三年高考(2017-2019)各地文科数学高考真题分类汇总:递推数列与数列求和

合集下载

三年高考(2017-2019)各地文科数学高考真题分类汇总:推理与证明

三年高考(2017-2019)各地文科数学高考真题分类汇总:推理与证明

推理与证明1.(2019全国II 文5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙2.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >3.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 4.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A .乙可以知道两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩5.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .6.(2017北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________.7.(2018江苏)设*n ∈N ,对1,2,···,n 的一个排列12n i i i L ,如果当s t <时,有s t i i >,则称(,)s t i i 是排列12n i i i L 的一个逆序,排列12n i i i L 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).8*.(2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 9*.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.答案1.解析:由题意,可把三人的预测简写如下:甲:甲>乙. 乙:丙>乙且丙>甲. 丙:丙>乙.因为只有一个人预测正确,如果乙预测正确,则丙预测正确,不符合题意. 如果丙预测正确,假设甲、乙预测不正确, 则有丙>乙,乙>甲,因为乙预测不正确,而丙>乙正确,所以只有丙>甲不正确, 所以甲>丙,这与丙>乙,乙>甲矛盾.不符合题意. 所以只有甲预测正确,乙、丙预测不正确, 甲>乙,乙>丙. 故选A .2.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++,所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .3.D 【解析】解法一 点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a-的直线,当0a ≠时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直,显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D .解法二 若(2,1)A ∈,则21422a a +>⎧⎨-⎩≤,解得32a >,所以当且仅当32a ≤时,(2,1)A ∉.故选D .4.D 【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D . 5.27【解析】所有的正奇数和2n(*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.6.6 12【解析】设男生数,女生数,教师数为,则①84a b >>>,所以max 6b =,②当min 1c =时,21a b >>>,a ,b ∈N ,a ,b 不存在,不符合题意; 当min 2c =时,42a b >>>,a ,b ∈N ,a ,b 不存在,不符合题意; 当min 3c =时,63a b >>>,此时5a =,4b =,满足题意. 所以12a b c ++=.7.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (4)n ≥的情形,逆序数为0的排列只有一个:12n ⋅⋅⋅,所以(0)1n f =. 逆序数为1的排列只能是将排列12n ⋅⋅⋅中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当5n ≥时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, ,,a b c 2,,,c a b c a b c >>>∈N因此,5n ≥时,(2)n f =222n n --.8.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当n 4≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.9.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .。

2017-2019年高考真题数列解答题全集(含详细解析)

2017-2019年高考真题数列解答题全集(含详细解析)

