2、3、4、5、6、7、8、9、11、13、17、19、23、29的倍数特征

合集下载

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23等整除的数的特征之樊仲川亿创作能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字辨别加起来,再求它们的差,如果这个差是11的倍数(包含0),那么,原来这个数就一定能被11整除.例如:判断491678能不克不及被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种办法叫"奇偶位差法".除上述办法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不克不及被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.若一个整数的末位是0、2、4、6或8,则这个数能被2整除. (3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除. (4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除. (5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除.(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除.(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大或心算不容易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推. (8)能被8整除的数的特征若一个整数的未尾三位数能被8整除,则这个数能被8整除. (9)能被9整除的数的特征若一个整数的数字和能被9整除,则这个整数能被9整除.若一个整数的末位是0,则这个数能被10整除.(11)能被11整除的数的特征若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除.11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不合的是:倍数不是2而是1!(12)能被12整除的数的特征若一个整数能被3和4整除,则这个数能被12整除.(13)能被13整除的数的特征若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除.如果差太大或心算不容易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止.(14)能被17整除的数的特征1、若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除.如果差太大或心算不容易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.2、若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除.(15)能被19整除的数的特征1、若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除.如果差太大或心算不容易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止.2、若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除.(16)能被23整除的数的特征若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除.。

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23等整除的数的特征之宇文皓月创作能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包含0),那么,原来这个数就一定能被11整除.例如:判断491678能不克不及被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不克不及被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整(3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。

(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。

(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不容易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

五年级数学下册三倍数与因数(3的倍数的特征)课件苏教版

五年级数学下册三倍数与因数(3的倍数的特征)课件苏教版

课后习题
1.50以内7的倍数有(7、14、21、28、35、42、49 ),45的因数 有( 1、3、5、9、15、45 )。 2.自然数中最小的数是( 1 ),最小的偶数是( 2 ),最小的 奇数是( 1 )。 3.选一选。
12 18 22 27 28 36 45 60 64 75 96 420 2的倍数有(12、18、22、28、36、60、64、96、420 ); 3的倍数( 12、18、27、36、45、60、75、96、420);
知识点3:同时是2、3、5倍数的特征。 同时是2、3、5倍数的特征:个位上的数是0,同时各个数
位上的数的和是3的倍数。 【例】一个三位数,既是3和5的倍数,又含有因数2,这个数最 小是( )。
【讲解】一个三位数,是5的倍数,又含有因数2,这个数个位是0,同时又 是3的倍数且是最小的三位数,那么从百位思考为1,十位上的数为2,符合 条件的这个三位数最小是120。
—个数既是3的倍数,又是5的倍数,一定是( 15 )的倍数。
课堂练习
3.在下面每个数的□里填上一个数字,使这个数是3的倍数,各
有几种填法?1
5□4
7 4.判断。
3
1□6 25
9
1
2
3□4 5
□5 4
7
8
(1)11211不是3的倍数。
( ×)
(2)35□是3的倍数,□能填1、4、7这三个数。 ( √ )
知识梳理
【方法小结】此类题目:同时是2、3、5倍数的特征,分这样几步考虑:首 先考虑是2和5的倍数即个位上的数必须是0,再考虑是3的倍数即各个数位上 的数的和是3的倍数,最后看此题有没有其他条件,比如最大、最小之类的。
【小练习】在下面的□里填上适当的数字。 (1)40□和2□□,是3的倍数,又是5的倍数。 (2)10□和□2□,是3的倍数,又是2的倍数。

能被2、3、5、7、11、13、17、19整除的数的特征

能被2、3、5、7、11、13、17、19整除的数的特征

【数学】能被2、3、5、7、11、13、17、19整除的数的特征★★能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。

即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止。

如果余数能被11整除,那么,原来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

最新4、6、7、8、9、11、13、27的倍数特征资料

最新4、6、7、8、9、11、13、27的倍数特征资料

精品文档4 的倍数的特征:(1)十位数是奇数且个位数为不是四的倍数的偶数或十位数是偶数且个位数是四的倍数。

(2)若一个整数的末尾两位数能被 4 整除,则这个数能被4 整除,即是 4 的倍数。

6 的倍数的特征:各个数位上的数字之和可以被3 整除的偶数。

7 的倍数的特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2 倍,如果差是7 的倍数,则原数能被7 整除。

如果差太大或心算不易看出是否7 的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13 - 3沦=7,所以133 是7 的倍数;又例如判断6139 是否7 的倍数的过程如下:613 - 9 X2 = 595 , 59 - 5 沦=49,所以6139 是7的倍数,余类推。

