天的研究表明,中国的文化也曾直接流入阿拉伯,或通过印度间接传播阿拉伯世界。 在曼苏尔哈里发时期,婆罗摩笈多等印度天算家的著作在766年左右传入巴格达,并译成阿拉伯文,8世纪末到9世纪初的兰希哈里发时期,包括《几何原本》和《大汇编》在内的希腊天文数学经典先后都被译成阿拉伯文字。9世纪最著名翻译家,阿拉伯学者伊本·科拉(Tabit ibn Qorra,836-901)翻译了欧几里得、阿波罗尼乌斯、阿基米德、托勒玫、狄奥多修斯等人的著作。到10世纪丢番图、海伦等人著作也被译成阿拉伯文。

代数学引论第一章答案

1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群. 证明: 对任意a,b错误!未找到引用源。G,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群G为交换群. 2.如果群G中,每个元素a都适合a2=e, 则G为交换群. 证明: [方法1] 对任意a,b错误!未找到引用源。G, ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群. [方法2] 对任意a,b错误!未找到引用源。G, a2b2=e=(ab)2, 由上一题的结论可知G为交换群. 3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件: (1)a(bc)=(ab)c; (2)由ab=ac推出b=c; (3)由ac=bc推出a=b; 证明G在该乘法下成一群. 证明:[方法1] 设G={a 1,a 2 ,…,a n },k是1,2,…,n中某一个数字,由(2)可知若i错误!未找到引用源。j(I,j=1,2,…,n),有 a k a i 错误!未找到引用源。a k a j ------------<1> a i a k 错误!未找到引用源。a j a k ------------<2> 再由乘法的封闭性可知 G={a 1,a 2 ,…,a n }={a k a 1 , a k a 2 ,…, a k a n }------------<3> G={a 1,a 2 ,…,a n }={a 1 a k , a 2 a k ,…, a n a k }------------<4> 由<1>和<3>知对任意a t 错误!未找到引用源。G, 存在a m 错误!未找到引用源。G,使得 a k a m =a t . 由<2>和<4>知对任意a t 错误!未找到引用源。G, 存在a s 错误!未找到引用源。G,使得 a s a k =a t . 由下一题的结论可知G在该乘法下成一群.

代数学引论(丁石孙)_第一章答案

代数学基础学习笔记
第一章 代数基本概念
习题解答与提示(P54)
1. 如果群 G 中,对任意元素 a,b 有(ab)2=a2b2,则 G 为交换群. 证明:
对任意 a,b G,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b
再由已知条件以及消去律得到 ba=ab,
由此可见群 G 为交换群.
2. 如果群 G 中,每个元素 a 都适合 a2=e, 则 G 为交换群. 证明: [方法 1]
对任意 a,b G, ba=bae=ba(ab)2=ba(ab)(ab)
=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此 G 为交换群. [方法 2]
对任意 a,b G, a2b2=e=(ab)2,
由上一题的结论可知 G 为交换群.
3. 设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合条件: (1) a(bc)=(ab)c; (2) 由 ab=ac 推出 b=c; (3) 由 ac=bc 推出 a=b;
证明 G 在该乘法下成一群. 证明:[方法 1]
设 G={a1,a2,…,an},k 是 1,2,…,n 中某一个数字,由(2)可知若 i j(I,j=1,2,…,n),有 akai ak aj------------<1> aiak aj ak------------<2>
再由乘法的封闭性可知 G={a1,a2,…,an}={aka1, aka2,…, akan}------------<3>
1

2018年数学家的故事:数学之父---泰勒斯

数学之父—泰勒斯 泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。 泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。 在泰勒斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而泰勒斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,主要是一些由经验中总结出来的计算公式。泰勒斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,泰勒斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以泰勒斯素有数学之父的尊称,原因就在这里。 泰勒斯最先证明了如下的定理: 1.圆被任一直径二等分。 2.等腰三角形的两底角相等。 3.两条直线相交,对顶角相等。 4.半圆的内接三角形,一定是直角三角形。 5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。 泰勒斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,泰勒斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,泰勒斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前泰勒斯曾对Delians预言此事。泰勒斯的墓碑上列有这样一段题辞:「这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。」