2017-2019年高考真题数列解答题全集(含详细解析)1.(2019•全国)数列{}n a 中,113a =,1120n n n n a a a a +++-=. (1)求{}n a 的通项公式;(2)求满足1223117n n a a a a a a -++⋯+<的n 的最大值. 2.(2019•天津)设{}n a 是等差数列,{}n b 是等比数列,公比大于0.已知113a b ==,23b a =,3243b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足,21,,n n n c b n ⎧⎪=⎨⋅⎪⎩为奇数为偶数求*112222()n n a c a c a c n N ++⋯+∈.3.(2019•浙江)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 4.(2019•新课标Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.5.(2019•天津)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式; ()ii 求2*1()ni i i a c n N =∈∑.6.(2019•北京)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.7.(2019•江苏)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m …时,都有1k k k c b c +剟成立,求m 的最大值.8.(2019•新课标Ⅰ)记n S 为等差数列{}n a 的前n 项和.已知95S a =-. (1)若34a =,求{}n a 的通项公式;(2)若10a >,求使得n n S a …的n 的取值范围.9.(2019•新课标Ⅱ)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.(1)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (2)求{}n a 和{}n b 的通项公式.10.(2019•新课标Ⅱ)已知{}n a 是各项均为正数的等比数列,12a =,32216a a =+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.11.(2019•北京)设{}n a 是等差数列,110a =-,且210a +,38a +,46a +成等比数列. (1)求{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,求n S 的最小值.12.(2019•上海)已知数列{}n a ,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S ;(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.13.(2018•全国)已知数列{}n a 的前n 项和为n S,1a =0n a >,11()2n n n a S S +++=. (1)求n S ; (2)求12231111n n S S S S S S +++⋯++++. 14.(2018•江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设10a =,11b =,2q =,若1||n n a b b -…对1n =,2,3,4均成立,求d 的取值范围; (2)若110a b =>,*m N ∈,(1q ∈,证明:存在d R ∈,使得1||n n a b b -…对2n =,3,⋯,1m +均成立,并求d 的取值范围(用1b ,m ,q 表示).15.(2018•浙江)已知等比数列{}n a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项.数列{}n b 满足11b =,数列1{()}n n n b b a +-的前n 项和为22n n +. (Ⅰ)求q 的值;(Ⅱ)求数列{}n b 的通项公式.16.(2018•天津)设函数123()()()()f x x t x t x t =---,其中1t ,2t ,3t R ∈,且1t ,2t ,3t 是公差为d 的等差数列.(Ⅰ)若20t =,1d =,求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)若3d =,求()f x 的极值;(Ⅲ)若曲线()y f x =与直线2()y x t =---有三个互异的公共点,求d 的取值范围. 17.(2018•上海)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有||1n n b a -…,则称{}n b 与{}n a “接近”. (1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:11a =,22a =,34a =,48a =,{}n b 是一个与{}n a 接近的数列,记集合{|i M x x b ==,1i =,2,3,4},求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b -,32b b -,⋯,201200b b -中至少有100个为正数,求d 的取值范围.18.(2018•天津)设{}n a 是等比数列,公比大于0,其前n 项和为(*)n S n N ∈,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n S 的前n 项和为(*)n T n N ∈, ()i 求n T ;()ii 证明221()22(*)(1)(2)2n nk k k k T b b n N k k n ++=+=-∈+++∑.19.(2018•天津)设{}n a 是等差数列,其前n 项和为(*)n S n N ∈;{}n b 是等比数列,公比大于0,其前n 项和为(*)n T n N ∈.已知11b =,322b b =+,435b a a =+,5462b a a =+. (Ⅰ)求n S 和n T ;(Ⅱ)若12()4n n n n S T T T a b +++⋯⋯+=+,求正整数n 的值. 20.(2018•北京)设{}n a 是等差数列,且12a ln =,2352a a ln +=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求12n a a a e e e ++⋯+.21.(2018•新课标Ⅱ)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.22.(2018•新课标Ⅰ)已知数列{}n a 满足11a =,12(1)n n na n a +=+,设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.23.(2018•新课标Ⅲ)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .24.(2018•上海)若{}n ð是递增数列,数列{}n a 满足:对任意*n N ∈,存在*m N ∈,使得10m nm n a c a c +--…,则称{}n a 是{}n ð的“分隔数列”(1)设2n n =ð,1n a n =+,证明:数列{}n a 是{}n ð的分隔数列;(2)设4n n =-ð,n S 是{}n ð的前n 项和,32n n d c -=,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;(3)设1n n c aq -=,n T 是{}n ð的前n 项和,若数列{}n T 是{}n ð的分隔数列,求实数a ,q 的取值范围.25.(2017•全国)设数列{}n b 的各项都为正数,且11nn n b b b +=+. (1)证明数列1n b ⎧⎫⎨⎬⎩⎭为等差数列;(2)设11b =,求数列1{}n n b b +的前n 项和n S .26.