三角函数微分公式

三角函数微分公式
三角函数微分公式

三角函数微分公式(转载)

V重恒收录于2011-02-24 阅读数:

公众

公开

原文

来源

tags:三角函数微分

我也要收藏

基本函数

函数英语简写关系

正弦Sine sin

余弦Cosine cos

正切Tangent tan

(或tg)

余切Cotangent cot

(或ctg、ctn)

正割Secant sec

余割Cosecant csc

(或cosec)

[编辑] 少用函数

除六个基本函数,历史上还有下面六个函数:

?正矢

?余矢

?半正矢

?半余矢

?外正割

?外余割

[编辑] 历史

随着认识到相似三角形在它们的边之间保持相同的比率,就有了在三角形的边的长度和三角形的角之间应当有某种标准的对应的想法。就是说对于任何相似三角形,(比如)斜边和剩下的两个边的比率都是相同的。如果斜边变为两倍长,其它边也要变为两倍长。三角函数表达的就是这些比率。

研究三角函数的有尼西亚的喜帕恰斯(公元前180-125年)、埃及的托勒密(公元90-180年)、Aryabhata (公元476-550年),Varahamihira、婆罗摩笈多、花拉子密、Abū al-Wafā' al-Būzjānī、欧玛尔·海亚姆、婆什迦罗第二、Nasir al-Din al-Tusi、Ghiyath al-Kashi(14世纪)、Ulugh Beg(14世纪)、约翰·缪勒(1464)、Rheticus 和Rheticus 的学生Valentin Otho。

Madhava of Sangamagramma(约1400年)以无穷级数的方式做了三角函数的分析的早期研究。欧拉的《无穷微量解析入门》(Introductio in Analysin Infinitorum)(1748年)对建立三角函数在欧洲的分析处理做了最主要的贡献,他定义三角函数为无穷级数,并表述了欧拉公式,还有使用接近现代的简写sin.、cos.、tang.、cot.、sec.和cosec.。

[编辑] 直角三角定义

[编辑] 直角三角形中

a, b, h 为角A的对边、邻边和斜边

在直角三角形中仅有锐角三角函数的定义。

1. 一个锐角的正弦是它的对边与斜边的比值。在图中,sin A = 对边/斜边= a/h。

2. 一个锐角的余弦是它的邻边与斜边的比值。在图中,cos A = 邻边/斜边= b/h。

3. 一个锐角的正切是它的对边与邻边的比值。在图中,tan A = 对边/邻边= a/b。

[编辑] 直角坐标系中

设α是平面直角坐标系xOy中的一个象限角,是角的终边上一点,是P到原点O的距离,则α的六个三角函数定义为:

函数名定义函数名定义

正弦余弦

正切余切

正割余割

[编辑] 单位圆定义

单位圆

六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0 和π/2 弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是:

图像中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的x和y坐标分别等于cos θ和sin θ。图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有sin θ = y/1 和cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于1的一种查看无限个三角形的方式。

在笛卡尔平面上f(x) = sin(x) 和f(x) = cos(x) 函数的图像。

对于大于2π 或小于?2π 的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为2π的周期函数:

对于任何角度θ和任何整数k。

周期函数的最小正周期叫做这个函数的「基本周期」(primitive period)。正弦、余弦、正割或余割的基本周期是全圆,也就是2π 弧度或360 度;正切或余切的基本周期是半圆,也就是π 弧度或180 度。上面只有正弦和余弦是直接使用单位圆定义的,其它四个三角函数可以定义为:

在笛卡尔平面上f(x) = tan(x) 函数的图像。

在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角(k+ 1/2)π 的时候变化迅速。正切函数的图像在θ = (k+ 1/2)π 有垂直渐近线。这是因为在θ 从左侧接进(k+ 1/2)π 的时候函数接近正无穷,而从右侧接近(k+ 1/2)π 的时候函数接近负无穷。