数学史

①宋元四大家:杨辉、秦九韶、李冶、朱世杰 ②欧拉:《无限小分析引论》、《微分学》、《积分学》。 ③莱布尼茨:微分学论文《一种求极大与极小值和求切线的新方法》,简称《新方法》; 积分学论文《深奥的几何与不可分量及无限的分析》 ④克莱因:《爱尔朗根纲领》:所谓几何学,就是研究几何图形对于某类变换群保持不变 的性质的学问,或者说任何一种的集合学只是研究与特定的变换群有关的不变量。 ⑤微积分的形成、发展和完善:形成:牛顿主要著作《运用无限多项方程的分析》、《流 线法与无穷级数》、《曲线求积分》、《流线简论》;莱布尼茨主要著作:《新方法》、《深奥的几何与不可分量及无限的分析》;发展:欧拉著作:《无限小分析引论》、《微分学》、《积分学》;完善(严格化):柯西发表《分析教程》、《无限小计算教程概论》,魏尔斯特拉斯关于分析严格化的贡献使他获得了“现代分析之父”的称号,这种严格化的突出表现是创造了一套()语言,用以重建分析体系;它们以严格化为目标,对微积分的基本概念,如变量、函数、极限、连续性、导数微分、收敛积分等给出了明确的定义,并在此基础上重建和拓展了微积分的重要事实与定理。 ⑥数学三次危机:1、无理数的发现 2、无穷小是零吗? 3、悖论的产生 ⑦哥德巴赫的猜想:他的假设相当于:每个偶数是两个素数之和,每个奇数是三个素数 之和。这就是著名的哥德巴赫猜想,用语言来叙述,分两部分内容,第一部分叫奇数的猜想,第二部分叫偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数之和;偶数的猜想指出,任何一个大于等于4的偶数都是两个素数之和。 ⑧《九章算术》包括哪些内容:一:算术方面. 分数四则运算法则、比例算法、盈不足 术。二:代数方面. 方程术、正负术、开方术。三:几何方面. 面积计算、体积计算、勾股定理。 ⑨数学发展中心的迁移:公元前600年---公元前后:古希腊。公元前后---公元14世纪: 中国、印度、阿拉伯。15世纪---17世纪,意大利、法国。17世纪---18世纪:英国。 18世纪---19世纪前半:法国、德国。19世纪后半---20世纪30年代:德国、法国。

数学名著

数学名著 《几何原本》 《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的。 公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料。希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识系统。首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充。到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础。 欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。 《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的。《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识。 第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。该卷的最后两个命题是毕达哥拉斯定理及其逆定理。这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的。”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了。 第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学。 第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理。这些定理大多都能在现在的中学数学课本中找到。第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题。 第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一。据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容。他说,这种高明的方法使他兴奋无比,以致于从病痛

数学之父名人故事

数学之父名人故事 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大家。他原是一位很精明的,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问习题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的算出了金字塔的高度,使古埃及阿美西斯钦羡不已。 塞乐斯的方法既巧妙又:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。 在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,

王要是一些由经验中总结归纳出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问习题里可能是正确的,用在另一个问习题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问习题。在人类文化开展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学开展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理: 1.圆被任一直径二等分。 2.等腰三角形的两底角相等。 3.两条直线相交,对顶角相等。 4.半圆的内接三角形,一定是直角三角形。 5.假如两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的。 塞乐斯对古希腊的和天文学,也作出过开拓性的奉献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians 预言此事。