(2017•新课标Ⅱ)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .27.(2017•山东)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=. (Ⅰ)求数列{}n x 的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点11(P x ,1),22(P x ,112)(n n P x ++⋯,1)n +得到折线1P 21n P P +⋯,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T .28.(2017•天津)已知{}n a 为等差数列,前n 项和为*()n S n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列2{}n n a b 的前n 项和*()n N ∈.29.(2017•天津)已知{}n a 为等差数列,前n 项和为()n S n N +∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n N +∈.30.(2017•浙江)已知数列{}n x 满足:11x =,*11(1)()n n n x x ln x n N ++=++∈,证明:当*n N ∈时,(Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-…; (Ⅲ)121122n n n x --剟. 31.(2017•新课标Ⅰ)记n S 为等比数列{}n a 的前n 项和.已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.32.(2017•江苏)对于给定的正整数k ,若数列{}n a 满足:11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋯+++⋯++=对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“P (3)数列”;(2)若数列{}n a 既是“P (2)数列”,又是“P (3)数列”,证明:{}n a 是等差数列. 33.(2017•北京)已知等差数列{}n a 和等比数列{}n b 满足111a b ==,2410a a +=,245b b a =. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求和:13521n b b b b -+++⋯+.34.(2017•山东)已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =. (1)求数列{}n a 通项公式;(2){}n b 为各项非零的等差数列,其前n 项和为n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .35.(2017•北京)设{}n a 和{}n b 是两个等差数列,记11{n max b a n =-ð,22b a n -,⋯,}(1n n b a n n -=,2,3,)⋯,其中1{max x ,2x ,⋯,}s x 表示1x ,2x ,⋯,s x 这s 个数中最大的数.(1)若n a n =,21n b n =-,求1c ,2c ,3c 的值,并证明{}n ð是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m …时,nc M n>;或者存在正整数m ,使得m c ,1m c +,2m c +,⋯是等差数列.36.(2017•新课标Ⅲ)设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式; (2)求数列{}21na n +的前n 项和.2017-2019年高考真题数列解答题全集(含详细解析)参考答案与试题解析1.(2019•全国)数列{}n a 中,113a =,1120n n n n a a a a +++-=. (1)求{}n a 的通项公式;(2)求满足1223117n n a a a a a a -++⋯+<的n 的最大值. 【解答】解:(1)1120n n n n a a a a +++-=.∴1112n na a +-=,又113a =,∴数列1{}na 是以3为首项,2为公差的等差数列, ∴121n n a =+,∴121n a n =+; (2)由(1)知,11111()(2)(21)(21)22121n n a a n n n n n -==--+-+…,122311*********[()()()]()2355721212321n n a a a a a a n n n -∴++⋯+=-+-+⋯+-=--++,1223117n n a a a a a a -++⋯+<,∴1111()23217n -<+, 4242n ∴+<,10n ∴<,*n N ∈,n ∴的最大值为9.2.(2019•天津)设{}n a 是等差数列,{}n b 是等比数列,公比大于0.已知113a b ==,23b a =,3243b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足,21,,n n n c b n ⎧⎪=⎨⋅⎪⎩为奇数为偶数求*112222()n n a c a c a c n N ++⋯+∈.【解答】解:(Ⅰ){}n a 是等差数列,{}n b 是等比数列,公比大于0. 设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,0q >. 由题意可得:332q d =+①;23154q d =+② 解得:3d =,3q =,故33(1)3n a n n =+-=,1333n n b -=⨯=(Ⅱ)数列{}n c 满足,21,,n n n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,*112222()n n a c a c a c n N ++⋯+∈135212142632()()n n n a a a a a b a b a b a b -=+++⋯+++++⋯+23(1)[36](6312318363)2n n n n n -=+⨯+⨯+⨯+⨯+⋯+⨯ 2236(13233)n n n =+⨯+⨯+⋯+⨯ 令2(13233)n n T n =⨯+⨯+⋯+⨯①, 则231313233n n T n +=⨯+⨯+⋯+②, ②-①得:231233333n n n T n +=---⋯-+1133313nn n +-=-⨯+-1(21)332n n +-+=; 故2222*112222(21)36936332()2n n n n n n n a c a c a c n T n T n N +-++++⋯+=+=+⨯=∈3.(2019•浙江)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 【解答】解:(Ⅰ)设数列{}n a 的公差为d , 由题意得11124333a d a d a d +=⎧⎨+=+⎩,解得10a =,2d =, 22n a n ∴=-,*n N ∈.2n S n n ∴=-,*n N ∈,数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.212()()()n n n n n n S b S b S b ++∴+=++,解得2121()n n n n b S S S d++=-, 解得2n b n n =+,*n N ∈.(Ⅱ)证明:n c ==,*n N ∈,用数学归纳法证明:①当1n =时,102c =<,不等式成立;②假设n k =,*()k N ∈时不等式成立,即12k c c c ++⋯+<, 则当1n k =+时,121k k c c c c +++⋯++<<=+=,即1n k =+时,不等式也成立.由①②得12n c c c ++⋯+<*n N ∈.4.(2019•新课标Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解答】(1)解:X 的所有可能取值为1-,0,1.。

