解三角形及数列综合练习题资料
练习六解三角形复习资料含答案

一、 问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.探究:设此人应选第n 层楼,此时的不满意程度为y. 由题意知y=n+n 8. ∵n+n 8≥2248=⨯nn , 当且仅当n=n 8,即n=22时取等号. 但考虑到n ∈N *, ∴n≈2×1.414=2.828≈3, 即此人应选3楼,不满意度最低.二、某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x 米,则宽为200x米.总造价f (x )=400×(2x +2×200x )+100×200x +60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元) 当且仅当x =225x(x >0),即x =15时等号成立.三、某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元. (1)求该企业使用该设备x 年的年平均污水处理费用y (万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?(2)由均值不等式得四、某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用()x f ;(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.解:(1)设题中比例系数为k ,若每批购入x 台,则共需分x 36批,每批价值为20x 元. 由题意 ()xk x x f 20436⋅+⋅=由 x =4时,y =52 得518016==k ()()*,3604144N x x x x x f ∈≤<+=∴(2)由(1)知()()*,3604144N x x x x x f ∈≤<+=()4841442=⨯≥∴x x x f (元) 当且仅当 x x 4144=,即 6=x 时,上式等号成立.故只需每批购入6张书桌,可以使资金够用.棉北中学高一数学练习六正弦定理和余弦定理复习 要点梳理1.正弦定理: = = =2R ,其中R 是 三角形外接圆的半径.由正弦定理可以变形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a = ,b = ,c = ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题. 2.余弦定理:a 2= ,b 2= ,c 2= .余弦定理可以变形为:cos A = ,cos B = ,cos C = . 3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分. 余弦定理可解决两类问题: (1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题. 5、基本方法(1).已知两边及一角,判断有几解(已知a,b 及B,求A)①先求出sinA, ②若sinA>1,当然无解;当sinA=1,则A=90°当sinA<1时,根据大边对大角,判断A 、B 的大小关系,根据角 B 判断 A 的解的个数.(2).角化边,边化角(边角混合的式子)判断三角形形状,证明恒等式等(一般选择角化边) (3).△内角A 、B 、C 满足的式子(隐含条件)6.与旧知识的联系(1).诱导公式 奇变偶不变,符号看象限(2).和角公式 sin(A+B)=sinAcosB+cosAsinB cos(A+B)= cosAcosB-sinAsinB (3).倍角公式sin2A=2sinAcosA ; cos2A=2cos2A-1=1-2sin2A(4).向量 基础自测1.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3,则a =__ 1_____.解析 由正弦定理,有3sin 2π3=1sin B ,∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =解析 由正弦定理b sin B =c sin C 得,6sin 120°=2sin C ,sin C =12,C =30°,A =C =30°,a =c = 2.3.在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.解析 设BC =x ,则由余弦定理AB 2=AC 2sin sin a BA b=A B C π++=sin()sin A B C +=sin()cos 22A B C+=cos()cos A B C+=-12122112//x x a b x y x yy y ⇔=⇔= 1122a x y b x y == (,),(,)02121=+⇔⊥∴y y x x 1212a b x x y y ⋅=++BC 2-2AC ·BC cos C 得5=x 2+25-2·5·x ·910,即x 2-9x +20=0,解得x =4或x =5.4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a 、b 、c 成等比数列,且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23解析 由已知得b 2=ac ,c =2a ,∴cos B =a 2+c 2-b 22ac =5a 2-2a 24a 2=34.5.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( ) A .2 2 B .8 2 C. 2 D.22解析 ∵a sin A =b sin B =c sin C =2R =8,∴sin C =c 8,∴S △ABC =12ab sin C =116abc =116×162= 2.题型分类 深度剖析题型一 利用正弦定理求解三角形 例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c . 解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32.∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin Csin B =6-22.变式训练1 (2010·广东)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin A =________.解析 ∵A +C =2B ,∴B =π3. 由正弦定理知sin A =a sin B b =12.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 由余弦定理知:cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b 2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac[1+12]∴ac =3. ∴S △ABC =12ac sin B =334.变式训练2已知A 、B 、C 为△ABC 的三个内角,其所对的边分别为a 、b 、c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2A 2+cos A =0,得1+cos A +cos A =0,即cos A =-12.∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.题型三 正、余弦定理的综合应用 例3 (2010·辽宁)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小; (2)若sin B +sin C =1,试判断△ABC 的形状.思维启迪 (1)正弦定理a =2R sin A ,b =2R sin B ,c =2R sin C 将角化为边. (2)利用正弦定理将边化为角表示.解 (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc . ① 由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,又∵0°<A <180°,∴A =120°.(2)由①得sin 2A =sin 2B +sin 2C +sin B sin C . ∴34=(sin B +sin C )2-sin B sin C , 又sin B +sin C =1, ② ∴sin B sin C =14.③解②③联立的方程组,得sin B =sin C =12.因为0°<B <60°,0°<C <60°,故B =C . 所以△ABC 是等腰的钝角三角形.变式训练3在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状.解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得 a 2+b 2-ab =4.又∵△ABC 的面积为3, ∴12ab sin C =3,ab =4. 联立方程组 ⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A , 即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0,∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b ,即△ABC 为等腰三角形. ∴△ABC 为等腰三角形或直角三角形. 易错警示代数化简或三角运算不当致误试题:在△ABC 中,已知a 、b 、c 分别是角A 、B 、C 的对边,若a b =cos Bcos A ,试确定△ABC 的形状.规范解答解 方法一 由a b =cos Bcos A ,得a cos A =b cos B ,∴a ·b 2+c 2-a 22bc =b ·a 2+c 2-b 22ac , [3分]∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2), [8分] ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a =b 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.[12分] 方法二 由a b =cos B cos A ,得sin A sin B =cos Bcos A , [3分]∴sin A cos A =cos B sin B ,∴sin 2A =sin 2B .[5分]∵A 、B 为△ABC 的内角,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. [12分]。
高一数学必修五测试题(解三角形及数列(精华版)

⎧n⎫ ⎬ 的前 n 和 Tn a ⎩ n⎭
认真就是能力,扎实就是水平,落实才是成绩。
2 高一数学试卷
��� � ��� � ��� � ��� � BA + BC = 2 ,求 BAi BC 的取值范围
2 2an ,且对任意的 n ∈ N * 都有 an +1 = . 3 an + 1
19、在数列 {an } 中, a1 =
(1)求证: {
1 − 1} 是等比数列; an
(2)若对任意的 n ∈ N * 都有 an+1 < pan ,求实数 p 的取值范围. (3)求数列 ⎨
)
(理科) 数学试题 数学试题(理科)
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1 、 在 △ ABC 中 , 角 A,B,C 的 对 边 分 别 为 a,b,c , 若
� � � � � � � � � 9、设 a, b, c 是单位向量,且 a ⋅ b = 0, 则 a − b i b − c 的最小值为 (
��� �
����
排列成一个数列,则该数列的通项公式为 (
A. a n =
n(n − 1) 2
B. a n = n( n − 1)
C. a n = n − 1
D. a n = 2 n − 2
���� ��� � AD ⋅ AB =
.