人物简介 代数学之父 韦达

人物简介: 代数学之父——韦达 韦达(F ? Viete,Francois,1540~1603),法国数学家。 韦达1540年出生于法国普瓦图地区的一个律师家庭,早年在家乡接受初等教育,后来考入普瓦杰大学学习法律。20岁时,他大学毕业了,理所当然地继承父业,成为一名律师。但过了4年之后,他便辞掉律师职务,去给别人做了一段时间的秘书和家庭教师。直到1573年,韦达才又重操旧业,出任法国某地方法院律师,后来在政治上几经波折,于1589年被亨利三世任命为法国最高法院律师。1595年~1598年,法国和西班牙发生战争,韦达效力于亨利四世,为法国军队翻译截获的军事密码,立下汗马功劳。但政治生涯多变化,在韦达去世前一年,他被亨利四世免去了职务,韦达的一生可谓波折起伏。但就是在这样一种环境下,他始终将数学作为业余爱好,在工作之余坚持数学研究,并自费印刷和发行自己的数学着作,最终取得了许多创造性的成就,充分体现了一个数学家对数学事业的热爱和执着追求。 韦达在数学上的研究领域主要包括方程理论、符号代数、三角学及几何学等,在每一个领域他都做了一些有意义的工作。 符号代数与方程理论 数学中代数与算术的区别在于代数引入了未知量,用字母等符号表示未知量的值进行运算,而算术则是以具体的数进行运算。1591年,韦达出版了他最重要的代数学着作《分析方法入门》,这是最早的符号代数专着。在书中,韦达引入字母表示未知量,并使之系统化,使得代数成为研究一般的类和方程的学问,为代数学的进一步发展奠定了基础。为此,韦达被后人称为“代数学之父”。 在研究方程的一般解法的过程中,韦达试图创立一种一般的符号代数来代替原来的每一问题各有一种特殊解法的情形。他引人字母来表示量,用辅音字母B,C,D等表示已知量,用元音字母A表示未知量,并将这种代数称为“类的运算”以区别于原来的“数的运算”。同时,韦达还规定了“类”的 运算法则(与数的运算法则相同)。以此为起点,韦达对代数方程理论进行了较为系统的研究。 韦达这样给出了方程的定义:一个方程是一个未知量和一个确定量的比较。他将方程作了一定的分类,给出了饵方程的基本步骤和方法。 1615年,韦达的生前好友将韦达早在1591年完成的《论方程的识别与订正》一书整理出版。书中研究了几类高次方程的解法,并得到了一般二次方程的求根公式,更为重要的是,韦达在书中提出了着名的韦达定理,即方程根与系数的关系式。他清楚地论述了对于二次方程,若第二项的系数是两数的和的相反数,第三项的系数是这两数的乘积,那么这两个数就是此方程的根。这在我们的中学代数中是一个很重要的定理,想来同学们对此肯定不会太陌生吧! 几何学上的贡献 韦达充分发挥自己在代数研究上的优势,用代数方法研究解决了一些几何问

近代西欧各国的数学史

是从18世纪,由J.蒙蒂克拉、C.博絮埃、A.C.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。 通史研究 古希腊数学史 古埃及和巴比伦数学史 断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于(J.-)H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。” 历代数学家的传记 以及他们的全集与《选集》的整理和出版这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。

专业性学术杂志

古代 现当代 介绍 <<;九章算术>>;是中国现存的一部最古老的数学书。作者不详。初步考证,大约成书于东汉初期。此书采用问题集的形式,搜集了二百四十六道与生产实践相联系的应用问题及其解法,依照问题的性质和解法,分别隶属於方田,栗米,衰分,少广,商功,均输,盈不足,方程及句股九章。 随着社会的发展,社会生产力的逐渐提高,从而促进了数学的发展。<<;九章算术>>;就是记载了古代劳动人民在生产实践中总结出来的数学知识。它不但开拓了中国数学的发展道路,在世界数学发展中也占有及其重要的地位。 《九章算术》的历史 魏,晋时代,刘徽对<<;九章算术>>;作过注解(以下简称为刘注)。唐初,李淳风(?-714)也作过注解(以下简称为李注)。有刘,李注文的<<;九章算术>>;,在宋代有北宋元丰年间的刻本,南宋嘉定年间的刻本。清初,这两种刻本都逐次散失。流传到今的只有上海图书馆保存的南宋残本和故宫博物院所藏这残本的抄本。 清代,戴震(1724-1777)对於由<<;永乐大典>>;抄录出来的<<;九章算术>>;作过校订(以下简称为戴校本)之后,便依次刊刻成四库馆本,武英殿本以及微波榭本。后来还有万有文库本,丛书集成本和四部丛刊本等。为了恢复隋,唐时期的<<;九章算术>>;,一九六三年中华书局出版了天算史专家钱宝琮(1892-1974)校点的<<;算经十书>>;本。 刘徽除注解<<;九章算术>>;外,还编著<<;海岛算经>>;一书。由於资料所限,其籍贯身世,生卒年月则无可详考。只能根据不多的一些记载断定他是魏,晋时代淄乡(今山东临淄或淄川一带)人。 刘徽在<<;九章算术>>;注解中,“析理以辞,解体用图”,不但给出明确的概念,导出正确的理论,而且还有很多创造发明。从而取得了不可磨灭的功绩。可以看出,刘徽在数学