三年高考(2017-2019)高考数学真题分项汇编 专题12 数列 文(含解析)

三年高考(2017-2019)高考数学真题分项汇编 专题12 数列 文(含解析)

专题12数列1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N 。

②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得12a =,10≤时,即90b -时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a bbb b =+++。

(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭,则2981102a a =+>, 21091102a a =+>, 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解。

(25套)2019高考数学三年高考适合全国真题分项版汇总.docx

(25套)2019高考数学三年高考适合全国真题分项版汇总.docx

(25套)2019高考数学三年高考真题分项版汇总岂专题01集合和常用逻辑用语一三年高考(2015-2017 )数字(文)真题分项版解析(原卷版).doc幽专题02函数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc凶专题03导数的几何意义与运算一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc回专题04导数与函数的单调性一三年高考(2016-2018 )数字(文)真题分项版解析(原卷版).doc回专题06导数与函数的零点等综合问题一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc 电专题07三角函数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc也专题08三角"三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc也专题09平面向量一三年高考(2016-2018)数学(文)真题分项版解析(原卷版).doc亠专题10 裁数列許比数列一三年高考(2016-2018 )数学(文)頁题分析(原卷版).doc"专题11数列通项公式与求和一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc电专题12不等式一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc场专题13直线与圍一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc场专题14椭圆及冥相关的综合问题一三年高考(2016-2018 )数学(文)頁題分项版解析(原卷版).doc电专题15双曲线一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc场专题16抛物线一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc3专题17立休几何中线面位置关系一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc 呵专题18立休几何中一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc3专题19立休几何中休积与表面积一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc电专题20概率一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc岂专题21统计一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc岂专题22算法一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc岂专题23复数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc岂专题24推理与证明一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc巴]专题25选修部分一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc第一章集合与常用逻辑用语[2018年咼考试题】1. [2018课标1,文1】己知集合A={A|X<2},B二{兄3-2兀>0},则A.A B二{朮<寸》B. A 8=0C. A jx|x<|jD. A B=R2. 【2018 课标II,文1】设集合A = {1,2,3}, B = {2,3,4}则 A B =A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,3,4}3. [2018课标3,文1】已知集合A二{1,2,3,4}, B二{2,4,6,8},则A B中元素的个数为( )A. 1B. 2C. 3D. 44. [2018 天津,文1】设集合A = {1,2,6},B = {2,4},C = {1,2,3,4},则(A B) C(A) {2) (B) {1,2,4} (C) {1,2,4,6} (D) {1,2,3,4,6}5. [2018 北京,文1】已知 = 集合A = {x\x<-2^x>2} f则0A =(A) (-2,2)(B) (―—2) (2,+<x))(C) [-2,2](D) (YO,—2] [2, +co)6. [2018浙江,1】已知P二= {x|-l<x<l}, 2 = {0<x<2},则P\JQ =A. (—1,2)B. (0,1)C. (-1,0)D. (1,2)7. [2018 天津,文2】设xeR ,贝9 “ 2 —兀》0 ” 是x —1 1 ” 的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件8. [2018 111 东,文1】设集合M = {x||x-1| < 1}, AT = {x|x < 2},则M N =A.(-l,l)B. (-1,2)C.(0,2)D. (1,2)9. [2018山东,文5】已知命题p:F-x + lnO;命题q:若a2 </?2 JiJ a<h.下列命题为真命题的是A. /? A <7B. /? A—C.—ip A qD.-i/? A—10. 【2018北京,文13】能够说明“设G, b, c是任意实数.若a>b>c,则xb>c“是假命题的一组整数a,b,c的值依次为_______________________________ .11. (2018江苏,1】已知集合4 = {1,2}, B = {a,/+3},若A 〃 = {?则实数d的值为_________ .12.12018江苏,1】已知集合A = {1,2}, B={Q,/+3},若A B = 则实数a的值为_____________ .第二章函数[2018年高考试题】sin1. [2018课标「文8】函数——的部分图像大致为1 一COSX3. [2018浙江,5】若函数Xx)=/+ ax+b 在区间[0,4.与G 有关,且与方有关 B.与d 有关,但与方无关C.与a 无关,且与b 无关D.与d 无关,但与/?有关4.【2018北京,文5】已知函数/U) = 3r -(|)\则/(兀)(A) 是偶函数,且在R 上是增函数 (B) 是奇函数,且在R 上是增函数2.的部分图像大致为( 1]上的最大值是M,最小值是加,则Mcin Y[2018课标3,文7】函数y = l + x +巴二)(C) 是偶函数,且在R 上是减两数 (D) 是奇函数,且在R 上是增函数5.【2018北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3⑹,而可观测 宇宙屮普通物质的原子总数"约为1O 80.则下列各数中与理■最接近的是N(参考数据:lg3=0.48)(B) IO 53 (D) 10937. 【2018天津,文6 ]已知奇函数/(x)在R 上是增函数•若Cl = -/(log 2 -),/? = /(log 2 4」),c = /(20-8),则 a,b,c 的大小关系为(A) a <h < c (B) h <a <c (C) c <b < a (D) c < a <b 8. [2018课标II,文8】函数/(x) = ln(x 2-2x-8)的单调递增区间是 A. (-co,-2) B. (-oo,-l) C. (1,-boo) D. (4,+oo)9. [2018课标1,文9】己知函数/(x) = lnx + ln(2-x),则C. 3-/U)的图像关于直线戸1对称D. y= f(x)的图像关于点(1, 0)对称10. [2018山东,文10]若函数eV(x)(e=2.71828 ,是自然对数的底数)在/(兀)的定义域上单调递增,则称函数/(X )具有M 性质,下列函数屮具有M 性质的是A. /(x) = 2~vB. /(x) = x 2C. /(x) = 3"vD. /(x) = cosx| x\ + 2^c< 111. [2018天津,文8]已知函数f(x) = \2设owR ,若关于X 的不等式X H --- , X 1 •. 兀Xf(x)>\-+a\^R 上恒成立,则d 的取值范围是(A) 1033 (C) IO 736. [2018山东,文9】设/(x) =y[x,O<X<\2(x-l),x> 1 ,若于⑷= /(a+l),则/卫丿A. 2B. 4C. 6D.A. /⑴在((),2)单调递增B. /(兀)在(0, 2)单调递减(A) [-2,21 (B) [-2A/3,2] (C) [-2,2^3] (D) [-273,2^3]12. [2018课标II,文14]已知函数/(x)是定义在R上的奇函数,当xe(-oo,0)时,/(x) = 2x3 + x2,则,/'(2) = _________ •13. 【2018北京,文门】已知兀\(), y>0f且兀+)=1,则_? +),2的取值范围是 ___________ .兀 + ] Y v 0 114. [2018课标3,文16】设函数f(x) = 9~ '则满足f(x) + f(x——)>1的兀的取值2 爲x>0, 2范围是 _________ •15 [2018山东,文14】己知人兀)是定义在R上的偶函数,且几汁4)=心・2).若当"[-3,0]时,/'(兀)=6:则./(9⑼二_.16. [2018江苏,11】已知函数f(x) = x3-2x + e x-丄,其中e是自然对数的底数.若e A/(Q -1) + /(2/)w o,则实数a的取值范围是________ .2 门1712018江苏,14】设/(兀)是定义在R且周期为1的函数,在区间[0,1)上,/(兀)=厂英中集合D = «x\x = -~ ,n G N* »,则方程f(x)-\gx = O的解的个数是_______ .n[2017, 2016, 2014 高考题】1. 【2017高考新课标1文数】若d>b>0,0vcvl,则()(A) log a c<log/?c (B) log^vlogrb (C) d<b c (D) c a>c b2. [2014高考北京文第2题】下列函数中,定义域是尺且为增函数的是( )A.y = e~xB. y = x3C. y = \nxD.y= x3. [2014高考北京文第8题】加工爆米花时,爆开月.不糊的粒数占加工总粒数的百分比称为“可食用率” •在特定条件下,可食用率卩与加工吋间/(单位:分钟)满足的函数关系p = at2^bt + c (。

