平行线的性质习题课
春七年级数学下册 第4章《相交线与平行线》4.3 平行线的性质习题课件 湘教版

You made my day!
我们,还在路上……
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月21日星期一2022/3/212022/3/212022/3/21 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/212022/3/212022/3/213/21/2022 •3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/212022/3/21March 21, 2022
第 10 题图
11. (2018·通辽)如图,∠AOB 的一边 OA 为平面镜, ∠AOB=37°45′,在 OB 边上有一点 E,从点 E 射出一 束光线经平面镜反射后,反射光线 DC 恰好与 OB 平行, 则∠DEB 的度数是___7_5_°3_0_′_(_或__7_5_._5_°)_____________.
13. 如图,有一条等宽的纸带,按如图所示进行折 叠,求纸带重叠部分中的∠α 的度数.
解:因为 AD∥BC, 所以∠3=70°,∠1=∠α, 由折叠的性质, 得∠1=∠2, 又∠1+∠2+∠3=180°, 即∠3+2∠α=180°,所以∠α=55°.
14. 如图∠B,∠D 的两边分别平行. (1)在图①中,∠B 与∠D 的数量关系为_相__等_; (2)在图②中,∠B 与∠D 的数量关系为_互__补_; (3)用一句话归纳的结论为 如__果__两__个__角__的__两__边__分__别__平__行__,__那__么__这__两__个__角__相__等__或__互__补_. 试选一种情况说明理由.
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
SX-7-010第五章平行线的判定和性质习题课

16.已知:如图,∠1=∠2,且BD平分∠ABC.
求证:AB∥CD.
17.已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.
18.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.
19.已知:如图,FA⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°.
求证:AF∥CD.
20如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
21)如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.
22.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
A.AD∥BCB.AB∥CDC.∠3=∠4 D.∠A=∠C
6.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是()
A.两直线平行,同位角相等
B.两直线平行,内错角相等
C.同位角相等,两直线平行
D.内错角相等,两直线平行
7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
C.∠ACB+∠BAD=180°D.∠ACB=∠BAD
3.如图,直线a、b被直线c所截,现给出下列四个条件:
(1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°,
其中能判定a∥b的条件是_________[ ]
A.(1)(3) B.(2)(4)
C.(1)(3)(4) D.(1)(2)(3)(4)
人教版七年级数学下册 5.3.1平行线的性质 习题课件

∵∠ABC=30°,∠BAC=90°,∠1=40°,
∴∠2=180°-30°-90°-40°=20°.
11.(中考·重庆) 如图,直线 EF∥GH,点 A 在 EF 上,AC 交 GH 于点 B. 若∠FAC=72°,∠ACD=58°,点 D 在 GH 上, 求∠BDC 的度数.
解:∵EF∥GH, ∴∠DBC=∠FAC=72°. ∵三角形的内角和为 180°, ∴∠BDC=180°-∠DBC-∠ACD=180°-72°-58°=50°.
8.(中考·滨州) 如图,直线 AB∥CD,则下列结论正确的是( D )
A.∠1=∠2
B.∠3=∠4
C.∠1+∠3=180° D.∠3+∠4=180°
9.(2020·营口) 如图,AB∥CD,∠EFD=64°,∠FEB 的平分 线 EG 交 CD 于点 G,则∠GEB 的度数为( D ) A.66° B.56° C.68° D.58°
4.(2019·深圳) 如图,已知 l1∥AB,AC 为角平分线,下列说法 错.误.的是( B ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3
【点拨】 利用平行线的性质得到∠2=∠4,∠3=∠2, ∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2,则 ∠1=∠2=∠4=∠3,∠5=2∠1,从ቤተ መጻሕፍቲ ባይዱ可对各选项进行判断.