8 的倍数的特征:数字的末三位能被8 整除的数。

9 的倍数的特征:精品文档任何正整数的9 倍,其各位数字之和是9 的倍数,如果继续将各位数字连加最后必然会等于9 。

11 的倍数的特征:一种是:11 的倍数奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是0 或是11 的倍数。

另外一种答案是:若一个整数的奇位数字之和与偶位数字之和的差能被11 整除,则这个数能被11 整除。

11 的倍数检验法也可用上述检查7 的「割尾法」处理!过程唯一不同的是:倍数不是2 而是1。

13 的倍数的特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4 倍,如果差是13 的倍数,则原数能被13 整除。

如果差太大或心算不易看出是否13 的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

若一个整数的个位数字截去,再从余下的数中,加上个位数的 4 倍,如果差是13 的倍数,则原数能被13 整除。

如果差太大或心算不易看出是否13 的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23等整除的数的特征之巴公井开创作能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包含0),那么,原来这个数就一定能被11整除.例如:判断491678能不克不及被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不克不及被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。

(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。

(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不容易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

3、4、5、6、7、8、9、11、12、13的整除特征

整除特征能被2整除的数个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数个位上为0或5的数都能被5整除,那么这个数能被5整除能被6整除的数各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数一个整数的末3位若能被8整除,则该数一定能被8整除。

能被9整除的数各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!能被12整除的数若一个整数能被3和4整除,则这个数能被12整除能被13整除的数若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

能被17整除的数若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

4、6、7、8、9、11、13、27的倍数的特征

4、6、7、8、9、11、13、27的倍数的特征4的倍数的特征:(1)⼗位数是奇数且个位数为不是四的倍数的偶数或⼗位数是偶数且个位数是四的倍数。

(2)若⼀个整数的末尾两位数能被4整除,则这个数能被4整除,即是4的倍数。

6的倍数的特征:各个数位上的数字之和可以被3整除的偶数。

7的倍数的特征:若⼀个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太⼤或⼼算不易看出是否7的倍数,就需要继续上述「截尾、倍⼤、相减、验差」的过程,直到能清楚判断为⽌。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;⼜例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

8的倍数的特征:数字的末三位能被8整除的数。

9的倍数的特征:任何正整数的9倍,其各位数字之和是9的倍数,如果继续将各位数字连加最后必然会等于9。

11的倍数的特征:⼀种是:11的倍数奇数位上的数字之和与偶数位上的数字之和的差(以⼤减⼩)是0或是11的倍数。

另外⼀种答案是:若⼀个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可⽤上述检查7的「割尾法」处理!过程唯⼀不同的是:倍数不是2⽽是1。

13的倍数的特征:若⼀个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果差太⼤或⼼算不易看出是否13的倍数,就需要继续上述「截尾、倍⼤、相加、验差」的过程,直到能清楚判断为⽌。

若⼀个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太⼤或⼼算不易看出是否13的倍数,就需要继续上述「截尾、倍⼤、相加、验差」的过程,直到能清楚判断为⽌。