另一方面,所有基本三角函数都可依据中心为O的单位圆来定义,类似于历史上使用的几何定义。特别是,对于这个圆的弦AB,这里的θ 是对向角的一半,sin(θ) 是AC(半弦),这是印度的Aryabhata(AD 476–550)介入的定义。cos(θ) 是水平距离OC,versin(θ)= 1 ? cos(θ) 是CD。tan(θ) 是通过A的切线的线段AE的长度,所以这个函数才叫正切。cot(θ) 是另一个切线段AF。sec(θ) = OE和cs c(θ) = OF是割线(与圆相交于两点)的线段,所以可以看作OA沿着A 的切线分别向水平和垂直轴的投影。DE是exsec(θ)= sec(θ) ? 1(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在θ 接近π/2(90 度)的时候发散,而余割和余切在θ 接近零的时候发散。

[编辑] 级数定义

正弦函数(蓝色)十分接近于它的5 次泰勒级数(粉红色)。

只使用几何和极限的性质,可以证明正弦的导数是余弦,余弦的导数是负的正弦。(在微积分中,所有角度都以弧度来度量)。我们可以接着使用泰勒级数的理论来证明下列恒等式对于所有实数x都成立:

这些恒等式经常被用做正弦和余弦函数的定义。它们经常被用做三角函数的严格处理和应用的起点(比如,在傅立叶级数中),因为无穷级数的理论可从实数系的基础上发展而来,不需要任何几何方面的考虑。这样,这些函数的可微性和连续性便可以单独从级数定义来确立。

其它级数可见于:[1]

这里的

是n次上/下数,

是n次伯努利数,

(下面的)是n次欧拉数。

在这种形式的表达中,分母是相应的阶乘,分子称为「正切数」,它有一个组合解释:它们枚举了奇数势的有限集合的交错排列(alternating permutation)。

在这种形式的表达中,分母是对应的阶乘,而分子叫做「正割数」,有组合解释:它们枚举偶数势的有限集合的交错排列。

从复分析的一个定理得出,这个实函数到复数有一个唯一的解析扩展。它们有同样的泰勒级数,所以复数上的三角函数是使用上述泰勒级数来定义的。

[编辑] 与指数函数和复数的联系

可以从上述的级数定义证明正弦和余弦函数分别是复指数函数在它的自变数为纯虚数时候的虚数和实数部分:

这个联系首先由欧拉注意到,叫做欧拉公式。在这种方式下,三角函数在复分析的几何解释中变成了本质性的。例如,通过上述恒等式,如果考虑在复平面中e i x所定义的单位圆,同上面一样,我们可以根据余弦和正弦来把这个圆参数化,复指数和三角函数之间联系就变得更加明显了。

进一步的,这样就可以定义对复自变量z的三角函数:

这里的i2 = ?1。还有对于纯实数x,

我们还知道,这种指数过程与周期行为有密切的联系。

复平面中的三角函数。

sin(z ) cos(z ) tan(z ) cot(z )

sec(z )

csc(z )

[编辑] 微分方程定义

正弦和余弦函数都满足微分方程

就是说,每个都是它自己的二阶导数的负数。在由所有这个方程的解的二维向量空间 V 中,正弦函数是满足初始条件 y (0) = 0 和 y ′(0) = 1 的唯一解,而余弦函数是满足初始条件 y (0) = 1 和 y ′(0) = 0 的唯一解。因为正弦和余弦函数是线性无关的,它们在一起形成了 V 的基。这种定义正弦和余弦函数的方法本质上等价于使用欧拉公式。(参见线性微分方程)。很明显这个微分方程不只用来定义正弦和余弦函数,还可用来证明正弦和余弦函数的三角

恒等式。进一步的,观察到正弦和余弦函数满足

意味着它们是二阶算子的特征函数。

正切函数是非线性微分方程

满足初始条件 y (0) = 0 的唯一解。有一个非常有趣的形象证明,证明了正切函数满足这个微分方程;参见 Needham 的《Visual Complex Analysis 》。[2]

[编辑] 弧度的重要性

弧度通过测量沿着单位圆的路径的长度而指定一个角,并构成正弦和余弦函数的特定辐角。特别是,只有映射弧度到比率的那些正弦和余弦函数才满足描述它们的经典微分方程。如果正弦和余弦函数的弧度辐角是正比于频率的

则导数将正比于「振幅」。

.