谢谢欣赏
THANK YOU FOR LISTENING
2.(2020·常州) 如图,直线 a,b 被直线 c 所截,a∥b,∠1=140°, 则∠2 的度数是( B ) A.30° B.40° C.50° D.60°
3.(2020·娄底)如图,将直尺与三角尺叠放在一起,如果∠1=28°, 那么∠2 的度数为( A ) A.62° B.56° C.28° D.72°
第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第3课时——平行线及其性质(答案卷)知识点一:平行线:1.平行线的定义:在同一平面内,的两条直线叫做平行线。
若直线a平行于直线b,则记作,读作。
注意:一定要在同一平面内。
且一定要时直线。
2.平行线的画法:过直线外一点画直线与已知直线平行的具体步骤:①将直角三角板的一条直角边与已知直线重合。
②将直尺与三角尺的另一直角边紧靠在一起。
③固定直尺不变,平移三角尺,使三角尺原来与已知直线重合的直角边与已知点重合。
④沿着三角尺该直角边画直线。
【类型一:确定平行线】1.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定2.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条3.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【类型二:作图】4.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?5.在下面的方格纸中经过点C 画与线段AB 互相平行的直线l 1,再经过点B 画一条与线段AB 垂直的直线l 2.知识点二:平行公理及其推论:1. 平行公理:经过直线外一点, 条直线与这条直线平行。
有且只有:存在且唯一。
2. 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即若c b b a ∥,∥, 则a c 。
3. 垂直于同一直线的两直线平行:若c a b a ⊥⊥,,则b c 。
【类型一:对平行公理及其推论的判断理解】6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法正确的是( )A .a 、b 、c 是直线,若a ⊥b ,b ∥c ,则a ∥cB .a 、b 、c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a 、b 、c 是直线,若a ∥b ,b ⊥c ,则a ∥cD .a 、b 、c 是直线,若a ∥b ,b ∥c ,则a ∥c8.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系9.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个10.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行知识点三:平行线的性质:1.两直线平行,同位角相等:两条平行线被第三条直线所截,同位角相等。
湘教版七年级下册数学 第4章 4.3 平行线的性质 习题课件

能力提升练
15.如图,AB∥DG,AD∥EF. (1)试说明:∠1+∠2=180°;
解:因为AD∥EF, 所以∠BAD+∠2=180°. 因为AB∥DG,所以∠BAD=∠1. 所以∠1+∠2=180°.
能力提升练
(2)若DG是∠ADC的平分线,∠2=138°,求∠B的度数. 解:由(1)知∠1+∠2=180°, 又因为∠2=138°,所以∠1=42°. 因为DG是∠ADC的平分线, 所以∠CDG=∠1=42°. 因为AB∥DG,所以∠B=∠CDG=42°.
基础巩固练
1.【2021·遵义】如图,已知直线a∥b,c为截线,若 ∠1=60°,则∠2的度数是( B )
A.30° B.60° C.120° D.150°
基础巩固练 2.【中考·东营】下列图形中,根据AB∥CD,能得 到∠1=∠2的是( )
基础巩固练 【点拨】A.根据AB∥CD,能得到∠1+∠2=180°,故 本选项不符合题意;B.如图,根据AB∥CD, 能得到∠1=∠3,再根据对顶角相等,可得 ∠1=∠2,故本选项符合题意;C.根据AC∥ BD , 能 得 到 ∠ 1 = ∠ 2 , 故 本 选 项 不 符 合 题 意 ; D. 根 据 AB∥CD,不能得到∠1=∠2,故本选项不符合题意.
D.65°
点拨】因为AB∥CD,所以∠1=∠ADC=110°, 又因为∠3=60°,所以∠2=110°-60°=50°.
基础巩固练
5.如图,直线a∥b,将一直角三角形的直角顶点置
于直线b上,若∠1=28°,则∠2的度数是( C )
A.62°
B.108°
C.118° D.152°
【点拨】如图,因为a∥b,所以∠2 =∠1+∠3=28°+90°=118°.
平行线的性质习题课课件
1.如图,已知 AB∥CD∥EF,求∠A+∠ACE+∠E 的和.
1.如图,已知 AB∥CD∥EF,求∠A+∠ACE+∠E 的和. ∵AB∥CD(已知) ∴∠A+∠ACD=180°(两直线平行,同旁内角互补) ∵CD∥EF(已知) ∴∠DCE+∠E=180°(两直线平行,同旁内角互补) ∴∠A+∠ACD+∠DCE+∠E=360°(等式的性质) 即∠A+∠ACE+∠E=360°
如图,如果AB ∥CD,请探索∠A 、∠C、∠E的关系,并说 明理由.
A
B
E
C
D
∠A +∠C +∠E = 360 °
如图,如果AB ∥CD,请探索∠A 、∠C、∠E的关系,并说 明理由.
A
B
E
C
D
∠E = ∠A +∠C
如图,如果AB ∥CD,请探索∠A 、∠C、∠E的关系,并说 明理由.
E
A
B
1、如图,已知 AB∥CD,∠C =∠EFB,试证明 EF∥AB.