例如:判断383357能不能被13整除。

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23等整除的数的特征之巴公井开创作能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数, 即对任何整数a, 总有1|a.0是任何非零整数的倍数, a≠0,a为整数, 则a|0.(2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8, 则这个数能被2整除. (3)能被3整除的数的特征若一个整数的数字和能被3整除, 则这个整数能被3整除. (4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除, 则这个数能被4整除. (5)能被5整除的数的特征若一个整数的末位是0或5, 则这个数能被5整除.(6)能被6整除的数的特征若一个整数能被2和3整除, 则这个数能被6整除.(7)能被7整除的数的特征若一个整数的个位数字截去, 再从余下的数中, 减去个位数的2倍, 如果差是7的倍数, 则原数能被7整除.如果差太年夜或心算不容易看出是否7的倍数, 就需要继续上述「截尾、倍年夜、相减、验差」的过程, 直到能清楚判断为止.例如, 判断133是否7的倍数的过程如下:13-3×2=7, 所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49, 所以6139是7的倍数, 余类推.(8)能被8整除的数的特征若一个整数的未尾三位数能被8整除, 则这个数能被8整除. (9)能被9整除的数的特征若一个整数的数字和能被9整除, 则这个整数能被9整除. (10)能被10整除的数的特征若一个整数的末位是0, 则这个数能被10整除.(11)能被11整除的数的特征若一个整数的奇位数字之和与偶位数字之和的差能被11整除, 则这个数能被11整除.11的倍数检验法也可用上述检查7的「割尾法」处置!过程唯一分歧的是:倍数不是2而是1!(12)能被12整除的数的特征若一个整数能被3和4整除, 则这个数能被12整除.(13)能被13整除的数的特征若一个整数的个位数字截去, 再从余下的数中, 加上个位数的4倍, 如果差是13的倍数, 则原数能被13整除.如果差太年夜或心算不容易看出是否13的倍数, 就需要继续上述「截尾、倍年夜、相加、验差」的过程, 直到能清楚判断为止.(14)能被17整除的数的特征1、若一个整数的个位数字截去, 再从余下的数中, 减去个位数的5倍, 如果差是17的倍数, 则原数能被17整除.如果差太年夜或心算不容易看出是否17的倍数, 就需要继续上述「截尾、倍年夜、相减、验差」的过程, 直到能清楚判断为止.2、若一个整数的末三位与3倍的前面的隔出数的差能被17整除, 则这个数能被17整除.(15)能被19整除的数的特征1、若一个整数的个位数字截去, 再从余下的数中, 加上个位数的2倍, 如果差是19的倍数, 则原数能被19整除.如果差太年夜或心算不容易看出是否19的倍数, 就需要继续上述「截尾、倍年夜、相加、验差」的过程, 直到能清楚判断为止.2、若一个整数的末三位与7倍的前面的隔出数的差能被19整除, 则这个数能被19整除.(16)能被23整除的数的特征若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除, 则这个数能被23整除.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、3、4、5、6、7、8、9、11、13、17、19、23、
29的倍数特征
1、2的倍数:若一个整数的个位数字是0、
2、4、6或8,则这个数就能被2整除。

2、3的倍数:若一个整数的各位数字的和能被3整除,则这个整数就能被3整除。

3、4的倍数:若一个整数的末尾两位数能被4整除,则这个数就能被4整除。

4、5的倍数:若一个整数的末位是0或5,则这个数就能被5整除。

5、6的倍数:若一个整数能被2和3整除,则这个数能被6整除。

6、7的倍数:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

7、8的倍数:若一个整数的未尾三位数能被8整除,则这个数能被8整除。

8、9的倍数:若一个整数的数字和能被9整除,则这个整数能被9
整除。

9、11的倍数:两种方法:①若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

②若一个整数的个位数字截去,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。

如果差太大或心算不易看出是否11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断165是否11的倍数的过程如下:16-5=11,所以165是11的倍数;又例如判断2112是否11的倍数的过程如下:211-2=209 , 20-9=11,所以2112是11的倍数,余类推。

10、13的倍数:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

例如,判断247是否13的倍数的过程如下:24+7×4=52,所以247是13的倍数;又例如判断2496是否13的倍数的过程如下:249+6×4=273 , 27+3×4
=39,所以2496是13的倍数,余类推。

11、17的倍数:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断221是否17的倍数的过程如下:22-1×5=17,所以221是17的倍数;又例
如判断4318是否17的倍数的过程如下:431-8×5=391 ,39-1×5=34,所以4318是17的倍数,余类推。

12、19的倍数:①若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。

如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

例如,判断646是否19的倍数的过程如下:64+6×2=76,所以646是19的倍数;又例如判断1691是否19的倍数的过程如下:169+1×2=171 ,17+1×2=19,所以1691是19的倍数,余类推。

②若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

(注:隔出数,就是一个数扣除末三位后剩下的数字。

例如5012的隔出数就是5;12590的隔出数就是12。

)例如:判断21128是否19的倍数的过程如下:21×7-128=19,所以21128是19的倍数。

13、23的倍数:若一个整数的末四位与前面5倍的隔出数的差能被23整除,则这个数能被23整除。

(注:这里的隔出数,是一个数扣除末四位后剩下的数字。

)例如:判断2271595是否23的倍数的过程如下:1595-227×5=460,460是23的倍数,所以2271595是23的倍数。

14、29的倍数:若一个整数的末四位与前面5倍的隔出数的差能被29整除,则这个数能被29整除。

例如:判断32625是否29的倍数的过程如下:2625-3×5=2610,2610是23的倍数,所以32625是
29的倍数。

另外,其他数的倍数的特征可综合起来考虑:如:15的倍数就是3的倍数和5的倍数的综合。

26的倍数就是13的倍数和2的倍数的综合。

相关文档
最新文档