4、在 △ ABC 中,角 A,B,C 的对边分别为 a,b,c ,若 S表示∆ABC的面积 ,若
20 、 已 知 f ( x) 在 ( −1,1) 上 有 定 义 , f ( 1 ) = 1 且 满 足 x, y ∈ ( −1,1) 时 有 15、�函数 y =
平面向量解三角形数列习题及答案

富顺二中2015级高一下第十一周小练习姓名 学号 得分一、选择题1. ABC ∆中,若01,2,60a c B ===,则ABC ∆的面积为 BA12B 2C 12. 在ABC ∆中 ,D 是边AB 上的中点,记 ,BC BA ==a c ,则向量CD =CA 12--a c B 12-a c C 12-a +c D 12a +c 3.在等差数列{}()n a n *∈N 中,14a =,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为DA 31n a n =+B 3n a n =+C 31n a n =+或4n a =D 3n a n =+或4n a = 4.在数列{}n a 中,21-=a ,nnn a a a -+=+111,则2016a 等于 D A -2 B 31-C21D3 提示:通过计算出21-=a ,234511,,3,232a a a a =-===-知此数列为周期数列,周期为4,所以201643a a ==,选D5.等比数列}{n a 的前n 项和为n S ,若2:1:36=S S ,则=39:S S C A .1:2B .2:3C .3:4D .1:3解:设6S t =,则32S t =,由于36396,,S S S S S --成等比数列可得 932S t =,则=39:S S 3:4选C6. 若 0x <,则423x x++的最大值是CA 2+B 2±2- D 以上都不对7.向量(0,1)=a ,1()2=-b ,1)2=-c ,(1,1)x y z ++=a b c ,则222x y z ++的最小值为 BA 1 B43 C 32D 2 二、填空题8.已知两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,若0⋅=b c ,则t =_____. 答案2解析1ta b (t )b b ⋅+-⋅=0,得2t+1-t =0,故t =2 9.若=-=+ααππα2tan ),2sin(3)6sin(则 .答案11-解析由已知,sinα+12cosα=3cosα;于是tanα=52从而 tanα=3;tan 2α232513===-10.若钝角ABC ∆的三边c b a ,,满足c b a <<,三内角的度数成等差数列,则2b ac的取值范围是 . 答案0,23解析由已知得3B π=,∴026A B A ππ+<⇒<<,22sin sin 4122sin sin()cos(2)(0,)sin 333333ac A C A A A b B ππ==+=-+∈ 三、解答题1. 已知等差数列{}()n a n *∈N 的前n 项和为n S ,且满足642S =,5724a a +=.Ⅰ求数列{}n a 的通项n a ; Ⅱ求数列{}2nn a 的前n 项和n T .1.解:Ⅰ设等差数列{}n a 的公差为d ,因为,642S =,5724a a +=,所以 1165642221024a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得 12,2a d ==, 所以 2n a n =;Ⅱ 23111111246...2(1)222222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+++-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2341111111246...2(1)2222222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得234111111112222...222222222nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯++⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111114444(2)()222nn n n T n n +-⎛⎫⎛⎫=-⨯-⨯=-+ ⎪ ⎪⎝⎭⎝⎭2.在ABC ∆中,c b a ,,分别是角,,A B C 的对边,向量(cos(),sin())A B A B =--m ,(cos ,sin )B B =-n ,且 35⋅=-m n .Ⅰ求sin A 的值;Ⅱ若5a b ==,求角B 的大小及向量AB 在BC 方向上的投影.解:Ⅰ由 35=-⋅m n ,得3cos()cos sin()sin 5A B B A B B ---=-,得 3cos 5A =-;又0A π<<,所以4sin 5A ==Ⅱ由正弦定理得sin sin a b A B =,得sin 2B =,得4B π=; 由余弦定理得2222cos a b c bc A =+-,即2223525()5c c =+-⨯⨯⨯-, 解得1C =或7C =-舍去; AB 在 BC 方向上的投影值为cos 2AB BC c B BC⋅=-=-.富顺二中2015级高一下第十一周周末练习姓名 学号 得分一、选择题1.等比数列{}n a 中,4021=+a a ,6043=+a a ,=+87a a A A .135 B .100 C .95 D .80 答案A解析由等比数列性质,可知a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8仍然成等比数列公比为q =3412603402a a a a +==+,所以a 7+a 8=40×332⎛⎫⎪⎝⎭=135.故选A 2.已知函数R x x x x f ∈+=,sin )2cos 1()(2,则)(x f 是 D A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 答案D解析fx =1+cos 2x12122cos x -=1-cos 22x =12sin 22x =144cos x- f -x =fx ,fx 是偶函数;周期为T =242ππ=.选D3.在ABC ∆中,A B C 、、的对边分别为a b c 、、,且cos 3cos cos b C a B c B =-,2BA BC ⋅=,则ABC ∆的面积为 CAB .32C. D.3.解:由正弦定理得1cos 3cos cos cos sin 3b C a B c B B B =-⇒=⇒=126sin 2ABC BA BC AB BC S AB BC B ∆∴⋅=⇒⨯=⇒=⨯⨯=选 C 4.设等差数列{}n a 的公差d 不为0,19a d =,若a k 是a 1与a 2k 的等比中项,则k = D A. 2 B. 6 C. 8 D. 4 答案D解析由题意,a k 2=a 1a 2k ,即a 1+k -1d 2=a 1a 1+2k -1d 亦即k +82d 2=9d 2k +8d因为d ≠0,故k +82=18k +72 解得k =4或k =-2舍去.故选D5.在ABC ∆中,若sin()12cos()sin()A B B C A C -=+++,则ABC ∆的形状一定是 BA .等边三角形B . 直角三角形C .钝角三角形D .不含60︒角的等腰三角形 答案B解析在△ABC 中,A +B +C =π故cosB +C =-cosA ,sinA +C =sinB于是已知条件变为sinAcosB -cosAsinB =1-2cosAsinB 即sinAcosB +cosAsinB =1即sinA +B =1 得 sinC =1 得C =2π 6.