证明:∠C =∠EFB ( 已知 )
D
C
∴DC∥ EF ( 同位角相等,两直线平行 ) E
F
AB∥CD ( 已知 )
A
B
∴ EF ∥ AB ( 平行于同一条直线的两∠3 的关系,并说明 理由. 解: ∵a∥b(已知)
C
D
∠E = ∠C —∠A
AB∥CD
HF∥AB
平行线的性质 习题 (含答案)
2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,AC∥BE,∠ABE=70°,则∠A的度数为()A.B.C.D.【答案】A【解析】【分析】根据平行线的性质进行判断即可,两直线平行,内错角相等.【详解】解:∵AC∥BE,∴∠A=∠ABE=70°,故选:A.【点睛】本题主要考查了平行的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.2.如图在中,已知,,,则()A.B.C.D.【答案】B【解析】【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【详解】∵∠1+∠EFD=180°,∠1+∠2=180°,∴∠EFD=∠2,∴AB∥EF∴∠ADE=∠3,∵∠3=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠C,∵∠AED=58°,∴∠C=58°,故选B.【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.3.如图,已知直线c与a、b分别交于点A、B,且∠1=120°,当∠2=()时,直线a∥b.A.B.C.D.【答案】B【解析】【分析】先根据对顶角相等求出∠3的度数,再由平行线的判定即可得出结论.【详解】解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵∠2=∠3=120°,∴直线a∥b,故选B.【点睛】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.4.如图a∥b,∠1与∠2互余,∠3=115°,则∠4等于()A.115°B.155°C.135°D.125°【答案】B【解析】【分析】根据两直线平行同旁内角互补以及互余互补的定义可计算出∠4的值.【详解】如图,∵∠3与∠5是对顶角,∴∠5=∠3=115°,∵a∥b,∴∠2+∠4=180°,∠1+∠5=180°,∴∠1=180°-115°=65°,又∵∠1与∠2互余,∴∠2=90°-∠1=25°,∴∠4=180°-∠2=180°-25°=155°,故选B.【点睛】本题考查了平行线的性质以及余角和补角的知识,熟练掌握相关性质是解题的关键.5.如图,给出如下推理:①∠1=∠3.∴AD∥BC;②∠A+∠1+∠2=180°,∴AB∥CD;③∠A+∠3+∠4=180°,∴AB∥CD;④∠2=∠4,∴AD∥BC其中正确的推理有()A.①②B.③④C.①③D.②④【答案】D【解析】【分析】根据平行线的性质与判定解答即可.【详解】即内错角相等.故①错误;即同旁内角互补.故②正确;,故③错误;故④正确,即②④正确,故选D.【点睛】此题主要考察平行线的性质与判定,正确理解条件与结论之间的关系是解题的关键.6.如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()A.75°B.80°C.85°D.95°【答案】C【解析】【分析】过点E作EF∥CD,根据AB∥CD可得EF∥AB,利用两直线平行,同旁内角互补和内错角相等,分别求出∠BEF和∠FEC的度数,二者相加即可.【详解】过点E作EF∥CD,如图所示:∵AB∥CD,∴EF∥AB,∵∠ABE=120°,∴∠BEF=60°,∵EF∥CD,∠ECD=25°,∴∠FEC=∠ECD=25°,∴∠E=∠BEF+∠ECD=60°+25°=85°.故选:C.【点睛】考查了平行线性质,解答此题的关键是利用两直线平行,分别求出∠BEF和∠FEC的度数.7.如图,l1∥l2,∠1=50°,则∠2等于( )A.135°B.130°C.50°D.40°【答案】B【解析】【分析】两直线平行,同旁内角互补,据此进行解答.【详解】∵l1∥l2,∠1=50°,∴∠2=180°-∠1=180°-50°=130°,故选B.【点睛】本题应用的知识点为:两直线平行,同旁内角互补.8.如图,将三角形ABC沿AB方向平移后,到达三角形BDE的位置.若∠CAB=50°,∠ABC=100°,则∠1的度数为( )A.30°B.40°C.50°D.60°【答案】A【解析】【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠1的度数.【详解】∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠1的度数为:180°-50°-100°=30°.故选A.【点睛】此题主要考查了平移的性质,得出∠CAB=∠EBD=50°是解决问题的关键.二、填空题9.如果两边与的两边互相平行,且,,则的度数为__.【答案】35°或55°【解析】【分析】根据:∠1两边与∠2的两边互相平行得出∠1=∠2或∠1+∠2=180°,代入求出x,即可得出答案.【详解】∵∠1两边与∠2的两边互相平行,∴∠1=∠2或∠1+∠2=180°,∵∠1=(3x+20)°,∠2=(8x-5)°,∴3x+20=8x-5或3x+20+8x-5=180,解得:x=5,或x=15,当x=5时,∠1=35°,当x=15时,∠1=65°,故答案为:35°或65°.