人物简介代数学之父韦达

人物简介代数学之父韦达 The document was prepared on January 2, 2021

人物简介: 代数学之父——韦达 韦达(F Viete,Francois,1540~1603),法国数学家。 韦达1540年出生于法国普瓦图地区的一个律师家庭,早年在家乡接受初等教育,后来考入普瓦杰大学学习法律。20岁时,他大学毕业了,理所当然地继承父业,成为一名律师。但过了4年之后,他便辞掉律师职务,去给别人做了一段时间的秘书和家庭教师。直到1573年,韦达才又重操旧业,出任法国某地方法院律师,后来在政治上几经波折,于1589年被亨利三世任命为法国最高法院律师。1595年~1598年,法国和西班牙发生战争,韦达效力于亨利四世,为法国军队翻译截获的军事密码,立下汗马功劳。但政治生涯多变化,在韦达去世前一年,他被亨利四世免去了职务,韦达的一生可谓波折起伏。但就是在这样一种环境下,他始终将数学作为业余爱好,在工作之余坚持数学研究,并自费印刷和发行自己的数学着作,最终取得了许多创造性的成就,充分体现了一个数学家对数学事业的热爱和执着追求。 韦达在数学上的研究领域主要包括方程理论、符号代数、三角学及几何学等,在每一个领域他都做了一些有意义的工作。 符号代数与方程理论 数学中代数与算术的区别在于代数引入了未知量,用字母等符号表示未知量的值进行运算,而算术则是以具体的数进行运算。1591年,韦达出版了他最重要的代数学着作《分析方法入门》,这是最早的符号代数专着。在书中,韦达引入字母表示未知量,并使之系统化,使得代数成为研究一般的类和方程的学问,为代数学的进一步发展奠定了基础。为此,韦达被后人称为“代数学之父”。 在研究方程的一般解法的过程中,韦达试图创立一种一般的符号代数来代替原来的每一问题各有一种特殊解法的情形。他引人字母来表示量,用辅音字母B,C,D等表示已知量,用元音字母A表示未知量,并将这种代数称为“类的运算”以区别于原来的“数的运算”。同时,韦达还规定了“类”的 运算法则(与数的运算法则相同)。以此为起点,韦达对代数方程理论进行了较为系统的研究。 韦达这样给出了方程的定义:一个方程是一个未知量和一个确定量的比较。他将方程作了一定的分类,给出了饵方程的基本步骤和方法。 1615年,韦达的生前好友将韦达早在1591年完成的《论方程的识别与订正》一书整理出版。书中研究了几类高次方程的解法,并得到了一般二次方程的求根公式,更为重要的是,韦达在书中提出了着名的韦达定理,即方程根与系数的关系式。他清楚地论述了对于二次方程,若第二项的系数是两数的和的相反数,第三项的系数是这两数的乘积,那么这两个数就是此方程的根。这在我们的中学代数中是一个很重要的定理,想来同学们对此肯定不会太陌生吧! 几何学上的贡献

代数学之父

“ 代数学之父”——韦达 一、生平简介 韦达(viete 或vieta ,Fran c ois l540—1603.2.23)是法国数学家。出生于法国东部地区的普瓦图(Poitou),是十六世纪最有影响的数学家之一,被尊称为“代数学之父”。他是第一个引进系统的代数符号,并对方程论做了改进的数学家。由于韦达做出了许多重要贡献,成为十六世纪法国最杰出的数学家之一。 韦达1560年就读于法国普瓦图大学,是大学法律系的毕业生。毕业后长期从事法律工作,出任过地方法院律师,法国行政法院检察官,皇室律师,法国最高法院律师等。后从事政治活动,当过议会的议员。他对数学有着浓厚的兴趣,他把他的业余时间用于学习与研究数学。韦达系统地钻研过卡尔达诺、蒂文、塔尔塔利亚、邦贝利和丢番图的著作。为了使自己研究成果及时公诸于世,他自筹资金出版发行。他的数学研究工作为近代代数学的发展奠定了基础,被称为16世纪最伟大的代数学家。在法兰西与西班牙的战争中,他成功地破译了一份西班牙的数百字的密码,为法国打败西班牙提供了重要情报。韦达致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。 韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》。韦达第一个有意识地、系统地使用数学符号的人,他不仅用字母表示已知量、未知量及其乘幂,而且用来表示一般的系数。他把符号代数称为类的算术,从而划定了代数与算术的分界。 韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。 二、主要数学成就 1、《应用于三角形的数学定律》 1579年发表的《数学定律;应用于三角形》(Canonmathermaticus seuad triangula)一书,系统地叙述了用所有6种三角函数解平面和球面三角形。该书提出了正切定理: )2()2( B A tg B A tg b a b a +-=+-

代数学引论(聂灵沼-丁石孙版)第一章习题答案

代数学引论(聂灵沼-丁石孙版)第一章习题答案

第一章代数基本概念 1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群. 证明: 对任意a,bG,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群G为交换群. 2.如果群G中,每个元素a都适合a2=e, 则G为交换群. 证明: [方法1] 对任意a,bG, ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab

再由乘法的封闭性可知 G={a 1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3> G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4> 由<1>和<3>知对任意a t G, 存在a m G,使得 a k a m=a t. 由<2>和<4>知对任意a t G, 存在a s G,使得 a s a k=a t. 由下一题的结论可知G在该乘法下成一群. 下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。 [方法2] 为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.

