13有理数的加减法(练习课)

合集下载

有理数的加减法混合运算500题(精品)

有理数的加减法混合运算500题(精品)

有理数的加减法混合运算500题(精品)有理数的加减法混合运算500题(精品)在数学学习中,有理数的加减法混合运算是一个重要的知识点。

通过进行大量的练习,可以帮助学生巩固运算的基本规则,培养计算能力和逻辑思维。

本文将为大家提供500道有理数的加减法混合运算题目,希望能够对大家的学习有所帮助。

1. 计算:(-5) + 3 - (-2)2. 计算:(-2) + (-3) - 53. 计算:4 - 2 - (-6)4. 计算:(-7) - 3 + 45. 计算:(-9) - (-5) - 76. 计算:(-3) - (-4) + 27. 计算:8 - (-3) + (-6)8. 计算:(-2) + 5 - (-9)9. 计算:(-6) - (-8) + 310. 计算:(-4) + (-7) - (-2)11. 计算:5 + (-3) + 7 - 212. 计算:3 - 5 - (-2) + 613. 计算:(-4) - 6 - (-3) - 514. 计算:(-9) + (-5) - 3 - (-7)15. 计算:(-2) + (-3) - 4 + 616. 计算:(-5) - 4 - (-9) - 317. 计算:6 + (-3) + 5 + (-7) - 218. 计算:7 - 2 - 6 - (-4) + 319. 计算:(-4) - (-6) - 7 + (-2) - 520. 计算:(-3) + (-5) - 4 - (-6) + 221. 计算:5 - (-3) + 7 - (-2) - 622. 计算:(-4) + 6 - (-3) + 5 + 723. 计算:(-8) - (-4) - 2 - (-6) + 924. 计算:(-7) + (-2) - 5 + (-3) + 425. 计算:(-5) - 3 - (-7) + 2 - (-6)26. 计算:(-3) + 4 - (-8) - 2 + 527. 计算:9 + (-5) + (-6) - 2 - (-4)28. 计算:7 - 3 - (-5) + 6 - (-2)29. 计算:(-6) - (-4) - 2 - (-9) + 330. 计算:(-2) + 5 - (-3) - 6 + (-8)31. ...500. 计算:................这是500道有理数的加减法混合运算题目,通过练习这些题目,相信大家的计算能力会得到很大的提升。

专题03 有理数的加减法(解析版)

专题03 有理数的加减法(解析版)

第3讲有理数的加减法有理数的加法知识点1、有理数的加法1.有理数加法法则(1)同号两数相加:取相同的符号,并把绝对值相加。

(2)异号两数相加:绝对值值相等时和为0,绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数同0 相加,仍得这个数。

2.加法运算律2.加法交换律加法结合律a +b =b +a(a +b) +c =a + (b +c)1.计算:(1)|﹣7|+|﹣9|(2)(﹣7)+(﹣3)(3)(+4.85)+(﹣3.25)(4)(﹣7)+(+10)+(﹣1)+(﹣2)(5)(﹣2.6)+(﹣3.4)+(+2.3)+1.5+(﹣2.3)(6).【解答】解:(1)原式=7+9=;(2)原式=﹣7﹣3=﹣==﹣;(3)原式=4.85﹣3.25=1.6;(4)原式=﹣7+10﹣1﹣2=0;(5)原式=﹣2.6﹣3.4+2.3+1.5﹣2.3=﹣4.5;(6)原式=,=﹣3.36+[7.36+]=﹣3.36+7.36+=1+4=5.2.计算:(1)1+(﹣2)+3+(﹣4)+5+…+2001+(﹣2002)+2003+(﹣2004)(2)1+(﹣2)+(﹣3)+4+5+(﹣6)+(﹣7)+8+…+2001+(﹣2002)+(﹣2003)+2004.【解答】解:(1)1+(﹣2)+3+(﹣4)+5+…+2001+(﹣2002)+2003+(﹣2004),=(﹣1)×1002,=﹣1002;(2)1+(﹣2)+(﹣3)+4+5+(﹣6)+(﹣7)+8+…+2001+(﹣2002)+(﹣2003)+2004,=(1﹣2﹣3+4)+(5﹣6﹣7+8)+(9﹣10﹣11+12)+…+(2001﹣2002﹣2003+2004),=0×501,=0.有理数的减法知识点2 有理数减法法则减去一个数,等于加上这个数的相反数。