【点睛】本题考查了平行线的性质的应用,能知道“如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补”是解此题的关键.10.如图,∠1=70°,a∥b,则∠2=_____________,【答案】110°【解析】【分析】如图,根据对顶角相等可得∠3=∠1=70°,再根据平行线的性质即可求得∠2的度数.【详解】如图,∵∠1=70°,∴∠3=∠1=70°,∵a ∥ b,∴∠2+∠3=180°,∴∠2=180°-70°=110°,故答案为:110°.【点睛】本题考查了平行线的性质、对顶角的性质,熟练掌握平行线的性质是解题的关键.11.如图,,则的度数是_________.【答案】60【解析】【分析】如图,先利用邻补角求出∠4=70°,再根据得∠4+∠2+∠3=180°,即可求出∠2的度数.【详解】∵,∴∠4=180°-110°=70°,∵,∴∠4+∠2+∠3=180°,则∠2=60°.故填60.【点睛】此题主要考察平行线的性质.12.如图,工程队铺设一公路,他们从点A处铺设到点B处时,由于水塘挡路,他们决定改变方向经过点C,再拐到点D,然后沿着与AB平行的DE方向继续铺设,如果∠ABC=120°,∠CDE=140°,则∠BCD的度数是________.【答案】80°.【解析】【分析】过C作MN∥AB,根据平行线的判定可得DE∥NM∥AB,再根据平行线的性质可得∠1和∠2的度数,进而可得∠BCD的度数.【详解】解:过C作MN∥AB,∵AB∥DE,∴MN∥DE,∴∠2+∠D=180°,∵∠CDE=140°,∴∠2=40°,∵MN∥AB,∴∠1+∠B=180°,∵∠ABC=120°,∴∠1=60°,∴∠BCD=180°-60°-40°=80°,故答案为:80°.【点睛】此题主要考查了平行线的判定和性质,关键是掌握两直线平行,同旁内角互补.13.如图,直线l1、l2分别与直线l3、l4相交,∠1与∠3互余,∠3余角与∠2互补,∠4=125°,则∠3=______.【答案】55°.【解析】【分析】求出∠5的度数,根据∠1与∠3互余和∠3的余角与∠2互补求出∠1+∠2=180°,根据平行线的判定得出l1∥l2,根据平行线的性质求出即可.【详解】解:∵∠4=125°,∴∠5=180°-125°=55°,∵∠1与∠3互余,∠3的余角与∠2互补,∴∠1+∠2=180°,∴l1∥l2,∴∠3=∠5=55°,故答案是:55°.【点睛】本题考查了平行线的性质和判定的应用,能求出l1∥l2是解此题的关键,注意:两直线平行,内错角相等.14.点D、E、F分别在AB、AC、BC上(1)_______ ∴(2)________ ∴(3)∴_______________(4)∴_______________【答案】(1) ;(2) ;(3) ; (4);.【解析】【分析】在解答此类问题时一定要对平行线的性质和判定定理有一个明确的认识和把握,在此基础上结合题设的相关要求和已知条件,就可以解答出正确的结论.【详解】(1)∴(2)∠3, ∴(3)∴AC DF(4)∴DE BC【点睛】本题考查的是平行线的性质和判定的相关知识,解题关键是熟记平行线的性质和判定定理.15.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉它,∠A=,且AB∥CD.小明马上运用已学的数学知识得出了∠C的度数,聪明的你一定知道∠C=_______.【答案】1400【解析】【分析】根据“两直线平行,同旁内角互补”即可解答.【详解】解:∠C=40°理由:∵AB∥CD.∴∠A+∠C=180°(两直线平行,同旁内角互补)∴∠C=180°-∠A=180°-40°=140°故答案为:140°.【点睛】本题考查平行线的性质.16.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图所示),第一次转弯时的∠B=,那么∠C应是_______.【答案】140°【解析】【分析】根据两直线平行,内错角相等即可解答.【详解】解:∵AB∥CD,∴∠B=∠C=140°.【点睛】本题考查两直线平行,内错角相等.三、解答题17.如图,已知,分别探讨下面的四个图形中、和的关系,并请你从所得的四个关系中任选一个,说明成立的理由.(1)图①的关系是_____________;(2)图②的关系是_____________;(3)图③的关系是_____________;(4)图④的关系是_____________;【答案】(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PCD=∠APC+∠PAB;(4)∠PAB=∠APC+∠PCD.【解析】【分析】(1)过点P作PE∥AB,则AB∥PE∥CD,再根据两直线平行同旁内角互补即可解答;(2)过点P作l∥AB,则AB∥CD∥l,再根据两直线内错角相等即可解答;(3)根据AB∥CD,可得出∠PEB=∠PCD,再根据三角形外角的性质进行解答;(4)根据AB∥CD,可得出∠PAB=∠PFD,再根据∠PFD是△CPF的外角,由三角形外角的性质进行解答;【详解】(1)过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,∴∠APC+∠PAB+∠PCD=360°;(2)过点P作直线l∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠PAB=∠3,∠PCD=∠4,∴∠APC=∠PAB+∠PCD;(3)∵AB∥CD,∴∠PEB=∠PCD,∵∠PEB是△APE的外角,∴∠PEB=∠PAB+∠APC,∴∠PCD=∠APC+∠PAB;(4)∵AB∥CD,∴∠PAB=∠PFD,∵∠PFD是△CPF的外角,∴∠PCD+∠APC=∠PFD,∴∠PAB=∠APC+∠PCD.