这里的k是表示在单位之间映像的常数。如果x是度,则

这意味着使用度的正弦的二阶导数不满足微分方程

,

但满足

;

对余弦也是类似的。

这意味着这些正弦和余弦是不同的函数,因此只有它的辐角是弧度的条件下,正弦的四阶导数才再次是正弦。

[编辑] 恒等式

主条目:三角恒等式

三角函数之间存在很多恒等式,其中最常用的是毕达哥拉斯恒等式,它声称对于任何角,正弦的平方加上余弦的平方总是1。这可从斜边为1 的直角三角形应用勾股定理得出。用符号形式表示,毕达哥拉斯恒等式为:

更常见的写法是在正弦和余弦符号之后加「2」次幂:

在某些情况下里面的括号可以省略。

另一个关键的联系是和差公式,它根据两个角度自身的正弦和余弦而给出它们的和差的正弦和余弦。它们可以用几何的方法使用托勒密的论证方法推导出来;还可以用代数方法使用欧拉公式得出。

当两个角相同的时候,和公式简化为更简单的等式,称为二倍角公式。

这些等式还可以用来推导积化和差恒等式,以前曾用它把两个数的积变换成两个数的和而像对数那样使运算更加快速。

[编辑] 微积分

三角函数的积分和导数可参见导数表、积分表和三角函数积分表。下面是六个基本三角函数的导数和积分的列表。

[编辑] 利用函数方程定义三角函数

在数学分析中,可以利用基于和差公式这样的性质的函数方程来定义三角函数。例如,取用给定此种公式和毕达哥拉斯恒等式,可以证明只有两个实函数满足这些条件。即存在唯一的一对实函数sin和cos使得对于所有实数x和y,下列方程成立:

并满足附加条件

.

从其它函数方程开始的推导也是可能的,这种推导可以扩展到复数。作为例子,这个推导可以用来定义伽罗瓦域中的三角学。

[编辑] 计算

三角函数的计算是个复杂的主题,由于计算器和提供对任何角度的内置三角函数的科学计算器的广泛使用,现在大多数人都不需要了。本节中将描述它在三个重要背景下的计算详情:历史上三角函数表的使用,计算器使用的现代技术,以及容易找到简单精确值的一些「重要」角度。(下面只考虑一个角度小范围,比如0 到π/2,因为通过三角函数的周期性和对称性,所有其它角度可以化简到这个范围内。)

主条目:生成三角函数表

有计算器之前,人们通常通过对计算到多个有效数字的三角函数表的内插来计算三角函数的值。这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)=1)开始并重复应用半角和和差公式而生成。

现代计算器使用了各种技术。[3]一个常见的方式,特别是在有浮点单元的高端处理器上,是组合多项式或有理式逼近(比如切比雪夫逼近、最佳一致逼近和Padé逼近,和典型用于更高或可变精度的泰勒级数和罗朗级数)和范围简约与表查找—首先在一个较小的表中查找最接近的角度,然后使用多项式来计算修正。[4]在缺乏硬件乘法器的简单设备上,有叫做CORDIC算法的一个更有效的算法(和相关技术),因为它只用了移位和加法。出于性能的原因,所有这些方法通常都用硬件来实现。

对于非常高精度的运算,在级数展开收敛变得太慢的时候,可以用算术几何平均来逼近三角函数,它自身通过复数椭圆积分来逼近三角函数。[5]

主条目:精确三角函数常数

最后对于一些简单的角度,使用毕达哥拉斯定理可以很容易手工计算三角函数的值,像下面例子这样。事实上,π / 60弧度(3°)的任何整数倍的正弦、余弦和正切都可以手工计算。

考虑等腰直角三角形,两个角都是π / 4弧度(45°)。邻边b和对边a的长度相等;我们可以选择a = b = 1。π / 4弧度(45°)的角的正弦、余弦和正切可以通过毕达哥拉斯定理来计算:

.

所以:

,

.