三年高考(2017-2019)各地文科数学高考真题分类汇总:数列的综合应用

三年高考(2017-2019)各地文科数学高考真题分类汇总:数列的综合应用

数列的综合应用1.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .3.(2018江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). 4*.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.*根据亲所在地区选用,新课标地区(文科)不考. 5.(2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.答案1.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1x e x +≥,1234123ln()a a a a a a a +++=++, 所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .2.27【解析】所有的正奇数和2n (*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.3.【解析】(1)由条件知:(1)n a n d =-,12n n b -=.因为1||n n a b b -≤对n =1,2,3,4均成立, 即1|(1)2|1n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:1(1)n a b n d =+-,11n n b b q -=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|(1)|n b n d b q b -+--≤(n =2,3,···,m +1),即当时,d 满足. 因为,则,从而,,对均成立. 因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值(). ①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当0x >时,,2,3,,1n m =+L 1111211n n q q b d b n n ---≤≤--q ∈112n m qq -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+L 2,3,,1n m =+L 12{}1n q n ---1{}1n q n --2,3,,1n m =+L 2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)xf x x '=--<所以单调递减,从而()(0)1f x f <=.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.4.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++> 因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-由1122n n n n x x x x ++-≥得111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .5.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当n 4≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.。

2017-2019年高考真题数列解答题全集(含详细解析)

2017-2019年高考真题数列解答题全集(含详细解析)