【点睛】本题考查的是平行线的性质及三角形外角的性质,能根据题意作出辅助线,再利用平行线的性质进行解答是解答此题的关键.18.如图,已知AC∥ED,ED∥GF,∠BDF=90°.(1)若∠ABD=150°,求∠GFD的度数;(2)若∠ABD=θ,求∠GFD-∠CBD的度数.【答案】(1)∠G FD=120°;(2)∠GFD-∠CBD=90°.【解析】【分析】(1)根据平行线的性质可得∠ABD+∠BDE=180°,进而可得∠BDE=30°,然后再计算出∠EDF的度数,再根据平行线的性质可得∠EDF+∠F=180°,进而可得∠GFD的度数;(2)与(1)类似,表示出∠F的度数,再表示出∠CBD的度数,再求差即可.【详解】解:(1)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=150°,∴∠BDE=30°,∵∠BDF=90°,∴∠EDF=60°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=120°;(2)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=θ,∴∠BDE=180°-θ,∵∠BDF=90°,∴∠EDF=90°-(180°-θ)=θ-90°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=180°-(θ-90°)=270°-θ,∵∠ABD=θ,∴∠CBD=180°-θ,∴∠GFD-∠CBD=270°-θ-180°+θ=90°.【点睛】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.19.如图,已知∠1=∠2,∠GFA=40°,∠HAQ=15°,∠ACB=70°,AQ平分∠FAC,求证:BD∥GE∥AH.【答案】见解析;【解析】【分析】由同位角∠1=∠2,推知AH∥GE,再根据平行线的性质、角平分线的定义证得内错角∠HAC=55°+15°=70°=∠ACB,所以BD∥AH,最后由平行线的递进关系证得BD∥GE∥AH.【详解】证明:∵∠1=∠2,∴AH∥GE,∴∠GFA=∠FAH.∵∠GFA=40°,∴∠FAH=40°,∴∠FAQ=∠FAH+∠HAQ,∴∠FAQ=55°.又∵AQ平分∠FAC,∴∠QAC=∠FAQ=55°,∵∠HAC=∠QAC+∠HAQ,∴∠HAC=55°+15°=70°=∠ACB,∴BD∥AH,∴BD∥GE∥AH.【点睛】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.20.如图,AB∥CD∥EF,且∠ABE=70°,∠ECD=150°,求∠BEC 的度数.【答案】∠BEC=40°.【解析】【分析】根据∠BEC=∠BEF-∠ECF,求出∠BEF,∠CEF即可解决问题.【详解】∵AB∥EF,∴∠ABE=∠BEF=70°,∵CD∥EF,∴∠ECD+∠CEF=180°,∵∠ECD=150°,∴∠CEF=30°,∴∠BEC=∠BEF-∠CEF=40°.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.已知:如图,直线EF与AB,CD分别相交于点E,F.(1)如图1,若∠1=120°,∠2=60°,则AB和CD的位置关系为;(2)在(1)的情况下,若点P是平面内的一个动点,连接PE,PF,探索∠EPF,∠PEB,∠PFD三个角之间的关系:①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;请阅读下面的解答过程,并填空(理由或数学式):解:如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等).∵AB∥CD(已知),MN∥AB(作图),∴MN∥CD(平行于同一条直线的两条直线互相平行).∴∠MPF=∠PFD.∴∠EPM+∠MPF=∠PEB+∠PFD(等式的性质),即∠EPF=∠PEB+∠PFD;②当点P在图3的位置时,∠EPF,∠PEB,∠PFD三个角之间有何关系并证明;③当点P在图4的位置时,请直接写出∠E PF,∠PEB,∠PFD三个角之间的关系.【答案】(1)见解析;(2)①见详解;②∠PEB+∠EPF+∠PFD =360°,③∠EPF+∠PFD=∠PEB.【解析】【分析】(1)根据对顶角相等可得∠BEF的度数,根据同旁内角互补,两直线平行,即可得出结论;(2)①过点P作MN∥AB,根据平行线的性质得∠EPM=∠PEB,且有MN∥CD,所以∠MPF=∠PFD,然后利用等式性质易得∠EPF=∠PEB+∠PFD.②③的解题方法与①一样,分别过点P作MN∥AB,然后利用平行线的性质得到三个角之间的关系.【详解】(1)∵∠1=120°,∴∠BEF=120°,又∵∠2=60°,∴∠2+∠BEF=180°,∴AB∥CD;(2)①如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等).∵AB∥CD(已知),MN∥AB(作图),∴MN∥CD(平行于同一条直线的两条直线互相平行).