要确定π/3弧度(60度)和π/6弧度(30度)角的三角函数,我们可以从边长为1 的等边三角形开始。它所

有的角都是π/3弧度(60度)。把它等分为二,我们便得到一个角是π/6弧度(30度)和一个角是π/3弧度(60度)的直角三角形。这个三角形中,最短的边= 1/2、第二短的边=(√3)/2 而斜边= 1。得出:

,

,

.

[编辑] 三角函数的特殊值

三角函数中有一些常用的特殊函数值。

函数名

sin 0 1

cos 1 0

tan 0 1

cot 1 0

sec 1 2

csc 2 1 [编辑] 反三角函数

主条目:反三角函数

由于三角函数属于周期函数,而不是单射函数,所以严格来说并没有反函数。因此要定义其反函数必须先限制

三角函数的定义域,使得三角函数成为双射函数。基本的反三角函数定义为:

反三角函数定义值域

对于反三角函数,符号sin?1和cos?1经常用于arcsin 和arccos。使用这种符号的时候,反函数可能跟三角

函数的倒数混淆。使用「arc-」前缀的符号避免了这种混淆,尽管「arcsec」可能偶尔跟「arcsecond」混淆。

正如正弦和余弦那样,反三角函数也可以根据无穷级数来定义。例如,

这些函数也可以通过证明它们是其它函数的原函数来定义。例如反正弦函数,可以写为如下积分:

可以在反三角函数条目中找到类似的公式。使用复对数,可以把这些函数推广到复数辐角上:

[编辑] 性质和应用

三角函数,正如其名称那样,在三角学中是十分重要的,主要是因为下列两个结果。

[编辑] 正弦定理

正弦定理声称对于边长为a, b和c而相应角为A, B和C的三角形,有:

也可表示为:

其中R是三角形的外接圆半径。

利萨茹曲线,一种三角基的函数形成的图像。

它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。在这个定理中出现的公共数(sin A)/a 是通过A, B和C三点的圆的直径的倒数。正弦定理用于在一个三角形的两个角和一个边已知时计算未知边的长度。这是三角测量中常见情况。

[编辑] 余弦定理

余弦定理(也叫做余弦公式)是托勒密定理的推广:

也可表示为:

这个定理也可以通过把三角形分为两个直角三角形来证明。余弦定理用于在一个三角形的两个边和一个角已知时确定未知的数据。

如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。

[编辑] 正切定理

还有一个正切定理:

[编辑] 周期函数

谐波数目递增的方波的加法合成的动画。

三角函数在物理中也是重要的。例如,正弦和余弦函数被用来描述简谐运动,它描述了很多自然现象,比如附着在弹簧上的物体的振动,挂在绳子上物体的小角度摆动。正弦和余弦函数是圆周运动的一维投影。

三角函数在一般周期函数的研究中也很有用。这些函数有作为图像的特征波模式,在描述循环现象比如声波或光波的时候是很有用的。每一个信号都可以记为不同频率的正弦和余弦函数的(通常是无限的)和;这是傅立叶分析的基础想法,这里的三角级数可以用来解微分方程的各种边值问题。例如,方波可以写为傅立叶级数

在右边的动画中,可以看到只用少数的项就已经形成了非常准确的估计。

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

三角函数的计算公式

三角函数的计算公式正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 以及两个不常用,已趋于被淘汰的函数: 正矢函数versinθ =1-cosθ 余矢函数vercosθ =1-sinθ 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα

cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a)

sin(π+a)=-sin(a) cos(π+a)=-cos(a) 三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

三角函数计算公式大全

三角函数计算公式大全-CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 定义式 锐角三角函数任意角三角函数 图形 直角三角形 任意角三角函数 正弦(sin) 余弦(cos) 正切(tan或t g) 余切(cot或ct g) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典[1]. 函数关系 倒数关系:①;②;③ 商数关系:①;②. 平方关系:①;②;③.

诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

高中数学常用反三角函数公式

反三角函数公式 arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x = 2 arc tanx = cos (n arc cos x) = .

反三角函数图像与特征 反正弦曲线图像与特征反余弦曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心): ,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率 为1 拐点: ,该点切线斜率为-1 渐近线: 渐近线: .