数列{}n a 的通项公式1cos 42n n a π=+)(*∈N n ,其前n 项和为S n ,则S 2012等于 C 答案C 解析记b n =cos2n π,则b 1=0,b 2=-1,b 3=0,b 4=1,b 5=0,b 6=-1,……,这是一个以4位周期的周期数列,且每相邻4项之和为0,于是{b n }的前2012项之和为0 a n =14+b n ,于是S 2012=14×2012=502.选C 7.若ABC ∆的内角,,A B C 所对的边,,a b c ,满足22()4,60,a b c C ab +-==且则的值DA 1B 8-23 D 438.已知ABC ∆三内角,,A B C 的对边分别为,,a b c ,若,,a b c 成等比数列,且2c a =,则cos B = CA14 C 349.已知函数[]),(cos 23sin 21)(b a x x x x f ∈-=的值域为1[,1]2-,设b a -的最大值为M ,最小值为m ,则m M += C A .2π B .π C .2π D .103π 答案C 解析fx =sinx +3π,要使得fx 的值域为-12,1,结合图象可知,定义域长度b -a 的最大值为M=43π比如766,ππ-,最小为m =23π比如62,ππ-,所以M +m =2π.选C 10.已知方程()()22220x mx xnx -+-+=的四个根组成一个首项为12的等比数列,则m n -= BA .1B .32C .52D .9210.解:不妨设12是方程22x mx -+=0的一个根,则另一根为4,所以92m =,设方程220x nx -+=的两根为12,x x ,由于122x x ⋅=,所以四个根组成一个首项为12的等比数列为121,,,42x x ,由此121,23x x n ==⇒=,则m n -=32,选B11. 已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若()0a f a ⋅->,则实数a 的取值范围是 AA (1,0)(0,1)-B (,1)(1,)-∞-+∞C (1,0)(1,)-+∞ D (,1)(0,1)-∞-12.设,n n A B 是等差数列{}n a 、{}n b 的前n 项和,若7453n n A n B n +=+,则使得nn b a 为整数的正整数n 的个数是 D .A . 2B .3C .4D .5答案D解析因为{a n },{b n }都是等差数列,由等差中项性质,有2121721457192131n n-n n-a A (n -)n b B (n -)n ++===++ 由题意,得7191n n ++为整数,即7+121n +为整数 又n 为正整数,于是n +1是12的约数,可取的值为1,2,3,5,11共5个.选D 二、填空题13.设n S 是等差数列{}()n a n *∈N 的前n 项和,且141,7a a ==,则5S =______25______.14.0cos 20cos 40cos80⋅⋅=___________ 答案18解析00002sin 20cos 20cos 40cos80cos 20cos 40cos802sin 20⋅⋅⋅⋅⋅=000000000sin 40cos 40cos80sin80cos80sin16012sin 204sin 208sin 208⋅⋅⋅====15. 已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 4 .2228)2(82⎪⎭⎫ ⎝⎛+-≥⋅-=+y x y x y x ,整理得()()0322422≥-+++y x y x即()()08242≥++-+y x y x ,又02>+y x ,42≥+∴y x 16.已知一非零“向量数列”{}n a 满足:1,11111(1,1),()(,)(2,)2n n n n n n n a a x y y y n n x x ----*===-+≥∈N .给出下列四个结论:①数列{}n a 是等差数列; ②1512a a ⋅=; ③设22log n n b a =,数列{}n b 的前n 项和为n T ,当且仅当2n =时,n T 取得最大值; ④记向量1n n a a -与的夹角为(2)n n θ≥,则均有4n πθ=.其中所有正确结论的序号是 ②④ . 三、解答题17.本小题满分12分设1,1x y ≥≥证明111x y xy xy x y++≤++. 证明:I 由于1,1≥≥y x ,所以,)(1)(1112xy x y y x xy xy y x xy y x ++≤++⇔++≤++将上式中的右式减左式,得,0)1)(1)(1(,1,1).1)(1)(1()1)(1()1)(()1)(1())()(()1)(()1)(())((22≥---≥≥---=+---=-+--+=+-+--=++-++y x xy y x y x xy y x xy xy xy y x xy xy y x y x xy xy y x xy xy x y 所以即然18. 本小题满分12分已知在ABC ∆中,角,,A B C 的对边分别为,,a b c , 且向量(,)a b =m 与(sin ,3)B A =n 垂直.1求角A 的大小;2若,c a c b >>,求bc的取值范围; 3若5,2a b ==,求ABC ∆的面积.解析由已知得sin 3cos 0sin sin 3cos 0a B b A A B B A =⇒=,由于sin 0B ≠,tan 3A ∴=10A π<<,3A π∴=2,c a c b >>,033A CB ππ=⇒>>>,sin sin sin sin()3tan b B B c C A B B===++0tan 3,(0,1)bB c<<∴∈33,25,2,sin sin sin sin 325a b a b A B A A B π====⇒=< 170,cos 25B A B ∴<<∴=,513sin sin()17145C A B c +=+=⇒= 1513sin 22S bc A ∴==19 本小题满分12分如右图所示,在ABC ∆中,36,4AB B π==,D 是BC 边上一点,且3ADB π∠=.Ⅰ求BD 的长;Ⅱ若10CD =,求AC 的长及ADC ∆的面积. 解:Ⅰ在ABD ∆中,由,736sin 12sin sin3AB BADBD ADBππ∠==∠333BD ∴= ……4分Ⅱ36sin 4sin sin3AB BAD ADBππ==∠6AD ∴=在ACD ∆中,由余弦定理得:AC 14= ……………8分1sin 2ACD AD S DC ADC ∆∴=⋅∠161022=⨯⨯⨯= ……………12分20. 本小题满分12分已知函数2()2cos ()214f x x x π=-+,ππ42x ⎡⎤∈⎢⎥⎣⎦,,1求()f x 的最大值和最小值;2若对任意实数x ,不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.解析I2()2cos ()21cos(2)2242f x x x x x ππ=-+=-+…1分sin 2222sin(2)23x x x π=+=-+ …3分2,(2),42363x x πππππ⎡⎤⎡⎤∈⇒-∈⎢⎥⎢⎥⎣⎦⎣⎦ …4分所以当236x ππ-=,即4x π=时,min ()3f x = …5分所以当232x ππ-=,即512x π=时,max ()4f x = …6分II()2f x m -<2()2m f x m ⇔-<<+ …8分因为对任意实数x ,不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立2()2f x m ∴-<-< 即2()2()m f x m f x -<⎧⎨+>⎩ 恒成立 所以min max 2()2()m f x m f x -<⎧⎨+>⎩…10分故m 的取值范围为()2,5 ……12分21.