∴∠MPF=∠PFD,∴∠EPM+∠FPM=∠PEB+∠PFD(等式的性质),即∠EPF=∠PEB+∠PFD,故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;∠EPM,∠MPF;②∠EPF+∠PEB+∠PFD=360°;证明:如图3,过作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠BEP+∠EPM=180°,∠DFP+∠FPM=180°,∴∠BEP+∠EPM+∠FPM+∠PFD=360°,即∠EPF+∠PEB+∠PFD=360°;③∠EPF+∠PFD=∠PEB.理由:如图4,过作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠PEB=∠MPE,∠PFD=∠MPF,∵∠EPF+∠FPM=∠MPE,∴∠EPF+∠PFD=∠PEB.【点睛】考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.22.如图,已知直线a∥b且被直线l所截,∠2=85°,求∠1的度数.请在横线上补全求解的过程或依据.【答案】见解析.【解析】【分析】根据平行线的性质和对顶角相等的性质填空.【详解】解:∵a∥b(已知),∴∠1=∠3(两直线平行,同位角相等).∵∠2=∠3(对顶角相等),∠2=85°(已知),∴∠1=85°(等量代换).【点睛】考查了平行线的性质,学会书写证明过程是所要训练的重点.23.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.【答案】(1)见解析(2)35°【分析】(1)由知∠1=∠DCF,则∠2=∠DCF,即可证明;(2)由得∠B=90°-∠2=35°,再根据(1)可知的度数.【详解】∵∴∠1=∠DCF,∵∴∠2=∠DCF,∴;(2)∵,∴∠BEF=90°,∴∠B=90°-∠2=35°,又∵∴=∠B=35°.【点睛】此题主要考察平行线的性质与判定.24.如图,AB∥DE,C为BD上一点,∠A=∠BCA,∠E=∠ECD,求证:CE⊥CA.【答案】详见解析.【解析】首先根据AB∥DE,判断出∠B+∠D=180°;然后判断出∠BCA+∠ECD=90°,即可推得CE⊥CA.【详解】证明∵AB∥DE,∴∠B+∠D=180°,∵∠A=∠BCA,∠E=∠ECD,∴∠B=180°-2∠BCA,∠D=180°-2∠ECD,∴(180°-2∠BCA)+(180°-2∠ECD)=180°,∴∠BCA+∠ECD=90°,∴∠ACE=90°,∴CE⊥CA.【点睛】此题主要考查了平行线的性质和应用,要熟练掌握平行线性质的3个定理.25.(1)完成下面的推理说明:已知:如图,BE∥CF,BE、CF分别平分∠ABC和∠BCD.求证:AB∥CD.(2)说出(1)的推理中运用了哪两个互逆的真命题.【答案】(1)详见解析;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.【分析】(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC=∠BCD,再根据平行线的判定,即可得出AB∥CD,(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题.【详解】(1)∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=∠ABC,∠2=∠BCD(角平分线的定义),∵BE∥CF(已知),∴∠1=∠2(两直线平行,内错角相等),∴∠ABC=∠BCD(等量代换),∴∠ABC=∠BCD(等式的性质),∴AB∥CD(内错角相等,两直线平行).(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.【点睛】本题考查的是平行线的判定与性质的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.26.如图,已知:,则BC与EF平行吗?为什么?【答案】平行【解析】【分析】根据平行线的性质和判定即可解答.【详解】解:BC//EF证明:∵AB∥DE,∴∠1=∠2,∵∠1+∠3=180°,∴∠2+∠3=180°,∴BC∥EF.故答案为:BC//EF【点睛】本题主要考查了平行线的性质和判定定理,熟练掌握平行线的性质和判定定理是解题的关键.27.如图,已知∠A=∠C,AD⊥BE于点F,BC⊥BE,点E,D,C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由;(2)若∠ABC=120°,求∠BEC的度数.【答案】(1)AB∥CD;(2)∠E=30°.【解析】【分析】(1)先根据AD⊥BE,BC⊥BE,得出AD∥BC,故可得出∠C=∠ADE,再由∠A=∠C得出∠A=∠ADE ,故可得出结论; (2)由AB∥CD得出∠C的度数,再由直角三角形的性质可得出结论.【详解】(1)AB∥CD,∵AD⊥BE,BC⊥BE,∴AD∥BC,∴∠C=∠ADE.∵∠A=∠C,∴∠A=∠ADE,∴AB∥C D.(2)∵AB∥CD,∠ABC=120°,∴∠C=60°,∵∠CBE=90°,∴∠E=30°.【点睛】本题考查的是平行线的判定与性质,先根据题意得出AD∥BC是解答此题的关键.28.如图,已知AD⊥BC于点D,EF⊥BC于点F,AD平分∠BAC.求证:∠E=∠1.【答案】见解析【解析】【分析】由AD垂直于BC,EF垂直于BC,得到一对同位角相等,利用同位角相等两直线平行得到AD与EF平行,利用两直线平行内错角相等得到一对角相等,再由AD为角平分线得到一对角相等,等量代换即可得证.【详解】证明:∵AD⊥BC,EF⊥BC(已知),∴∠ADC=∠EFC=90°(垂直的定义).∴AD∥EF(同位角相等,两直线平行).