3.计算(1)(﹣3﹣5)﹣(6﹣10)(2)(﹣32)﹣[(﹣27)﹣(﹣72)]﹣87.【解答】解:(1)(﹣3﹣5)﹣(6﹣10)=﹣8+4=﹣4;(2)(﹣32)﹣[(﹣27)﹣(﹣72)]﹣87=﹣32﹣45﹣87=﹣77﹣87=﹣164.4.计算下列各式.(1)(﹣32)﹣(﹣12)﹣5﹣(﹣15);(2)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75);(3)(﹣1)﹣(+1)﹣(﹣2)﹣2.【解答】解:(1)(﹣32)﹣(﹣12)﹣5﹣(﹣15)=﹣32+12﹣5+15=﹣20+10=﹣10.(2)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)=﹣3+7+2﹣2.75=4.(3)(﹣1)﹣(+1)﹣(﹣2)﹣2=﹣1﹣1+2﹣2=﹣3﹣1+2=﹣4+2=﹣2.有理数的混合运算知识点3有理数加减混合运算一般统一成加法运算,从左到右的顺序,利用加法交换律和结合律简化运算。

1.3有理数的加减法练习题

1.3有理数的加减法练习题

1.3有理数的加减法练习题一、判断题(每小题1分,共4分)1.一个数的相反数一定比原数小。

( )2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等。

() 3.|-2.7|>|-2.6| ( )4.若a+b=0,则a,b 互为相反数。

( )二、选择题(每小题1分,共6分)1.相反数是它本身的数是( )A. 1B. -1C. 0D.不存在2.下列语句中,正确的是( )A.不存在最小的自然数B.不存在最小的正有理数C.存在最大的正有理数D.存在最小的负有理数3.两个数的和是正数,那么这两个数( )A.都是正数B.一正一负C.都是负数D.至少有一个是正数4、下列各式中,等号成立的是 ( )A.-6-=6B.(6)--=-6C.-112=﹣112 D. 3.14+=﹣3.145、在数轴上表示的数8与﹣2这两个点之间的距离是 ( )A.6B.10C.﹣10D.﹣66、一个有理数的绝对值等于其本身,这个数是 ( )A.正数B.非负数C.零D.负数三、填空题(每空1分,共32分)1. 相反数是2的数是____________,绝对值等于2的数是_____________2. |-4|-|﹣2.5|+|﹣10|=__________;|﹣24|÷|﹣3|×|﹣2|=_________3. 最大的负整数是_____________;最小的正整数是____________4. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个5. 数轴三要素是__________,___________,___________6. 若上升6米记作+6米,那么﹣8米表示 。

7. 在数轴上表示的两个数, 总比 的数大。

8. 的相反数是4,0的相反数是 ,﹣(﹣4)的相反数是。

9. 绝对值最小的数是 ,﹣313的绝对值是 。

10. 数轴上与表示-2的点距离1个单位长度的点所表示的数为 。

《有理数加法的运算律》练习题

《有理数加法的运算律》练习题

150 元. 240元、-40元、-87元、+37元.该班期末时,班费结余为____
8.计算:(-8.5)+7.3+(-1.75)+1.5+(-2.25)=[(-8.5)+1.5]+[(-
1.75)+(-2.25)]+7.3,这一步运算运用了( C)
A.加法交换律 B.加法结合律 C.加法交换律和加法结合律 D.以上都不对 9.把-1,0,1,2,3这五个数填入下列方框中,使行、列三个数的 和相等,其中错误的是( D )
方法技能: 根据题目特点,灵活运用加法运算律,通常有下列规律: (1)相反数结合法,即互为相反数的两个数先相加; (2)同号结合法,即符号相同的数先相加; (3)同分母结合法,即分母相同(或分母成倍数易化成同分母)的数先相加; (4)凑整法,即几个数相加得到整数或整十整百的数,先相加; (5)同形结合法,即整数与整数、小数与小数先相加. 易错提示: 1.交换加数的位置时,注意不要漏掉符号. 2.带分数拆项时,易出现符号错误.
-5 10.已知a+x=2015,b+y=-2020,则a+b+x+y=____. 7 . 11.若m,n互为相反数,则|m+(-7)+n|=____ 0 12.绝对值小于20的所有整数的和是____.
13.用简便方法计算:
(1)(-23)+59+(-41)+(-59); 解:-64
(2)(-3.8)+2.7+(-0.43)+1.3+(-0.2);
解:-0.43
7 7 3 7 2 1 (3)28+(-212)+55+(-18)+25+(-312);
1 解:33
1 1 1 3 6 (4)(-3.75)+53+(-27)+(-43)+34+(-17).
解:-3
14.(例题3变式)有6筐蔬菜,每筐质量分别为(单位:千克):48,52,47,