本小题满分12分提高过江大桥的车辆通行能力可改善整个城市的交通状况;在一般情况下,大桥上的车流速度v 单位:千米/小时是车流密度x 单位:辆/千米的函数;当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数. Ⅰ当0200x ≤≤时,求函数()v x 的表达式;Ⅱ当车流密度x 为多大时,车流量单位时间内通过桥上某观点的车辆数,单位:辆/每小时()()f x x v x =⋅可以达到最大,并求出最大值精确到1辆/小时解:Ⅰ由题意:当020,()60x v x ≤≤=时;当20200,()x v x ax b ≤≤=+时设再由已知得1,2000,32060,200.3a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得 60,020,()1(200),202003x v x x x ≤≤⎧⎪=⎨-≤≤⎪⎩故函数()f x 的表达式为60,020,()1(200),202003x x f x x x x ≤<⎧⎪=⎨-≤≤⎪⎩Ⅱ依题意并由Ⅰ可得 当020,()x f x ≤≤时为增函数,故当20x =时,其最大值为60×20=1200;当20200x ≤≤时,211(200)10000()(200)[]3323x x f x x x +-=-≤= 当且仅当200x x =-,即100x =时,等号成立;所以,当100,()x f x =时在区间20,200上取得最大值10000.3综上,当100x =时,()f x 在区间0,200上取得最大值1000033333≈;22.本小题满分12分已知数列{}n a 的前n 项和为n S ,且211122n S n n =+.数列{}n b 满足2120()n n n b b b n ++*-+=∈N ,且311b =,1239153b b b b +++⋅⋅⋅+=.Ⅰ求数列{}n a ,{}n b 的通项公式; Ⅱ设3(211)(21)n n n c a b =--,数列{}n c 的前n 项和为n T ,求使不等式57n kT >对一切n *∈N 都成立的最大正整数k 的值.解:Ⅰ当1n =时, 116a S ==;当2n ≥时, 221111111()[(1)(1)]52222n n n a S S n n n n n -=-=+--+-=+. 而16a =满足上式;∴5()n a n n =+*∈N .又2120n n n b b b ++-+=即211n n n n b b b b +++-=-,{}n b ∴是等差数列.设公差为d . 又311b =,129153b b b +++= 11211936153b d b d +=⎧∴⎨+=⎩解得15,3b d ==. ∴32n b n =+ Ⅱ31111()(211)(21)(21)(21)22121n n n c a b n n n n ===----+-+12111111[(1)()++()]2335212121n n nT c c c n n n ∴=+++=-+--=-++ 11102321(23)(21)n n n n T T n n n n ++-=-=>++++ n T ∴单调递增,min 11()3n T T ==.令1357k>,得19k <max 18k ∴=.8.已知等差数列{}n a 的公差0d ≠,且1a ,3a ,13a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则2163n n S a ++的最小值为A .4B .3C .232-D .92答案A解析由1a ,3a ,13a 成等比数列得22231131111(2)(12)48a a a a d a a d d a d =⇒+=+⇒=,因为0d ≠,因此2122,,21,n n d a S n a n ====-从而2216899(1)22(1)243111n n S n n n a n n n ++==++-≥+⨯-=++++,当且仅当2n =时取等号,所以选A .考点:等差数列与等比数列综合,基本不等式求最值10.已知函数()()sin f x x ωϕ=A +A ,ω,ϕ均为正的常数的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是A ()()()220f f f <-<B ()()()022f f f <<- C()()()202f f f -<<D ()()()202f f f <<- 10.解:由图象可知()f x 在区间2[,]63ππ上是减函数,6x π=是一条对称轴,(0)(),(2)(2)3f f f f ππ=-=-,2,2,2[,]363ππππ-∈,且223ππ<-<,所以()(2)(2)3f f f ππ>->,即(0)(2)(2)f f f >->,选A13.解:{,,}2a bab ab +- 14.解:若4c <,则2223474340c c c +>⎧⇒<<⎨+->⎩;若4c ≥,则2224345340c c c <+⎧⇒≤<⎨+->⎩,所以c 的范围是(7,5) 15.解:13CE =,17cos 513α=,17cos ,513CE BC <>=-,向量CE在BC 方向上的投影为175-16.解:函数23sin(),6y x π=+的递增区间为2[2,2]()33k k k Z ππππ-+∈,在[0,]2π上的增区间是0,3π⎡⎤⎢⎥⎣⎦13.若,a b 是两个不相等的正实数,则它们的等差中项和等比中项组成的集合为________ 14.锐角△ABC 中,如果3,4==b a 那么c 的范围是_____________.15.在△ABC 中,E 是AB 的中点,AB=4,AC=3,BC=5,则向量CE 在BC 方向上的投影为_________16.函数3sin 3cos y x x =+[0,]2x π∈的单调递增区间是 .例5.设0,0x y ≥≥, 2212y x +=,则21x y +的最大值为 423∵x≥0, y≥0, x 2+22y=1∴21x y +=22(1)x y +=22122y x +≤222122y x ++=2221222y x ++=423 当且仅当x=23,y=22即x 2= 212y +时, 21x y +取得最大值42353αEBC。
不等式解三角形数列高考试题精选

不等式解三角形数列高考试题精选一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0 4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>05.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.9.若a,b∈R,ab>0,则的最小值为.10.设x,y满足约束条件,则z=3x﹣2y的最小值为.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.13.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.30.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.31.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.32.设数列{a n }满足a 1+3a 2+…+(2n ﹣1)a n =2n .(1)求{a n }的通项公式;(2)求数列{}的前n 项和.33.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.34.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }通项公式;(2){b n } 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列的前n 项和T n .35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.