名称 反正割曲线反余割曲线 方程 图像 顶点 渐近线 反三角函数的定义域与主值范围 函数主值记号定义域主值范围 反正弦若,则 反余弦若,则 反正切若,则 反余切若,则 反正割若,则 反余割若,则 式中n为任意整数. .

反三角函数的相互关系 arc sin x = arc cos x = arc tan x = arc cot x = sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x)) If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function .

三角函数常用公式

数学必修4三角函数常用公式及结论 一、三角函数与三角恒等变换 2、同角三角函数公式 sin 2α+ cos 2α= 1 α αcos tan = 3、二倍角的三角函数公式 sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α α α α2tan 1tan 22tan -= 45、升幂公式 1±sin2α= (sin α±cos α) 2 1 + cos2α=2 cos 2α 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式 sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β ()β αβαβαtan tan 1tan tan tan μ±= ± 7、两角和差正切公式的变形: tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=ααtan 45tan 1tan 45tan ?-+?= tan (4π+α) ααtan 1tan 1+-=α α tan 45tan 1tan 45tan ?+-?= tan (4π-α) 8、两角和差正弦公式的变形(合一变形)

10、三角函数的诱导公式 “奇变偶不变,符号看象限。” sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2 π-α) = cos α cos (2 π-α) = sin α sin (2 π+α) = cos α cos (2 π+α) = -sin α 11.三角函数的周期公式 函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T π ω = ;函数 tan()y x ω?=+,,2 x k k Z π π≠+ ∈(A,ω,?为常数,且A ≠0,ω>0)的周期T πω = . 解三角形知识小结和题型讲解 一、 解三角形公式。 1. 正弦定理 2. 余弦定理 在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式. 3.三角形中三内角的三角函数关系)(π=++C B A ○).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○),2 sin(2cos ),2cos(2sin C B A C B A +=+= 5.几个重要的结论 ○B A B A B A cos cos ,sin sin <>?>; ○三内角成等差数列0 120,60=+=?C A B 2(ABC )sin sin sin a b c R R A B C ===?是的外接圆半径2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-= +-=

考研必备三角函数公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为人意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα

tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

常用的三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A =2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+

tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积

sina+sinb=2sin 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = - 2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2

三角函数基础公式

三角函数基础公式 知识点一: 1.终边相同的角 凡是与终边相同的角,都可以表示成的形式. 要点诠释: (1)终边相同的前提是:原点,始边均相同; (2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差的整数倍. 特例: 终边在x轴上的角集合, 终边在y轴上的角集合, 终边在坐标轴上的角的集合. 在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小. 2.弧度和角度的换算 (1)角度制与弧度制的互化:弧度,弧度,弧度 (2)弧长公式:(是圆心角的弧度数),扇形面积公式:. (3)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径. 知识点二:任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、诱导公式: 1.三角函数定义: 角终边上任意一点为,设则: 要点诠释: 三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,

那么,,. 2.三角函数符号规律: 一全正,二正弦,三正切,四余弦(为正); 3.特殊角的三角函数值 2 sin cos tan 4. 5.诱导公式(奇变偶不变,符号看象限): sin()=sin,cos()=-cos,tan()=-tan sin()=-sin,cos()=-cos,tan()=tan sin()=-sin,cos()=cos,tan()=-tan sin()=-sin ,cos()=cos,tan()=-tan sin()=sin ,cos()=cos,tan()=tan, sin()=cos,cos()=sin sin()=cos,cos()=-sin

三角函数相关所有公式

两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式: sin(2α)=2sinα·cosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式) sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

三角函数所有公式

倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的 对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2 (a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2C os^2(a)-1=1-2Sin^2(a) 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sin a(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2] cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasi

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

三角函数所有公式及基本性质

三角函数所有公式及基本性质整理

————————————————————————————————作者:————————————————————————————————日期: 2

一、任意角的三角比 (一)诱导公式 ααπsin )2sin(=+k ααπcos )2cos(=+k ααπtg k tg =+)2( ααπctg k ctg =+)2( ααsin )sin(-=- ααcos )cos(=- ααtg tg -=-)( ααctg ctg -=-)( ααπsin )sin(-=+ ααπcos )cos(-=+ ααπtg tg =+)( ααπctg ctg =+)( ααπsin )sin(=- ααπcos )cos(-=- ααπtg tg -=-)( ααπctg ctg -=-)( ααπsin )2sin(-=- ααπcos )2cos(=- ααπtg tg -=-)2( ααπctg ctg -=-)2( ααπ cos )2 sin( =- ααπ sin )2 cos(=- ααπ ctg tg =-)2 ( ααπ tg ctg =-)2 ( ααπ cos )2sin( =+ ααπsin )2cos(-=+ ααπctg tg -=+)2( ααπ tg ctg -=+)2( ααπcos )23sin( -=- ααπsin )23cos(-=- ααπctg tg =-)23( ααπ tg ctg =-)23( ααπcos )2 3sin( -=+ ααπsin )23cos(=+ ααπctg tg -=+)23( ααπ tg ctg -=+)2 3( (二)关系结构图 (三)三角比符号 αsin α sec α tg α ctg αcos α csc 1 + + _ _ cos α&sec α sin α&csc α + + _ _ + + _ _ tg α&ctg α

三角函数所有公式及基本性质[整理]

一、任意角的三角比 (一)诱导公式 ααπsin )2sin(=+k ααπcos )2cos(=+k ααπtg k tg =+)2( ααπctg k ctg =+)2( ααsin )sin(-=- ααcos )cos(=- ααtg tg -=-)( ααctg ctg -=-)( ααπsin )sin(-=+ ααπcos )cos(-=+ ααπtg tg =+)( ααπctg ctg =+)( ααπsin )sin(=- ααπcos )cos(-=- ααπtg tg -=-)( ααπctg ctg -=-)( ααπsin )2sin(-=- ααπcos )2cos(=- ααπtg tg -=-)2( ααπctg ctg -=-)2( ααπ cos )2 sin(=- ααπ sin )2 cos(=- ααπ ctg tg =-)2 ( ααπ tg ctg =-)2 ( ααπ cos )2sin( =+ ααπsin )2cos(-=+ ααπctg tg -=+)2( ααπ tg ctg -=+)2( ααπcos )23sin( -=- ααπsin )23cos(-=- ααπctg tg =-)23( ααπ tg ctg =-)23( ααπcos )2 3sin( -=+ ααπsin )23cos(=+ ααπctg tg -=+)23( ααπ tg ctg -=+)2 3( (二)关系结构图 (三)三角比符号

二、三角恒等式 1.同角三角比的关系 倒数关系 1csc sin =αα 1sec cos =αα 1=ααctg tg 商数关系 α α αcos sin = tg α α αsin cos = ctg 平方关系 1cos sin 22=+αα αα22sec 1=+tg αα22csc 1=+ctg 2.两角和与差的三角比 两角差的余弦公式 βαβαβαsin sin cos cos )cos( +=- 两角和的余弦公式 βαβαβαsin sin cos cos )cos( -=+ 两角差的正弦公式 βαβαβαsin cos cos sin )sin(-=- 两角和的正弦公式 βαβαβαsin cos cos sin )sin(+=+ 两角差的正切公式 βαβ αβαtg tg tg tg tg +-= -1)( 两角和的正切公式 β αβ αβαtg tg tg tg tg -+= +1)( 形式)sin(?α+A π ????ααα20,sin ,cos ) sin(cos sin 222222<≤+=+=++=+b a b b a a b a b a 3.二倍角的三角比 α α ααααααα αα22222122sin 211cos 2sin cos 2cos cos sin 22sin tg tg tg -= -=-=-== 4.半角的三角比 _