鲁山县第九中学七年级数学上册第1章有理数1.3有理数的加减法1.3.1有理数的加法课时2有理数的加法

鲁山县第九中学七年级数学上册第1章有理数1.3有理数的加减法1.3.1有理数的加法课时2有理数的加法
O
〔3〕点C在线段AB上 ;
AC
B
C A
B
课后作业
1.从课后习题中选取 ; 2.完成练习册本课时的习题。
课堂小结
通过本节课的学习,你 有什么收获?
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们 休息一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐 对身体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相 信成功的信念比成功本身更重要,相信人生 有挫折没有失败,相信生命的质量来自决不 妥协的信念,考试加油!奥利给~
新课讲解
知识点1 有理数加法运算
填一填
(1) 3 ﹢ -7 ﹦ -4 -7 ﹢ 3 ﹦ -4
(2) 28 ﹢ -9 ﹦ 3 -9 ﹢ 12 ﹦ 3
思考
以上每组中的两个算式的结果有什么关系 ?每组中的两个 算式有什么特征 ?
新课讲解
知识点1 有理数加法运算
填一填
(3)( 3 ﹢ 6 )﹢ -7 ﹦ 2
新课导入
知识回顾
(1)同号两数相加 , 取_相__同__的__符__号___并,__把__绝__対__值__相__加_____. (2)异号两数相加 , 取__绝__対___值__较__大___的__数__的___符__号_, _并___用__较__大___的_ 绝対值__减__去__较___小__的__绝___対__值____. (3)互为相反数的两数相加得_零___. (4)一个数同零相加仍得_这___个__数__.
线段AB〔或BA〕 线段a
射线AB 射线BA 直线AB〔或BA〕
直线l
例题练习
以下说法准确的选项是C哪一项:〔 〕
A.射线AB与射线BA是同一条射线 B.线段AB与线段BA不是同一条射线 C.射线AC是直线AC的一部分 D.延长直线AB , 使它经过点M

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。

1.3有理数的加减法(通用)

1温度3比8高72m实际问题884443155吐鲁番盆地珠穆朗玛峰世界上最高的山峰是珠海拔高度是884443米吐鲁番盆地的海拔高度大约是155米
人教版义务教育教科书 数学 七年级 上册
1.3.1有理数的加法
在观察的领域中,机遇只 偏爱那种有准备的头脑.
(巴斯德)
第一个加数
第二个加数
正数 0
负数
正数
(-30)+20=-10
(-30)+30= 0
根据以上三个算式能否尝试总结异号两数相加的法则?
结论: 绝对值不相等的异号两数相加,取绝对值较大的加 数的符号,并用较大的绝对值减去较小的绝对值, 互为相反数的两个数相加得0 .
(-30)+0=-30
-30
0
• 0+(-30)=-30 • 结论:一个数同0相加,仍得这个数
3.一个数同0相加,仍得这个数.
(1) (-13)+(-8)=-(13+8)=-21
(2) 10 + (-6) =+(10-6)=4
(3) -3.5+0 =-3.5
(4)(-3.4)+ 3.4 =0
每个人手中有理数牌中,各选择 1张与同桌的牌相加,同桌间进行有理 数加法比赛,看看谁算的又快又对!
正数+正数 0+正数
负数+正数
0
正数+0 0+0
负数+0
负数
正数+负数 0+负数
负数+负数
结论:共三种类型. 即:(1)同号两个数相加; (2)异号两个数相加;
(3)一个数与0相加.
(+30) +(+20)= +50
0
30
50
(-30)+(-20) = -50