不等式解三角形数列高考试题精选参考答案与试题解析一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0【解答】解:∵x,y∈R,且x>y>0,则,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>0【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.5.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是log25.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为8.【解答】解:直线=1(a>0,b>0)过点(1,2),则+=1,由2a+b=(2a+b)×(+)=2+++2=4++≥4+2=4+4=8,当且仅当=,即a=,b=1时,取等号,∴2a+b的最小值为8,故答案为:8.9.若a,b∈R,ab>0,则的最小值为4.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.10.设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.=2a n,【解答】解:∵a n+1∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:613.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【解答】解:∵a n=S n+1S n,+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵sinB≠0,∴cosB=,∵0<B<π,∴B=,故答案为:15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=75°.【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴sinB==,∵b<c,∴B=45°,∴A=180°﹣B﹣C=180°﹣45°﹣60°=75°,故答案为:75°.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为8.【解答】解:∵A∈(0,π),∴sinA==.==bc=,化为bc=24,∵S△ABC又b﹣c=2,解得b=6,c=4.由余弦定理可得:a2=b2+c2﹣2bccosA=36+16﹣48×=64.解得a=8.故答案为:8.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S==1.△ABC22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.【解答】解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos (2A ﹣)的值.【解答】解:(Ⅰ)将sinB=sinC ,利用正弦定理化简得:b=c ,代入a ﹣c=b ,得:a ﹣c=c ,即a=2c ,∴cosA===;(Ⅱ)∵cosA=,A 为三角形内角, ∴sinA==,∴cos2A=2cos 2A ﹣1=﹣,sin2A=2sinAcosA=,则cos (2A ﹣)=cos2Acos+sin2Asin=﹣×+×=.30.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知bcosC +ccosB=2b ,则= 2 .【解答】解:将bcosC +ccosB=2b ,利用正弦定理化简得:sinBcosC +sinCcosB=2sinB , 即sin (B +C )=2sinB , ∵sin (B +C )=sinA , ∴sinA=2sinB ,利用正弦定理化简得:a=2b , 则=2. 故答案为:231.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 【解答】解:(1)设等比数列{a n }首项为a 1,公比为q , 则a 3=S 3﹣S 2=﹣6﹣2=﹣8,则a 1==,a 2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣(2+(﹣2)n+1),则S n+1=﹣(2+(﹣2)n+2),S n+2=﹣(2+(﹣2)n+3),由S n+1+S n+2=﹣(2+(﹣2)n+2)﹣(2+(﹣2)n+3)=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×+(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.32.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.33.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n.﹣1【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.34.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;=b n b n+1,求数列(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1的前n项和T n.【解答】解:(1)记正项等比数列{a n}的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;(2)因为{b n}为各项非零的等差数列,所以S2n=(2n+1)b n+1,+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+(2n+1)•,T n=3•+5•+…+(2n﹣1)•+(2n+1)•,两式相减得:T n=3•+2(++…+)﹣(2n+1)•,即T n=3•+(+++…+)﹣(2n+1)•,即T n=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•=5﹣.35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2(S n﹣S n﹣1)=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1=3a n,满足a n+1∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.。
解三角形、数列2018全国数学高考分类真题[含答案解析]
![解三角形、数列2018全国数学高考分类真题[含答案解析]](https://img.taocdn.com/s3/m/3e2a961158fb770bf78a559c.png)
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
高中数学数列、解三角形、不等式综合复习

本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
解三角形数列不等式