∴∠1=∠BAD(两直线平行,内错角相等),∠E=∠CAD(两直线平行,同位角相等).又∵AD平分∠BAC(已知),∴∠BAD=∠CAD.∴∠1=∠E(等量代换).【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.29.如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F ()∴AD∥BF(),∴∠D=∠DCF()∵∠B=∠D ()∴∠B=∠DCF ()∴AB∥DC()【答案】见解析.【解析】【分析】首先根据已知,应用内错角相等,两直线平行,证得AD∥BF;利用两直线平行,内错角相等,证得∠D=∠DCF,又由已知,利用等量代换,证得∠B=∠DCF,根据同位角相等,两直线平行,证得AB∥DC.【详解】解:∠DAF=∠F (已知),∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等),∵∠B=∠D (已知),∴∠B=∠DCF (等量代换),∴AB∥DC(同位角相等,两直线平行).【点睛】平行线的性质习题(含答案)本题考查了平行线的性质与判定.解答本题的关键是注意平行线的性质和判定定理的综合运用.30.如图,已知,,求证:AC 平分.【答案】证明见解析.【解析】【分析】由∠4=∠B,推出CD∥AB,再由两直线平行,内错角相等,推出∠3=∠2,然后通过等量代换推出∠1=∠2,即可推出结论.【详解】解:∵∠4=∠B,∴CD∥AB,∴∠3=∠2,又∠1=∠3,∴∠1=∠2,∴AC平分∠BAD.【点睛】本题主要考查平行线的判定与性质、等量代换、角平分线的定义,关键在于熟练运用相关的性质定理推出AC平分∠BAD.31 / 31试卷第31页,总31页。
平行线的判定与性质(综合复习)练习课件
1
解:如图,过点P作PE∥AB.
2
∵AB∥CD,
∴PE∥CD,
∴∠A=∠1,∠2=∠C.
∵∠APC=∠1+∠2,
∴∠APC=∠A+∠C.
“拐点”问题
练习5 如图,将一副三角板和一张对边平行的纸条按
图中方式摆放,两个三角板的一条直角边重合,含
30°角的直角三角板的斜边与纸条一边重合,含45°
角的三角板的一个顶点在纸条的另一边上,则∠1的度
平行线判定的应用
练习1 已知∠1= ∠2, ∠D+∠3=1800,
求证:EF//BC
DF C
3
2
证明: ∵ ∠1= ∠2
∴ AD// BC ∵ ∠D+∠3=1800 ∴ AD// EF
1
B
E A
∴ EF// BC
平行线性质的应用
例2 如图,AB∥DE∥CF,∠B=70°,∠D=130°, 求∠BCD的度数.
A
D E B1
G
2
3
F
C
“拐点”问题
例4 如图,AB∥CD,探索∠APC与∠A,∠C之间的关系
解:如图,过点P作PE∥AB. ∵AB∥CD, ∴PE∥CD ∴∠A+∠1=180° ∠2+∠C=180° ∴∠A+∠1+∠2+∠C=360° ∴∠A+∠APC+∠C=360°
“拐点”问题
练习4 如图,AB∥CD,探索∠APC与∠A,∠C之间 的关系.
A
B
平行线判定的应用
1
例1 如图:填空,并注明理由。
F3
5
∵ ∠1= ∠2 (已知)
∴ —AB—∥—E—D (内错角相等,两直线平行)E
4
C
人教版七年级下册数学平行线的性质第3课时命题、定理、证明 同步练习
5.3 平行线的性质第3课时命题、定理、证明基础训练知识点1 命题的定义及结构1.下列语句是命题的是( )A.延长线段AB到CB.用量角器画∠AOB=90°C.同位角相等,两直线平行D.任何数的平方都不小于0吗?2.下列语句:①钝角大于90°;②两点之间,线段最短;③希望明天下雨;④作AD⊥BC;⑤同旁内角不互补,两直线不平行.其中是命题的是( )A.①②③B.①②⑤C.①②④⑤D.①②④3.下列语句中,不是命题的是( )A.如果a>b,那么b<aB.同位角相等C.垂线段最短D.反向延长射线OA4.命题“平行于同一条直线的两条直线互相平行”的题设是( )A.平行B.两条直线C.同一条直线D.两条直线平行于同一条直线5.命题“如果a2=b2,那么a=b或a+b=0”的结论是( )A.a2=b2或a=bB.a2=b2C.a=b或a+b=0D.a2=b2或a+b=0知识点2 命题的分类6.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题是(填写所有真命题的序号).7.下列命题:①垂线段最短;②同位角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④内错角相等,两直线平行;⑤经过一点有且只有一条直线与这条直线平行;⑥如果|x|=2,那么x=2.其中真命题有( )A.1个B.2个C.3个D.4个8.(2016·大庆)如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A.0B.1C.2D.3知识点3 定理与证明(举反例)9.下列说法错误的是( )A.命题不一定是定理,定理一定是命题B.定理不可能是假命题C.真命题是定理D.如果真命题的正确性是经过推理证实的,这样得到的真命题就是定理10.下列命题可以作为定理的个数是( )①两直线平行,同旁内角互补;②相等的角是对顶角;③等角的余角相等;④对顶角相等.A.1个B.2个C.3个D.4个11.(2016·宁波)能说明命题“对于任何实数a,|a|>-a”是假命题的一个反例可以是( )A.a=-2B.a=错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
思考:如果∠APC=∠A+∠C ,那么 AB∥CD吗?