有理数的加减法讲义

有理数的加减法讲义专题四有理数的加法1、相关知识链接(13)加法的定义:把两个数合成一个数的运算,叫做加法;(14)加法交换律:两个数相加,交换加数的位置,和不变;(15)加法分配律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

2、教材知识详解【知识点1】有理数加法法则(1)同号两数相加;取相同的符号,并把绝对值相加。

数学表示:若a>0、b>0,则a+b=|a|+|b|;若a<0、b<0,则a+b=-(|a|+|b|);(2)异号两数相加,绝对值相等(相反数)时和为0;绝对值不相等时,取绝对值较大的数的符号,并且用较大的绝对值减去较小的绝对值。

数学表示:若a>0、b<0,且|a|>|b|则a+b=|a|-|b|;若a>0、b<0,则a+b=|b|-|a|;(3)一个数同0相加,仍得这个数。

【例1】计算:(1)(+8)+(+2)(2)(-8)+(-2)(3)(-8)+(+2)(4)(+8)+(-2) (5)(-8)+(+8) (6)(-8)+ 0【知识点2】有理数加法的运算律 加法交换律:a + b = b + a加法结合律:(a + b )+ c = a +(b + c )【例2】计算 4.1+(+12)+(-12)+(-10.1)+7 【基础练习】1.如果规定存款为正,取款为负,请根据李明同学的存取款情况①一月份先存10元,后又存30元,两次合计存人 元,就是(+10)+(+30)= ②三月份先存人25元,后取出10元,两次合计存人元,就是(+25)+(-10)= 2.计算:(1)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (2)(—2.2)+3.8; (3)314+(—561);(4)(—561)+0; (5)(+251)+(—2.2);(6)(—152)+(+0.8);(7)(—6)+8+(—4)+12; (8)3173312741++⎪⎭⎫ ⎝⎛-+(9)0.36+(—7.4)+0.3+(—0.6)+0.64; (10)9+(—7)+ 10 +(—3)+(—9);3.用简便方法计算下列各题:(1) (2)(3))539()518()23()52()21(++++-+-(4))4.2()6.0()2.1()8(-+-+-+-75.9)219()29()5.0(+-++-)127()65()411()310(-++-+(5))37(75.0)27()43()34()5.3(-++++-+-+-3、用算式表示:温度由—5℃上升8℃后所达到的温度.4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?5. 一天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:请算出星期五该病人的血压【基础提高】1.计算:(1)3-8; (2)-4+7; (3) -6-9; (4)8-12;(5)-15+7; (6)0-2;(7)-5+9+3; (8)10+(-17)+8;2.计算:(1)-4.2+5.7+(-8.4)+10; (2)6.1-3.7-4.9+1.8;4.计算:(1)12+(-18)+(-7)+15;(2)-40+28+(-19)+( -24)+(-32);5.计算:(1)(+12)+(-18)+(-7)+(+15); 2)(-40)+(+28)+(-19)+(-24)+(32);(3)(+4.7)+(-8.9)+(+7.5)+(-6); (4) )31()21(54)32(21-+-++-+专题五 有理数的减法及加减混合运算1、 相关知识链接 减法是加法的逆运算。