必修5解三角形数列不等式【选择题】1.设,,a b c R ∈,且a b >,则 ( )A .ac bc >B .11a b<C .33a b >D .22a b >⒉ 设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则5a =( )A .6-B .4-C .2-D .2 3.在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状为( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定 ⒋ 若点(,)x y 位于曲线y x = 与2y =所围成的封闭区域, 则2x y -的最小值为( )A .-2B .-6C .0D .25.在等比数列{}n a 中,若2nn a =,则7a 与9a 的等比中项为( )A .8aB .8a -C .8a ±D .前3个选项都不对6.关于x 的不等式2260x ax a --<(0a >)的解集为12(,)x x ,且2110x x -=,则a =( )A .2B .5C .52D .32⒎ 已知正项等比数列{}n a 满足2014201320122a a a =+14a =,则116()m n+的最小值为( )A .23B .2C .4D .6 8.△ABC 的内角,,A B C 的所对的边,,a b c 成等比数列,且公比为q ,则sinCsin q A+的取值范围为()A .()0,+∞B .(1,2C .()1,+∞D .)1A .2015-B .2014-C .2014D .2015【填空题】11.若数列}{n a 中,762++-=n n a n ,则其前n项和n S 取最大值时,=n __________.12.在ABC ∆中,060,B AC ∠== ,则3AB BC +的最大值为 . 13.已知关于x 的不等式()()2440ax a x --->的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为 .14.在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若1sin cos ,24sin CB A==,且ABC S ∆=,则______.b =15.对于正项数列{}n a ,定义122n nnH a a na =++⋅⋅⋅+为{}n a 的“光阴”值,现知某数列的“光阴”值为n nH =,则数列{}n a 的通项公式为n a =__________。
解三角形练习题及答案
解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。
数学解三角形和数列填空18题
数学解三角形和数列填空题:18题,每题6分1.已知ABC V 的面积等于1,若1BC =,则当这个三角形的三条高的乘积取最大值时,sin A =______2.在圆心为O ,半径为2的圆内接ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()4222442220a a b c c b b c -++++=,则OBC ∆的面积为__________. 3.在ABC ∆中,内角,,A B C 的对边分别为,,a b c 且,a b a c >>.ABC ∆的外接圆半径为1, a =若边BC 上一点D 满足3BD DC =u u u r u u u r ,且090BAD ∠=,则ABC ∆的面积为______4.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2A C π-=.,,a b c 成等差数列,则cos B =________.5.已知P ,E ,G F ,都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG ===,120EGF ∠=o ,在球C 内任取一点,则该点落在三棱锥P EFG -内的概率为__________.6.已知O 为ABC △的外心,其外接圆半径为1,且BO BA BC u u u v u u u v u u u v λμ=+.若60ABC ∠=o ,则λμ+的最大值为__________.7.已知ABC ∆的内角A B C 、、的对边分别为a b c 、、,若2A B =,则2c b b a +的取值范围为__________.8.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角)。
若15,25,30AB m AC m BCM ==∠=︒,则tan θ的最大值为_______.9.数列{}n a 的前m 项为()12,,,m a a a m N *∈L ,若对任意正整数n ,有n m n a a q +=(其中q 为常数,0q ≠且1q ≠),则称数列{}n a 是以m 为周期,以q 为周期公比的似周期性等比数列,已知似周期性等比数列{}n b 的前4项为1,1,1,2,周期为4,周期公比为3,则数列{}n b 前42t +项的和等于__________.(t 为正整数)10.已知数列{}n a 的前n 项和为n S ,且数列n S n ⎧⎫⎨⎬⎩⎭是首项为3,公差为2的等差数列,若2n n b a =,数列{}n b 的前n 项和为n T ,则使得268n n S T +≥成立的n 的最小值为__________.11.已知12,,,n a a a ⋅⋅⋅是1,2,,n ⋅⋅⋅满足下列性质T 的一个排列(2n ≥,n *∈N ),性质T :排列12,,,n a a a ⋅⋅⋅有且只有一个1i i a a +>({1,2,,1}i n ∈⋅⋅⋅-),则满足性质T 的所有数列的个数()f n =________12.已知数列{}n a 中,22a =,对任意*k N ∈,2k a ,21k a +,22k a +成等差数列,公差为21k +,则101a =__.13.已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________.14.(2016安徽模拟改编)已知数列{}n a 的前n 项和为n S , 1(1)32n n n n S a n =-++-,若n a M …对任意的*n N ∈恒成立,则实数M 的取值范围是_______.15.等差数列{a n }前n 项和为S n ,公差d<0,若S 20>0,S 21<0,,当S n 取得最大值时,n 的值为_______.16.对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[12121111S S S ++⋯+]=______. 17.已知数列{}n a 是公差不为0的等差数列,对任意大于2的正整数n ,记集合{},,,1i j x x a a i N j N i j n =+∈∈≤<≤的元素个数为n c ,把{}nc 的各项摆成如图所示的三角形数阵,则数阵中第17行由左向右数第10个数为___________.18.等差数列{}n a 的公差d ≠0,a 3是a 2,a 5的等比中项,已知数列a 2,a 4,1k a ,2k a,……,n k a ,……为等比数列,数列{}n k 的前n 项和记为Tn ,则2Tn +9=_______参考答案1.817【解析】【分析】设三条高分别为,,a b c h h h ,根据面积计算出三条高,并将三条高的乘积的最大值问题,转化为sin A 最大来求解.【详解】依题意可知1a =,三条高分别为,,a b c h h h ,根据三角形面积公式有112112112a b c ah bh ch ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,故2a h =,88a b c h h h abc bc ⋅⋅==,而1sin 12bc A =,即1sin 2A bc =,所以84sin a b c h h h A bc⋅⋅==.故当sin A 取得最大值时,三条高的乘积取得最大值.作平行于BC 且与BC 距离为2的平行直线l ,作BC 的垂直平分线AD ,交直线l 于A .过AD 上一点O 作圆O ,使圆经过,,A B C 三个点,由于由于圆外角小于圆周角,故此时BAC ∠取得最大值,也即sin BAC ∠取得最大值.