2017-2019年高考真题数列解答题全集(含详细解析)1.数列{}n a 中,113a =,1120n n n n a a a a +++-=. (1)求{}n a 的通项公式;(2)求满足1223117n n a a a a a a -++⋯+<的n 的最大值. 2.设{}n a 是等差数列,{}n b 是等比数列,公比大于0.已知113a b ==,23b a =,3243b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足,21,,n n n c b n ⎧⎪=⎨⋅⎪⎩为奇数为偶数求*112222()n n a c a c a c n N ++⋯+∈.3.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 4.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.5.设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式; ()ii 求2*1()ni i i a c n N =∈∑.6.已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.7.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m …时,都有1k k k c b c +剟成立,求m 的最大值.8.记n S 为等差数列{}n a 的前n 项和.已知95S a =-. (1)若34a =,求{}n a 的通项公式;(2)若10a >,求使得n n S a …的n 的取值范围.9.已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.(1)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (2)求{}n a 和{}n b 的通项公式.10.已知{}n a 是各项均为正数的等比数列,12a =,32216a a =+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.11.设{}n a 是等差数列,110a =-,且210a +,38a +,46a +成等比数列. (1)求{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,求n S 的最小值. 12.已知数列{}n a ,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S ;(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.13.已知数列{}n a 的前n 项和为n S,1a =0n a >,11()2n n n a S S +++=. (1)求n S ; (2)求12231111n n S S S S S S +++⋯++++. 14.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设10a =,11b =,2q =,若1||n n a b b -…对1n =,2,3,4均成立,求d 的取值范围; (2)若110a b =>,*m N ∈,(1q ∈,证明:存在d R ∈,使得1||n n a b b -…对2n =,3,⋯,1m +均成立,并求d 的取值范围(用1b ,m ,q 表示).15.已知等比数列{}n a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项.数列{}n b 满足11b =,数列1{()}n n n b b a +-的前n 项和为22n n +. (Ⅰ)求q 的值;(Ⅱ)求数列{}n b 的通项公式.16.设函数123()()()()f x x t x t x t =---,其中1t ,2t ,3t R ∈,且1t ,2t ,3t 是公差为d 的等差数列.(Ⅰ)若20t =,1d =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若3d =,求()f x 的极值;(Ⅲ)若曲线()y f x =与直线2()y x t =---有三个互异的公共点,求d 的取值范围.17.给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有||1n n b a -…,则称{}n b 与{}n a “接近”.(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:11a =,22a =,34a =,48a =,{}n b 是一个与{}n a 接近的数列,记集合{|i M x x b ==,1i =,2,3,4},求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b -,32b b -,⋯,201200b b -中至少有100个为正数,求d 的取值范围.18.设{}n a 是等比数列,公比大于0,其前n 项和为(*)n S n N ∈,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n S 的前n 项和为(*)n T n N ∈, ()i 求n T ;()ii 证明221()22(*)(1)(2)2n nk k k k T b b n N k k n ++=+=-∈+++∑.19.设{}n a 是等差数列,其前n 项和为(*)n S n N ∈;{}n b 是等比数列,公比大于0,其前n 项和为(*)n T n N ∈.已知11b =,322b b =+,435b a a =+,5462b a a =+. (Ⅰ)求n S 和n T ;(Ⅱ)若12()4n n n n S T T T a b +++⋯⋯+=+,求正整数n 的值. 20.设{}n a 是等差数列,且12a ln =,2352a a ln +=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求12n a a a e e e ++⋯+.21.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.22.已知数列{}n a 满足11a =,12(1)n n na n a +=+,设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.23.等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .24.若{}n ð是递增数列,数列{}n a 满足:对任意*n N ∈,存在*m N ∈,使得10m nm n a c a c +--…,则称{}n a 是{}n ð的“分隔数列”(1)设2n n =ð,1n a n =+,证明:数列{}n a 是{}n ð的分隔数列;(2)设4n n =-ð,n S 是{}n ð的前n 项和,32n n d c -=,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;(3)设1n n c aq -=,n T 是{}n ð的前n 项和,若数列{}n T 是{}n ð的分隔数列,求实数a ,q 的取值范围.25.设数列{}n b 的各项都为正数,且11nn n b b b +=+. (1)证明数列1n b ⎧⎫⎨⎬⎩⎭为等差数列;(2)设11b =,求数列1{}n n b b +的前n 项和n S .26.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .27.已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=. (Ⅰ)求数列{}n x 的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点11(P x ,1),22(P x ,112)(n n P x ++⋯,1)n +得到折线1P 21n P P +⋯,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T .28.已知{}n a 为等差数列,前n 项和为*()n S n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列2{}n n a b 的前n 项和*()n N ∈.29.已知{}n a 为等差数列,前n 项和为()n S n N +∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n N +∈.30.已知数列{}n x 满足:11x =,*11(1)()n n n x x ln x n N ++=++∈,证明:当*n N ∈时, (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-…; (Ⅲ)121122n n n x --剟. 31.记n S 为等比数列{}n a 的前n 项和.已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列. 32.对于给定的正整数k ,若数列{}n a 满足:11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋯+++⋯++=对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“P (3)数列”;(2)若数列{}n a 既是“P (2)数列”,又是“P (3)数列”,证明:{}n a 是等差数列. 33.已知等差数列{}n a 和等比数列{}n b 满足111a b ==,2410a a +=,245b b a =. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求和:13521n b b b b -+++⋯+.34.已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =. (1)求数列{}n a 通项公式;(2){}n b 为各项非零的等差数列,其前n 项和为n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .35.设{}n a 和{}n b 是两个等差数列,记11{n max b a n =-ð,22b a n -,⋯,}(1n n b a n n -=,2,3,)⋯,其中1{max x ,2x ,⋯,}s x 表示1x ,2x ,⋯,s x 这s 个数中最大的数. (1)若n a n =,21n b n =-,求1c ,2c ,3c 的值,并证明{}n ð是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m …时,nc M n>;或者存在正整数m ,使得m c ,1m c +,2m c +,⋯是等差数列. 36.设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式; (2)求数列{}21na n +的前n 项和.2017-2019年高考真题数列解答题全集(含详细解析)参考答案与试题解析一.解答题(共36小题) 1.数列{}n a 中,113a =,1120n n n n a a a a +++-=. (1)求{}n a 的通项公式;(2)求满足1223117n n a a a a a a -++⋯+<的n 的最大值. 【解答】解:(1)1120n n n n a a a a +++-=.∴1112n na a +-=,又113a =,∴数列1{}na 是以3为首项,2为公差的等差数列, ∴121n n a =+,∴121n a n =+; (2)由(1)知,11111()(2)(21)(21)22121n n a a n n n n n -==--+-+…,122311*********[()()()]()2355721212321n n a a a a a a n n n -∴++⋯+=-+-+⋯+-=--++,1223117n n a a a a a a -++⋯+<,∴1111()23217n -<+, 4242n ∴+<,10n ∴<,*n N ∈,n ∴的最大值为9.2.设{}n a 是等差数列,{}n b 是等比数列,公比大于0.已知113a b ==,23b a =,3243b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足,21,,n n n c b n ⎧⎪=⎨⋅⎪⎩为奇数为偶数求*112222()n n a c a c a c n N ++⋯+∈.【解答】解:(Ⅰ){}n a 是等差数列,{}n b 是等比数列,公比大于0. 设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,0q >. 由题意可得:332q d =+①;23154q d =+② 解得:3d =,3q =,故33(1)3n a n n =+-=,1333n n b -=⨯=(Ⅱ)数列{}n c 满足,21,,n n n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,*112222()n n a c a c a c n N ++⋯+∈135212142632()()n n n a a a a a b a b a b a b -=+++⋯+++++⋯+23(1)[36](6312318363)2n n n n n -=+⨯+⨯+⨯+⨯+⋯+⨯ 2236(13233)n n n =+⨯+⨯+⋯+⨯ 令2(13233)n n T n =⨯+⨯+⋯+⨯①, 则231313233n n T n +=⨯+⨯+⋯+②, ②-①得:231233333n n n T n +=---⋯-+1133313nn n +-=-⨯+-1(21)332n n +-+=; 故2222*112222(21)36936332()2n n n n n n n a c a c a c n T n T n N +-++++⋯+=+=+⨯=∈3.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 【解答】解:(Ⅰ)设数列{}n a 的公差为d , 由题意得11124333a d a d a d +=⎧⎨+=+⎩,解得10a =,2d =, 22n a n ∴=-,*n N ∈.2n S n n ∴=-,*n N ∈,数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.212()()()n n n n n n S b S b S b ++∴+=++,解得2121()n n n n b S S S d++=-, 解得2n b n n =+,*n N ∈.(Ⅱ)证明:n c ==,*n N ∈,用数学归纳法证明:①当1n =时,102c =<,不等式成立;②假设n k =,*()k N ∈时不等式成立,即12k c c c ++⋯+<, 则当1n k =+时,121k k c c c c +++⋯++<<=+=,即1n k =+时,不等式也成立.由①②得12n c c c ++⋯+<*n N ∈.4.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解答】(1)解:X 的所有可能取值为1-,0,1.。