新人教版七年级上册数学教材配题-1.2有理数、1.3有理数加减法

第一章 有理数1.2.1有理数P6——练习1. 所有正数组成正数集合,所有负数组成负数集合。

把下面的有理数填入它属于的集合的圈内15,19-,-5,512-,138-,0.1,-5.32,-80, 123, 2.333.2.指出下列各数中的正数、负数、整数、分数:-15,+6,-2,-0.9,1,35,0,134,0.63,-4.91.2.2数轴P7——思考怎样用数简明地表示这些树、电线杆与汽车站牌的相对位置关系(方向、距离) 思考图1.2-3中的温度计可以看做表示正数、0和负数的直线,它和图1.2-2有什么共同点,有什么不同点?P9——练习1.如图,写出数轴上点A ,B ,C ,D ,E 表示的数.DCABE(第1题)2.画出数轴并表示下列有理数:1.5,-2,2,-2.5,92,34-,0.3.数轴上,如果表示数a 的点在原点的左边,那么a 是一个____ 数;如果表示数b 的点在原点的右边,那么b 是一个____ 数.正数集合 负数集合1.2.3相反数P9——探究在数轴上,与原点的距离是2的点有几个?这些点各表示哪个数?设a 是一个正数,数轴上与原点的距离等于a 的点有几个?这些点表示的数有什么关系? 思考设a 表示一个数,-a 一定是负数么? 练习1.判断下列说法是否正确;(1)-3是相反数; (2)+3是相反数; (3) 3是-3的相反数; (4)-3与+3互为相反数.2.写出下列各数的相反数:5116,8, 3.9,,,100,0.22---3.如果a a =-,那么表示a 的点在数轴上的什么位置?4.化简下列各数:3(68),(0.75),(),( 3.8).5---+---+1.2.4绝对值P11——练习1. 写出下列个数的绝对值:6,-8,-3.9,52,211-,100, 0. 2. 判断下列说法是否正确:(1) 符号相反的数互为相反数;(2) 一个数的绝对值越大,它表示的点在数轴上越靠右; (3) 一个数的绝对值越大,表示它的点在数轴上离原点越远;(4) 当0a ≠时,a 总是大于0. 3. 判断下列各式是否正确:(1)55=-;(2) 55-=-;(3)-5= 5-.P12——思考图1.2-7给出了未来一周中每天的最高气温和最低气温,其中最低气温是多少?最高气温呢?你能将这七天中每天的最低气温按从低到高的顺序排列吗?思考对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?前面最低气温由低到高的排列与你的结论一致吗?例 比较下列各对数的大小: (1)-(-1)和-(+2);(2)821-和37-;(3)-(-0.3)和1-3P13——练习比较下列各对数的大小(1)3和-3; (2)-3和-5 (3)-2.5和- -2.25; (4)3-5和3-4P14—习题1.2 复习巩固1. 把下面的有理数填在相应的大括号里(将各数用逗号分开)15,3-8,0, 0.15,-30,-12.8,225,+20,-60. 正数:{ …} 负数{ … }2. 在数轴上表示下列各数:235,3, 3.5,0,,,0.75.32-+--3. 在数轴上,点A 表示-3,从点A 出发,沿数轴移动4个单位长度到达点B ,则点B 表示的数是多少?4. 写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:194,2, 1.5,0,,.34-+--5. 写出下列各数的绝对值:23125,23, 3.5,0,,,0.05.32-+---在上面的数中哪个数的绝对值最大?哪个数的绝对值最小?6. 将下列各数按从小到大的顺序排列,并用“<”号连接:2310.25, 2.3,0.15,0,,,,0.05.322-+----综合运用7. 下面是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列. 北京 武汉 广州 哈尔滨 南京-4.6℃ 3.8℃ 13.1℃ -19.4℃ 2.4℃8. 如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,哪个球最接近标准?9. 某年我国人均水资源比上年的增幅是-5.6%.后续三年各年比上年的增幅分别是-4.0%,13.0%,-9.6%.这些增幅中哪个最小?增幅是负数说明什么?10. 在数轴上,表示哪个数的点与表示-2和4的点的距离相等?拓广探索11.(1)-1与0之间还有负数吗?12-与0之间呢?如有,请举例. (2)-3与-1之间有负整数吗?-2与2之间有哪些整数? (3)有比-1大的负整数吗?(4)写出3个小于-100并且大于-103的数.12.如果2x =,那么x 一定是2吗?如果0x =,那么x 等于几?如果x x =-,那么x 等于几?1.3有理数的加减法 1.3.1有理数的加法P14——思考小学学过的加法是正数与正数相加、正数与0相加.引入负数后,加法有哪几种情况? 思考如果物体先向右运动5m ,再向右运动3m ,那么两次运动的最后结果是什么?可以用怎样的算式表示? 思考如果物体先向左运动5m ,再向左运动3m ,那么两次运动的最后结果是什么?可以用怎样的算式表示? 探究(1)如果物体先向左运动3m ,再向右运动5m ,那么两次运动的最后结果怎样?如何用算式表示? (2)如果物体先向右运动3m ,再向左运动5m ,那么两次运动的最后结果怎样?如何用算式表示? 探究如果物体先向右运动5m 再向左运动5m ,那么两次运动的最后结果如何?P18——例1计算:(1)(-3)+(-9) (2)(-4.7)+3.9练习:1.用算式表示下面的结果: (1)温度由-4℃上升7℃; (2)收入7元,又支出5元.2.