在三角形ABC中,1AB AC BC ===,由余弦定理得1717115cos 1722BAC +-∠==,8sin 17BAC ∠==.即三角形的三条高的乘积取最大值时8sin 17A =.【点睛】本小题主要考查三角形的面积公式,考查余弦定理解三角形,考查同角三角函数的基本关系式,考查数形结合的数学思想方法,属于难题.2【解析】【分析】已知条件中含有22()b c +这一表达式,可以联想到余弦定理2222cos a b c bc A =+-进行条件替换;利用同弧所对圆心角为圆周角的两倍,先求出角A 的三角函数值,再求BOC ∠的正弦值,进而即可得解.【详解】 ()4222442220a a b c c b b c -++++=Q ,()()24222222220a a b c b c b c -++-∴+=,(1)L在ABC ∆中,2222222cos 2cos a b c bc A b c a bc A =+-⇒+=+代入(1)式得: ()()242222222cos 2cos 0a a a bc A a bc A b c -+++-=,整理得:211cos ,cos ,sin 42A A A =⇒=±= Q 圆周角等于圆心角的两倍,2BOC A ∴∠=,(1)当1cos 2A =时, 3A π=,23BOC π=∴∠,121sin 22232OBC S OB OC π∆∴=⋅⋅=⋅⋅=. (1)当1cos 2A =-时,23A π=,点O 在ABC ∆的外面,此时,23BOC π∠=,OBC S ∆∴= 【点睛】本题对考生的计算能力要求较高,对解三角形和平面几何知识进行综合考查.3【解析】∵△ABC 的外接圆半径R 为1,a =∴由正弦定理22sin a R A==,可得: ∵边BC 上一点D 满足BD=3DC ,且∠BAD=90°,∴A=120°,∠CAD=30°, BD=34CD=14, ∴如图,由正弦定理可得:342113sin 222b c b c =∴=∠=∠==∠, 所以2229311232()42219c c c c c =+-⨯⨯-∴=所以13122219ABC S c c ∆=⨯⨯==4.34【解析】分析:根据三角形内角和定理及其关系,用∠C 表示∠A 与∠B ;根据a ,b ,c 成等差,得到2b a c =+,利用正弦定理实现边角转化.得到关于∠C 的等式;由cos cos 2sin 22B C C π⎛⎫=-= ⎪⎝⎭即可得到最后的值. 详解:A B C π++= ;2A C π-= 所以2A C π=+ ,22B C π=- 同取正弦值,得sin sin()cos 2A C C π=+=sin sin(2)cos 22B C C π=-= 因为a ,b ,c 成等差,所以2b a c =+ ,由正弦定理,边化角 2cos2cos sin C C C =+ ,根据倍角公式展开()()2cos sin cos sin cos sin C C C C C C +-=+ 所以1cos sin 2C C -=,等式两边同时平方得 ()21cos sin 4C C -= ,化简32sin cos 4C C = ,即3sin 24C =而3cos cos 2sin 224B C C π⎛⎫=-== ⎪⎝⎭点睛:本题考查了三角函数正弦定理的应用,三角函数求值中各个边角转化和角的形式变化,需要熟练掌握各个式子的相互转化,属于难题.5.32π. 【解析】分析:根据△GEF 中的边角数值,可以求出△GEF 的面积;因为PE EF ⊥,PE EG ⊥,所以可以求得143P GEF V -==。
解三角形、数列2020年全国数学高考分类真题(含答案)
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,﹣b n)a n=4n﹣1,则(b n+1即有b n﹣b n=(4n﹣1)•()n﹣1,+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合练习2 一、选择题 1.在ABC中,角,,ABC所对的边分别为,,abc,若222abbc,sin3sinCB,则A ( )
A.6 B.3 C.23 D.56 2.在ABC,内角,,ABC所对的边长分别为,,.abc1sincossincos,2aBCcBAb,abB且则
A.6 B.3 C.23 D.56 3.在△ABC中,一定成立的等式是( ) A. aAbBsinsin B. aAbBcoscos C. aBbAsinsin D. aBbAcoscos 4.若△ABC的三个内角满足sin:sin:sin5:11:13ABC,则△ABC A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 5.设△ABC的内角A,B,C的对边分别为,,abc若()cosabcC,则△ABC的形状是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.锐角三角形
6.在△ABC中,内角A,B,C的对边分别是a,b,c,若22245bcbc且222abcbc,则△ABC的面积为( )
A. 3 B. 32 C. 22 D. 2 7.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.185 B.43 C.23 D.87 8.已知三角形的两边长分别为4,5,它们夹角的余弦是方程2x2+3x-2=0的根,则第三边长是( )
A.20 B.21 C.22 D.61
9.在ABC中,角,,ABC所对的边分,,abc.若cossinaAbB,2sincoscosAAB A.-12 B.12 C.-1 D.1 10.在ABC中,若边长和内角满足2,1,45bcB,则角C的值是( ) A.60 B.60或120 C.30 D.30或150 11.设△ABC中角A、B、C所对的边分别为,,abc,且sincossincossin2ABBAC,若,,abc成等差数列且18CACB,则 c边长为( ) A.5 B.6 C.7 D .8 12.数列1,-3,5,-7,9,……的一个通项公式为
A.21nan B.(1)(12)nnan
C.(1)(21)nnan D.(1)(21)nnan 13.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为
14.已知na为等差数列,若8951aaa,则)cos(73aa的值为( ) A.32 B.32 C.12 D.12 15.已知{}na为等差数列,其前n项和为nS,若36a,312S,则公差d等于( ) (A) 1 (B) 53 (C) 2 (D) 3 16.在等差数列{}na中,2a4+a7=3,则数列{}na的前9项和等于( ) (A)9 (B)6 (C)3 (D)12 17.公差不为0的等差数列{na}的前21项的和等于前8项的和.若80kaa+=,则k=( ) A.20 B.21 C.22 D.23
18.已知两个等差数列{}na和{}nb的前n项和分别为An和nB,且7453nnAnBn,则使得nn
a
b
为整数的正整数n的个数是( ) A.2 B.3 C.4 D.5
19.等差数列{}na的前n项和为nS,若14611,6,aaa则当nS取最小值时,n
( ) A.6 B.7 C.8 D.9 20.已知公差不为零的等差数列na的前n项和为nS,若104aS,则89Sa 。 21.如果等差数列na中,34512aaa,那么127aaa( ) A.14 B.21 C.28 D.35 22.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60,行驶4h后,船到达C处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km.