A (2) P 1 2 C E
B
D
∠APC+∠A+∠C=360°
(3) A 1 C
P
E B
D
∠APC=∠C-∠A
(3) A 1 F C
P B
D
∠APC=∠C-∠A
(4) A B
C P
D E
∠APC=∠A-∠C
(4) A F C P
)2
B
D
∠APC=∠A-∠C
13.如图20,BD⊥AC,EF⊥AC,D、F分 别为垂足,且∠1=∠4,求证: ∠ADG=∠C
14.如图:在△ ABC中, AD ⊥ BC, EF ⊥ BC,且∠ 1= ∠ 2,试说明:AB ∥ DG
A E 1
┏ ┏
解:∵ AD ___, EF ⊥ BC( 已知 ) ___⊥ BC EFB ADB ∴ ∠____=∠____=900( 垂直的定义 )
3 G 2
EF AD ∴___∥___ ( 同位角相等,两直线平行.) 1 3 两直线平行,同位角相等 ∴∠__=∠___ (___________________)
B
C
F
D
∵ ∠ 1= ∠ 2( 已知 )
2 3 ∴∠___=∠___
AB DG ∴___∥___ ( 内错角相等,两直线平行.)
14.如图:已知: a∥b, ∠1=(2x+15) 度,∠2=(5x-6)度,试一试,求出∠3的 度数。 a
____________
____________
8.如图,∠1=∠2,∠C=∠D,求证:∠A=∠F
D G A
1
E
2
F
E
3H
A 1
C
2
D C
B
B
9.如图,AD∥BC,AD平分∠EAC, 求证:∠B=∠C
10.两面镜子EF和GH是平行 的,光线经过镜子反射时, B )1 入射角等于反射角,即 5 ∠1=∠2,∠3=∠4,请解释 2 E 为什么进入潜望镜的光线 和离开潜望镜的光线是平 3 6 行的。 4 C D
b
1 3
2
15.求证: (1)如果两直线互相平行,那么同 位角的平分线互相平行。 (2)如果两直线互相平行,那么内 错角的平分线互相平行。 (3)如果两直线互相平行,那么同 旁内角的平分线互相垂直。
1.如图:AB∥CD,∠1=30 ,∠2=40 ,求∠EPF
0
0
1 P 3 4 2 C F
A
E
B
Q
D
4
2.如下图,CD⊥AB,垂足为D,点F是BC上任 意一点,FE⊥AB,垂足为E,且∠1=∠2, ∠3=80°,求∠BCA的度数.
一、热身练习
1.由 AB ∥CD,可推得(
A、 ∠1=∠2 C 、∠2=∠4 B、 ∠1=∠3 D、 ∠3=∠4 A 2 1 B 3 4 C D
G
F A
H
11、你能说明三角形的内角和是180° 吗?你能利用下面提供的图形验证吗?
C
D
1
C
2
E
C
12 B
E
D F
1 32 E B
A
B
A
D A
12、如图,已知: AB∥CD,试探究下 列图形中∠APC和∠A、∠C的关系,并 证明你所探究的结论的正确性。
(1) 知直线a//b 1 2, , 那么直线c//d吗? 请说明理由。 1
2
a b
3 )
c
d a//b(已 知 ) 1 3(同 位 角 相 等 两 直 线 平 行 ) , 又1 2(已 知 ) (两直线平行 同位角相等) , 2 3(等 量 代 换 ) c//d(两 直 线 平 行 同 位 角 相 等 ) , (同位角相等 两直线平行) ,
A E C 1 2 P
B
证明:过P点作PE∥AB, ∴∠1=∠A__________________________ (两直线平行,内错角相等) 又∵ AB∥CD (已知) ∴ PE ∥ CD ____________________ ( 平行公理的推论 ) ∴ ∠2=∠C _________(两直线平行,内错角相等) ∴ ∠1+∠2= ∠A + ∠C 即:∠APC=∠A+∠C __________________
)
2.如图:已知:∠1=∠2,则 ∠C+∠D=____度.
D C 2 B
1 A
E
3.看图,填空:
∵∠A+∠B=180°(已知), ∴____∥____ ( ). ∴∠C+∠D=_____(
A D
).
B
C
4.如图, (1) 从∠1=140°,可知∠2= 40°,那 么 AB//CD吗?请说明理由。