口算:(1)(15)+(-6) (2)4+(-6) (3)(-4)+6 (4)(-4)+4 (5)(-4)+14 (6)(-14)+4 (7)6+(-6) (8)0+(-6)3.计算:(1)15+(-22) (2)(-13)+(-8) (3)(-0.9)+1.5 (4))32(21-+4.请你用生活实例解释5+(-3)=2,(-5)+(-3)=-8的意义.P19——探究 计算30+(-20) (-20)+30两次所得的和相同吗?换几个加数再试.从上述计算中,你能得出什么结论? 探究 计算[]8(5)(4),+-+- []8(5)(4)+-+-.两次所得的和相同吗?换几个加数再试.从上述计算中,你能得出什么结论?例2计算 16(25)24(35)+-++-.例 3 10袋小麦称后记录如图 1.3-3所示(单位:kg ).10袋小麦一共多少千克?如果每袋小麦以90kg 为标准,10袋小麦总计超过多少千克或不足多少千克?P20——练习 1.计算(1)()()2317622+-++-; (2)()()()231324-+++-++-. 2.计算: (1)1111()()236+-++-; (2)13323(2)5(8)4545+-++-.1.3.2有理数的减法P22——探究从③式能看出减-3相当于加哪个数吗?把3换成0,-1,-5,用上面的方法考虑()()()()()03,13,53.--------这些数减-3的结果与它们加+3的结果相同么?计算()()98,98;157,157.-+--+-从中又有什么新发现?例4 计算(1)()()35---; (2) 07- (3) ()7.2 4.8--; (4)11(3)524--.P23——练习 1.计算(1)69- ; (2)()()47+--; (3)()()58---; (4)()05--; (5)()2.5 5.9--; (6)()1.90.6--.2.计算:(1)比2℃低8℃的温度; (2)比-3℃低6℃的温度.例5 计算()()()()20357-++---+.P24——探究在数轴上,点A ,B 分别表示数a ,b 利用有理数减法,分别计算下列情况下点A,B 之间的距离: 2,6;0,6;2,6;2, 6.a b a b a b a b ======-=-=-你能发现点A ,B 之间的距离与数a ,b 之间的关系吗?P24——练习 计算:(1)1430.5-+- ; (2) 2.4 3.5 4.6 3.5-+-+; (3)()()()()75410--++---; (4)3712()()14263-+----.P24——习题1.3 复习巩固 1.计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9); (5)(-0.9)+(-2.7); (6))53(52-+;(7)52)31(+- ; (8))1211()413(-+-.2.计算:(1)(-8)+10+2+(-1)(2)5+(-6)+3+9+(-4)+(-7)(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5 (4))31()21(54)32(21-+-++-+3.计算:(1)()88--; (2)()()88---; (3)()88--; (4)88-; (5)06-; (6)()06--; (7 1647-); (8)()2874--; (9)()()3.87--+; (10)()()5.9 6.1---.4. 计算(1)23()()55+--; (2)23()()55---; (3)1123-; (4)11()23--;(5)21()36---; (6)30()4--;(7)2(2)()3--+; (8)311(16)(10)(1)442----+.5. 计算:(1) 4.2 5.78.410-+-+; (2)15214632-++-; (3)12(18)(7)15--+--; (4)4.7(8.9)7.5(6)---+-;(5)7111(4)(5)(4)(3)8248---+--+; (6)2151()054(9)3663-+-+-+-.综合运用6. 如图,陆上最高处是珠穆朗玛峰的峰顶,最低处位于亚洲西部名为死海的湖,两处高度相差是多少?7. 一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少摄氏度?8. 食品店一周中各天的盈亏情况如下(盈余为正);132元,-12.5元,-10.5元,127元,-87元,136.5元,98元.一周总的盈亏情况如何?9. 有8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.这8筐白菜一共多少千克?10. 某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大?哪天的温差最小?拓广探索11.填空:(1)__1127+=; (2)7__4+=; (3)(9)__9-+=; (4)12__0+=; (5)(8)__15-+=-; (6)__(13)6+-=-.12.计算下列各式的值:(2)(2)-+-, (2)(2)(2)-+-+-,(2)(2)(2)(2)-+-+-+-, (2)(2)(2)(2)(2)-+-+-+-+-.猜想下列各式的值:(2)2-⨯,(2)3-⨯,(2)4-⨯,(2)5-⨯.你能进一步猜出负数乘正数的法则吗?13一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价比开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值.。