23.在△ABC中,2BC,7AC,3B,则AB______;△ABC的面积是______.
24.在锐角△ABC中,若2,3ab,则边长c的取值范围是_________
25.已知数列na满足11a,112222nnnnaanan,则数列na的通项公式为na=
26.设数列121122102}{1nnnnnnaaaaaa满足 若2013176aa,则 27.在等差数列{an}中,a1=-7,74a,则数列{an}的前n项和Sn的最小值为________. 28.设Sn是等差数列{an}的前n项和,若3613SS,则612SS= 29.等差数列na中,若129104,12,aaaa则30S= . 30.某小朋友按如右图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,...,一直数到2013时,对应的指头是 (填指头的名称). 31.(本小题满分12分)
已知在△ABC中,AC=2,BC=1,,43cosC (1)求AB的值; (2)求)2sin(CA的值。
32.△ABC中, cba,,是A,B,C所对的边,S是该三角形的面积,且coscos2BbCac (1)求∠B的大小; (2)若a=4,35S,求b的值。
33.在ABC中,ABC、、的对边分别为abc、、,且cos3coscosbCaBcB. (1)求cosB的值;
(2)若2BABC,22b,求a和c.
34.已知已知{}na是等差数列,期中524a,714a 求: 1.{}na的通项公式 2.数列{}na从哪一项开始小于0? 3.求19S
35.设na为等差数列,nS是等差数列的前n项和,已知262aa,1575S. (1)求数列的通项公式na;(2)nT为数列nSn的前n项和,求nT. 36.数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若b3=-2,b10=12,求a8的值
37.已知等差数列 的前n项和为nS,若1326S,94a,求: (1)数列的通项公式; (2)13521naaaa.
综合练习2 参考答案 1.B【解析】由sin3sin3CBcb,所以:22222222961cos262bcabbbbAbcb
,又因为:(0,)A,所以3A.
2.A =2sin,=2sin,=2sinaRAcRCbRB 由1sincossincos,2aBCcBAb 可得1sincos+sinCcos=2ACA 即1sin()sin2ACB,又,=6abB故,故,选A 3.C【解析】由正弦定理2sinsinsinabcRABC变形可知C项aBbAsinsin正确 4.C【解析】因为,sin:sin:sin5:11:13ABC,所以由正弦定理知,a:b:c=5:11:13, 设a=5k,b=11k,c=13k(k>0),由余弦定理得,
222222(5)(11)(13)23cos022511110abckkkCabkk
,故△ABC一定是钝角三角
形,选C。 5.A【解析】由余弦定理得,222cos2abcCab,()cosabcC
可化为222(),2abcabcab整理得222()()bcbcabc=0, 所以,b=c,选A。 6.B【解析】根据题意,由于内角A,B,C的对边分别是a,b,c,若22245bcbc,
且222abcbc,那么根据余弦定理22212cos,cos23abcbcAAA,由于2222245(1)(2)01,2bcbcbcbc,可以解得bc=2,那么三角形
的面积为S=1332222 ,故选B。 7.D【解析】设底边为a,则周长为5a,腰长为2a,由余弦定理得222447cos2228aaaaa 8.B 【解析】2x2+3x-2=0的根为-1,12,所以三角形的两边夹角的余弦是12,由余弦定理得,第三边长是22145245221,故选B。 9.D【解析】由cossinaAbB得2sincossinAAB 222sincoscossincos1AABBB
10.C【解析】根据题意,由于边长和内角满足2,1,45bcB,则可知2sin12sinsinsin22bccBCBCb,由于c角C的值是30,选C.
11.B【解析】∵sincossincossin2ABBAC,∴sin()sin2sincosABCCC,∴1cos2C,∴3C,∴1cos1832CACBbaab,∴ab=36,又,,abc成等差数列,∴2b=a+c,又Ccosab2bac222,三式联立解得a=b=c=6,故选B 12.B 【解析】数列中正负项(先正后负)间隔出现,必有1(1)n,1,3,5,7,9,……故
2n-1,所以数列1,-3,5,-7,9,……的一个通项公式是(1)(12)nnan,故选B。 13.A【解析】根据如图所示的排序可以知道每四个数一组循环,所以确定2005到2007的箭头方向可以把2005除以4余数为1,由此可以确定2005的位置和1的位置相同,然后就可以确定从2005到2007的箭头方向解:∵1和5的位置相同,∴图中排序每四个一组循环,
而2003除以4的余数为3,∴2005的位置和3的位置相同,∴2003 2005.、故选A. 考点:周期性的运用 点评:此题主要考查了数字类的变化规律.通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力
14.D【解析】因为a1+a5+a9=8,所以583a,所以3751623aaa,所以
37
161
coscos32aa.
15.C【解析】12323aS,42a,223aad. 16.A【解析】194715959()23,3123,1.99.2aaaaadaSa 17.C【解析】依题意,821SS,所以015a,所以0222815aaa,又08kaa,所以22k. 18.D【解析】在等差数列中,若,mnpq则mnpqaaaa。
因为,两个等差数列{}na和{}nb的前n项和分别为An和nB,且7453nnAnBn,