2017-2018-2019年三年高考数学文科真题分类汇编(解析版) 专题12 推理与证明

2017-2018-2019年三年高考数学文科真题分类汇编(解析版) 专题12  推理与证明

专题十二 推理与证明(2019·全国Ⅱ文科)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A. 甲、乙、丙 B. 乙、甲、丙 C. 丙、乙、甲 D. 甲、丙、乙【答案】A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. (2019·全国Ⅲ文科)记不等式组表示的平面区域为,命题;命题.给出了四个命题:①;②;③;④,这四个命题中,所有真命题的编号是( ) A. ①③ B. ①②C. ②③D. ③④【答案】A【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域D 为阴影部分,由得即A (2,4),直线与直线均过区域D ,则p 真q 假,有假真,所以①③真②④假.故选A .620x y x y +⎧⎨-≥⎩…D :(,),29p x y D x y ∃∈+…:(,),212q x y D x y ∀∈+…p q ∨p q ⌝∨p q ∧⌝p q ⌝∧⌝2,6y x x y =⎧⎨+=⎩2,4x y =⎧⎨=⎩29x y +=212x y +=p ⌝q ⌝【点睛】本题考点为线性规划和命题的真假,侧重不等式的判断,有一定难度.不能准确画出平面区域导致不等式误判,根据直线的斜率和截距判断直线的位置,通过直线方程的联立求出它们的交点,可采用特殊值判断命题的真假.(2019·北京文科)已知l ,m 是平面外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥;③l ⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m . 正确;(2)如果l ⊥α,l ⊥m ,则m ∥α.不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力. (2017山东)已知命题p :;命题q :若,则.下列命题为真命题的是A .B .C .D .【答案】B【解析】取,知成立;若,得,为假,所以为真,选B .ααα,x ∃∈R 210x x -+≥22a b <a b <p q ∧p q ⌝∧p q ⌝∧p q ⌝⌝∧0x =1p 22a b <||||a b =q p q ⌝∧(2018浙江)已知,,,成等比数列,且.若,则A .,B .,C .,D .,【答案】B【解析】解法一 因为(),所以,所以,又,所以等比数列的公比.若,则, 而,所以, 与矛盾,所以,所以,, 所以,,故选B .解法二 因为,, 所以,则,又,所以等比数列的公比.若,则, 而,所以 与矛盾,所以,所以,, 所以,,故选B .(2018北京)设集合则 A .对任意实数,B .对任意实数,1a 2a 3a 4a 1234123ln()a a a a a a a +++=++11a >13a a <24a a <13a a >24a a <13a a <24a a >13a a >24a a >ln 1x x -≤0x >1234123ln()a a a a a a a +++=++1231a a a ++-≤41a -≤11a >0q <1q -≤212341(1)(10a a a a a q q +++=++)≤12311a a a a ++>≥123ln()0a a a ++>1231234ln()0a a a a a a a ++=+++≤10q -<<2131(1)0a a a q -=->2241(1)0a a a q q -=-<13a a >24a a <1xe x +≥1234123ln()a a a a a a a +++=++123412312341a a a a ea a a a a a a +++=++++++≥41a -≤11a >0q <1q -≤212341(1)(10a a a a a q q +++=++)≤12311a a a a ++>≥123ln()0a a a ++>1231234ln()0a a a a a a a ++=+++≤10q -<<2131(1)0a a a q -=->2241(1)0a a a q q -=-<13a a >24a a <{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤a (2,1)A ∈a (2,1)A ∉C .当且仅当时,D .当且仅当时, 【答案】D【解析】解法一 点在直线上,表示过定点,斜率为的直线,当时,表示过定点,斜率为的直线,不等式表示的区域包含原点,不等式表示的区域不包含原点.直线与直线互相垂直,显然当直线的斜率时,不等式表示的区域不包含点,故排除A ;点与点连线的斜率为,当,即时,表示的区域包含点,此时表示的区域也包含点,故排除B ;当直线的斜率,即时,表示的区域不包含点,故排除C ,故选D .解法二 若,则,解得,所以当且仅当时,.故选D .(2018江苏)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前项和,则使得成立的的最小值为 . 【答案】27【解析】所有的正奇数和()按照从小到大的顺序排列构成,在数列 中,前面有16个正奇数,即,.当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;……;当时,0a <(2,1)A ∉32a ≤(2,1)A ∉(2,1)1x y -=4ax y +=(0,4)a -0a ≠2x ay -=(2,0)1a2x ay -≤4ax y +>4ax y +=2x ay -=4ax y +=0a ->4ax y +>(2,1)(2,1)(0,4)32-32a -<-32a >4ax y +>(2,1)2x ay -<(2,1)4ax y +=32a -=-32a =4ax y +>(2,1)(2,1)A ∈21422a a +>⎧⎨-⎩≤32a >32a ≤(2,1)A ∉*{|21,}A x x n n ==-∈N *{|2,}n B x x n ==∈N A B {}n a n S {}n a n 112n n S a +>n 2n*n ∈N {}n a {}n a 525212a =6382a =1n =1211224S a =<=2n =2331236S a =<=3n =3461248S a =<=4n =45101260S a =<=26n == 441 +62= 503<,不符合题意;当时,=484 +62=546>=540,符合题意.故使得成立的的最小值为27.(2018江苏)设,对1,2,···,n 的一个排列,如果当时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n 的所有排列中逆序数为的全部排列的个数. (1)求的值;(2)求的表达式(用表示).【解析】(1)记为排列的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,.(2)对一般的的情形,逆序数为0的排列只有一个:,所以. 逆序数为1的排列只能是将排列中的任意相邻两个数字调换位置得到的排列,所以.为计算,当1,2,…,n 的排列及其逆序数确定后,将添加进原排列,在新排列中的位置只能是最后三个位置. 因此,. 当时,52621(141)2(12)212S ⨯+⨯-=+-2712516a =27n =52722(143)2(12)212S ⨯+⨯-=+-2812a 112n n S a +>n *n ∈N 12n i i i s t <s t i i >(,)s t i i 12n i i i 12n i i i ()n f k k 34(2),(2)f f (2)(5)n f n ≥n ()abc τabc (123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,333(0)1(1)(2)2f f f ===,4333(2)(2)(1)(0)5f f f f =++=n (4)n ≥12n ⋅⋅⋅(0)1n f =12n ⋅⋅⋅(1)1n f n =-1(2)n f +1n +1n +1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+5n ≥112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…, 因此,时,.(2017北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (ⅰ)男学生人数多于女学生人数; (ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________. 【答案】6 12【解析】设男生数,女生数,教师数为,则 ①,所以,②当时,,,,,不存在,不符合题意; 当时,,,,,不存在,不符合题意; 当时,,此时,,满足题意. 所以.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A .乙可以知道两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D (2017江苏)对于给定的正整数,若数列满足对任意正整数总成立,则称数列是“数列”.242(1)(2)4(2)2n n n n f --=-+-+⋯++=5n ≥(2)n f =222n n --,,a b c 2,,,c a b c a b c >>>∈N 84a b >>>max 6b =min 1c =21a b >>>a b ∈N a b min 2c =42a b >>>a b ∈N a b min 3c =63a b >>>5a =4b =12a b c ++=k {}n a 11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=n ()n k >{}n a ()P k(1)证明:等差数列是“数列”;(2)若数列既是“数列”,又是“数列”,证明:是等差数列. 【解析】证明:(1)因为是等差数列,设其公差为,则, 从而,当时,,所以, 因此等差数列是“数列”.(2)数列既是“数列”,又是“数列”,因此, 当时,,①当时,.② 由①知,,③,④将③④代入②,得,其中, 所以是等差数列,设其公差为.在①中,取,则,所以, 在①中,取,则,所以, 所以数列是等差数列.(2017浙江)已知数列满足:,. 证明:当时 (Ⅰ); (Ⅱ); {}n a (3)P {}n a (2)P (3)P {}n a {}n a d 1(1)n a a n d =+-n 4≥n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=1,2,3,k =n n n n n n n a a a a a a a ---+++++=321123+++6{}n a (3)P {}n a (2)P (3)P 3n ≥n n n n n a a a a a --+++++=211244n ≥n n n n n n n a a a a a a a ---++++++++=3211236n n n a a a ---+=-32141()n n a a ++n n n a a a ++++=-23141()n n a a -+n n n a a a -++=1124n ≥345,,,a a a d'4n =235644a a a a a +++=23a a d'=-3n =124534a a a a a +++=122a a d'=-{}n a {}n x 11x =11ln(1)n n n x x x ++=++()n ∈*N n ∈*N 10n n x x +<<1122n n n n x x x x ++-≤(Ⅲ). *根据亲们所在地区选作,新课标地区(文科)不要求. 【解析】(Ⅰ)用数学归纳法证明: 当时, 假设时,,那么时,若,则,矛盾,故. 因此所以 因此(Ⅱ)由得记函数函数在上单调递增,所以=0, 因此 故 (Ⅲ)因为所以得 由得 121122n n n x --≤≤0n x >1n =110x =>n k =0k x >1n k =+10k x +≤110ln(1)0k k k x x x ++<=++≤10k x +>0n x >()n ∈*N 111ln(1)n n n n x x x x +++=++>10n n x x +<<()n ∈*N 111ln(1)n n n n x x x x +++=++>2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++2()2(2)ln(1)(0)f x x x x x x =-+++≥()f x [0,)+∞()(0)f x f ≥2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥112(N )2n n n n x x x x n *++-∈≤11111ln(1)2n n n n n n x x x x x x +++++=+++=≤112n n x -≥1122n n n n x x x x ++-≥111112()022n n x x +-->≥所以故综上, .12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥212n n x -≤1211(N )22n n n x n *--∈≤≤。