有理数的加减法


3 2 21、已知两个数的和为 2 ,其中一个数为 1 ,求另 4 5 一个数. 2 3 48 35 13 解:2 1 = = 20 20 5 4 20 13 答:另一个数是 。 20 22、已知:a=-4, b=-5, c=-7,求式子a-b-c的值.
答案:∵14(13)1 ,∴不合适
有理数的 加减混合运算
1.有理数加减法统一成加法的意义 (1)有理数加减混合运算,可以通过有理数减法法则将减 法转化为加法,统一成只有加法运算的和式, 如 (12)(8)(6)(5)(12)(8)(6)(5) (2)在和式里,通常把各个加数的括号和它前面的加号省l 略不写,写成省略加号的和的形式: 如 (12)(8)(6)(5)12865 (3)和式的读法,一是按这个式子表示的意义,读作"12, 8,6,5的和〃; 二是按运算的意义,读作"负12,减8,减6,加5〃.
解:(1)货场A、批发部B、商场C、超市D的位置如图: C A B D -4 -3 -2 -1 0 1 2 3 4 5
(2) 2+1.5+(-5.5)
=3.5+(-5.5) =-2 -4 -3 2 =2 D -2 -1 A 0 B 2 C 3 4 5
1
答:超市D离货场A有2千米。
(3) 2 1.5 5.5 +2
= 2.2
=2.2
13 (4) -3.5 6 2.5 6 17
13 解:原式= 3.5 6 2.5 6 17 13 = 3.5 2.5 6 6 17 13 = 1+0 17 4 = 17
相反数 2、0减去一个数得这个数的______________. 3、两个正数之和为_____ _____。 正数 ,两个负数之和为负数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 时 计 划
第 13节
一、复习引入
1、绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)
2、一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;
绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)
0a (a )0a (0)0a (a a
3、 有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

即左边的数小于右边的数;(①正数大于0,0大于负数,正数大于负数;②两个负数,其绝对值大的反而小;)
1.3 有理数的加减法
1、有理数的加法法则:①同号两数相加,取相同符号,并把绝对值相加;
②绝对值不相等的异号两数相加,取绝对值大的符号,并用绝对值大的减去绝对值小的。

互为相反数的两个数相加为0;
③一个数与0相加仍得这个数;
2、有理数的减法法则:减去一个数,等于加上这个数的相反数;即:a-b=a+(-b);
二、探索新知
有理数的加减法------计算题练习
1、计算:(直接写出结果)
(1)3-8= (2)-4+7= (3)-6-9= (4)8-12=
(5)-15+7= (6)0-2= (7)-5-9+3= (8)10-17+8=
2、计算:
(9)-3-4+19-11 (10)-8+12-16-23
(11)-4.2+5.7-8.4+10 (12)6.1-3.7-4.9+1.8 (13)31-32+1; (14)-41+65+32-2
1; (15)12-(-18)+(-7)-15; (16)-40-28-(-19)+(-24)-(-32);
(17)4.7-(-8.9)-7.5+(-6); (18)23-17-(-7)+(-16) (19)32+(-51)-1+31 (20)-32+(-61)-(-41)-2
1; 先要求学生独立完成练习,对第一题先对答案,第二题先给答案,学生在解答过程中可以有所依据。

教师讲评,对重点解题思路重点分析,规范书写解题过程。

三、归纳小结
对本节练习课中的解题中的重点分析,规范解题过程
四、作业布置:
教辅:P14:3,p18课时达标:3,P19能力展示:2、3
五、板书设计:
以上练习题解题过程的规范书写
六、教学后记:。

相关文档
最新文档