为了叙述方便可设G={a1,a2,…,a n}. (Ⅰ) 证明G内存在幺元. <1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明); <2> 证明a1a t= a t a1; 因为 a1(a t a1)a t=(a1a t) (a1a t)=(a1)2 a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2, 故此 a1(a t a1)a t= a1(a1a t)a t. 由条件(1),(2)可得到 a1a t= a t a1. <3> 证明a t就是G的幺元; 对任意a k G, a1(a t a k) =(a1a t)a k=a1a k 由条件(2)可知 a t a k=a k.

数学史整理资料

李文林认为数学史的研究具有三重目的: 一是历史的目的,即恢复历史本来的面目; 二是数学的目的,即古为今用,为现实的数学研究与自主创新提供历史借鉴; 三是教育的目的,即在数学教学中利用数学史, 作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。 《周脾算经》:天文学和数学的著作 《九章算术》:总结性的数学著作 宋元全盛时期(1000年-14世纪初) 中国数学的全盛时期 《数书九章》:秦九韶 贾宪三角阵(二项展开式系数) 郭守敬的球面三角 朱世杰的四元术(四元高次方程论) 完整的系统和完备的算法 历史学家往往把兴起于埃及、美索不达米亚、中国和印度等地域的古代文明称为“河谷文明”。早期数学就是在尼罗河、底格里斯河与幼发拉底河、黄河与长江、印度河与恒河等河谷地带首先发展起来的。 亚历山大大帝(前356~前323 )是欧洲历史上最伟大的军事天才,马其顿帝国最富盛名的征服者。亚历山大大帝,古代马其顿国王,世界古代史上著名的军事家和政治家 泰勒斯生于公元前624年,是公认的希腊哲学鼻祖。泰勒斯在数学方面的贡献是开始了命题的证明,它标志着人们对客观事物的认识从感性上升到理性,这在数学史上是一个不寻常的飞跃。泰勒斯是演绎几何学的鼻祖,开数学证明之先河, “毕达哥拉斯学派万毕达哥拉斯非常重视数学,企图用数来解释一切。万物皆数”是历史上第一次用数来观察、解释世界的学说。无理数的发现是毕达哥拉斯学派最卓越的功绩,也是整个数学史上一项重大发现。 雅典时期的希腊数学 黄金时代——亚历山大学派成就最大的是亚历山大前期三大数学家欧几里得、阿基米德和阿波罗尼奥斯。欧几里得的《几何原本》是一部划时代的著作。其伟大的历史意义在于它是用公理法建立起演绎体系的最早典范。阿基米德他根据力学原理去探求解决面积和体积问题,已经包含积分学的初步思想。阿波罗尼奥斯的主要贡献是对圆锥曲线的深入研究。 阿基米德“智慧之都”“力学之父”阿基米德原理”(浮力定律) 亚历山大后期,公元前146年以后,在罗马统治下的亚历山大学者仍能继承前人的工作,不断有所发明。海伦(约公元62)、门纳劳斯(约公元100)、帕普斯等人都有重要贡献。天文学家C.托勒密(约85~165)将喜帕恰斯的工作加以整理发挥,奠定了三角学的基础。 海伦,其《量度论》《天文学大成》对三角学的贡献为托勒密在数学史上赢得了稳固地位 晚期的希腊学者在算术和代数方面也颇有建树,代表人物有尼科马霍斯(约公元100)和丢番图(约250)。前者是杰拉什(今约旦北部)地方的人。著有《算术入门》,后者的《算术》是讲数的理论的,而大部分内容可以归入代数的范围。丢番图的《算术》是讲数论的,它讨论了一次、二次以及个别的三次方程,还有大量的不定方程 那个学术自由的时代,开始于一个男人的诞生,结束于一个女人的死亡,那个男人叫毕达哥拉斯,那个女人叫希帕蒂亚。 中国传统数学 汉简《算数书》,是中国最早的一部数学著作。 周髀算经》原名《周髀》,不著作者姓名。它是中国最古的天文学著作,主要阐明“盖天

相关文档
最新文档