三年高考(2017-2019)各地文科数学高考真题分类汇总:统计初步

三年高考(2017-2019)各地文科数学高考真题分类汇总:统计初步

统计初步1.(2019全国1文6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生2.(2019全国II文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.3.(2019全国II文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)≈.8.6024.(2019全国III文4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.(2019全国III文17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同. 经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.(2019江苏5)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .7.(2019北京文17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.8.(2019天津文15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.72,108,12025,,,,,A B C D E F享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.9.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半10.(2017新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为1x,2x,…,nx,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是○M MA .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数11.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 12.(2017山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为 A .3,5 B .5,5 C .3,7 D .5,713.(2018全国卷Ⅲ)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.14.(2018江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .15.(2017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.16.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 3m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)110999817.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++, 2()0.0500.0100.0013.841 6.63510.828P K k k ≥18.(2017新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:新养殖法旧养殖法箱产量/kg箱产量/kg(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

递推数列与数列求和1.(2019江苏20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2.(2019浙江10)设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,n *∈N ,则 A .当b =12时,a 10>10 B .当b =14时,a 10>10C .当b =-2时,a 10>10D .当b =-4时,a 10>103.(2019浙江20)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L 4.(2018天津)设{}n a 是等差数列,其前n 项和为n S (*n ∈N );{}n b 是等比数列,公比大于0,其前n 项和为n T (*n ∈N ).已知11b =,322b b =+,435b a a =+,5462b a a =+.(1)求n S 和n T ;(2)若12()4n n n n S T T T a b +++⋅⋅⋅+=+,求正整数n 的值. 5.设(2017新课标Ⅲ)数列{}n a 满足123(21)2n a a n a n ++⋅⋅⋅+-=.(1)求{}n a 的通项公式; (2)求数列{}21na n +的前n 项和.答案1.解析(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由,得,解得.因此数列为“M —数列”. (2)①因为,所以. 由,得,则.由,得,当时,由,得,整理得.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n .②由①知,b k =k ,.因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有. 245321440a a a a a a =⎧⎨-+=⎩244112111440a q a q a q a q a ⎧=⎨-+=⎩112a q =⎧⎨=⎩{}n a 1122n n n S b b +=-0n b ≠1111,b S b ==212211b =-22b =1122n n n S b b +=-112()n n n n n b b S b b ++=-2n ≥1n n n b S S -=-()()111122n n n nn n n n n b b b b b b b b b +-+-=---112n n n b b b +-+=()*n ∈N *k ∈N 1k kq k q -≤≤ln ln ln 1k kq k k ≤≤-设f (x )=,则. 令,得x =e.列表如下:因为,所以.取k =1,2,3,4,5时,,即, 经检验知也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5. 2.解析:对于B ,令,得,取,所以, 所以当时,,故B 错误; 对于C ,令,得或,取,所以, 所以当时,,故C 错误;对于D ,令,得, 取,…,, ln (1)x x x>21ln ()xf 'x x-=()0f 'x =ln 2ln8ln 9ln 32663=<=max ln 3()(3)3f k f ==q =ln ln kq k…k k q ≤1k qk -≤2104x λ-+=12λ=112a =211,,1022n a a ==<L 14b =1010a <220x λ--=2λ=1λ=-12a =22,,210n a a ==<L 2b =-1010a <240x λ--=λ=112a +=212a +=1102n a +=<所以当时,,故D 错误;对于A ,,,,,递增,当时,, 所以,所以,所以故A 正确.故选A . 3.解析(Ⅰ)设数列的公差为d ,由题意得,解得.从而.由成等比数列得.解得. 所以.(Ⅱ). 4b =-1010a <221122a a =+ (2)23113224a a ⎛⎫=++ ⎪⎝⎭ (2)42431911714216216a a a ⎛⎫=++++=> ⎪⎝⎭…10n n a a +->{}n a 4n …11132122n n n n a a a a +=+>+=5465109323232a a a a a a ⎧>⎪⎪⎪>⎪⎨⎪⎪⎪>⎪⎩M610432a a ⎛⎫> ⎪⎝⎭107291064a >>{}n a 11124,333a d a d a d +=+=+10,2a d ==*22,n a n n =-∈N 12,,n n n n n n S b S b S b +++++()()()212n n n n n n S b S b S b +++=++()2121n n n n b S S S d++=-2*,n b n n n =+∈N *n c n ===∈N我们用数学归纳法证明.(1)当n=1时,c1=0<2,不等式成立;(2)假设时不等式成立,即那么,当时,即当时不等式也成立.根据(1)和(2),不等式对任意成立.4.【解析】(1)设等比数列{}n b的公比为q,由11b=,322b b=+,可得220q q--=.因为0q>,可得2q=,故12nnb-=.所以122112nnnT-==--.设等差数列{}na的公差为d.由435b a a=+,可得134a d+=.由5462b a a=+,可得131316,a d+=从而11,1a d==,故na n=,所以(1)2nn nS+=.(2)由(1),知13112(222)2 2.n nnT T T n n++++=+++-=--L L由12()4n n n nS T T T a b++++=+L可得11(1)2222n nn nn n++++--=+,整理得2340n n--=,解得1n=-(舍),或4n=.所以n的值为4.5.【解析】(1)因为123(21)2na a n a n++⋅⋅⋅+-=,故当2n≥时,1213(23)2(1)na a n a n-++⋅⋅⋅+-=-.两式相减得(21)2nn a-=.所以221nan=-(2)n≥.又由题设可得12a=.()*n k k=∈N12hc c c+++<L1n k=+121k kc c c c+++++<<L<==1n k=+12nc c c+++<L*n∈N从而{}n a 的通项公式为 =.(2)记{}21na n +的前n 项和为n S , 由(1)知21121(21)(21)2121n a n n n n n ==-++--+. 则11111121335212121n nS n n n =-+-+⋅⋅⋅+-=-++.。

相关文档
最新文档