三角函数常用公式公式及用法

三角函数常用公式及用法 珠海市金海岸中学 唐云辉 1、终边相同的角及其本身在内的角的表示法: S={ | k 360°,k Z},或者 S { | 用法:用来将任意角转化到 0?2的范围以便于计算。 公式中k 的求法: 如是正角就直接除以3600或2,得到的整数 就是我们 要求的k ,剩余的角就是公式中 的;如果是 负角,就先取绝对值然后再去除以 3600或者2,得到 的整数加1后再取相反数就是上述公式中的 k,等于3600或者2减去剩余的角的值。 用法:前者是弧长公式,用以计算圆弧的长度;后者为扇形的面积公式,用以计算扇形的面积。 3.三角形面积公式: 1 , 1 1 1 abc 2 S 』= a h a = ab si nC =—bc si nA = —ac si nB = =2R sin A si n B si nC 2 2 2 4R 2 a sin BsinC 2 sin A 2 2 b sinAsinC c sinAsinB = = =pr= P (P a)(p b)(p c) 2si nB 2sinC 1 ( 其中p -(a 2 4 ?同角关系: b c) , r 为三角形内切圆半径) (1 )、商的关系:① tan =y = sin x cos 用法:一般用来计算三角函数的值。 (2 )、平方关系:sin 2 cos 2 1 行运算,遇到sin cos m 就先平方而后再运算, 遇到sin cos sin 2 cos 2 这类题目就联想 2 2 到分母为"1” =s in cos 进行运算即可。 --------- K (3)、辅助角公式: asin bcos Va 2 b 2 sin( ) (其中 a>0,b>0 ,且 tan —) a 用法:用以将两个异名三角函数转化成同名三角函数,以便于求取相关的三角函数。 5、函数y= Asin( x ) k 的图象及性质:( 0, A 0 ) 2、 L 弧长= n nR R =180 扇 =丄LR 」F 2 2 2 n R 2 360 2k ,k Z} 用法:凡是见了 sin cos m 或者sin cos ?2 sin 2 cos 的形式题目都可以用上述平方关系进

三角函数常用公式表

07高中数学会考复习提纲(2)(三角函数) 第四章三角函数 1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; (2)、与?终边相同的角,连同角?在内,都可以表示为集合{Zkk????,360|????} (3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。 2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。 (2)、度数与弧度数的换算:?? 180弧度,1弧度

'1857)180(????? (3)、弧长公式:rl||??(?是角的弧度数) 扇形面积:2||2121rlrS???? 3 、三角函数(1)、定义:(如图)(2)、各象限的符号:yryxrxxrxyry????????????csccotcossectansin (3)、特殊角的三角函数值2 ?cos1232221021?22?23?1?01 ?tan03313—3?1?33?0—0 4、同角三角函数基本关系式 (1)平方关系:(2)商数关系:(3)倒数关系:

1cossin22???????cossintan?1cottan??? ??22sectan1?????sincoscot?1cscsin??? ??22csccot1??1seccos??? (4)同角三角函数的常见变形:(活用“1”) ①、??22cos1sin??,??2cos1sin???;??22sin1cos??,??2sin1cos???; ②???????2sin2cossinsincoscottan22????, ?????????2cot22sin2cos2cossinsincostancot22??????sin x y + + _ _ O x y + + _ _ ?cos O ?tan x y + + _ _ O ? P(x,y) r x 0 022???yxr y ?sec?sin?cos ?tan?cot

三角函数所有的公式

三角函数公式汇总 常见角三角函数值: sin 0o =0 cos 0o =1 tan 0o =0 cot 0o 不存在 sin 30o =21 cos 30o =23 tan 30o =33 cot 30o = 3 sin 60o =23 cos 60o =2 1 tan 60o =3 cot 60o =33 sin 45o =22 cos 45o =22 tan 45o =1 cot 45o =1 sin 90o =1 cos 90o =0 tan 90o 不存在 cot 90o =0 任意角三角函数: sin(2k ?+α)= sin α cos(2k ?+α)= cos α tan(2k ?+α)= tan α sin(?+α)= - sin α cos(?+α)= - cos α tan (?+α)= tan α sin(?-α)=sin α cos(?-α)= - cos α tan (?-α)= - tan α sin(2?-α)= - sin α cos(2?-α)=cos α tan (2?-α)= - tan α Sin (2π -α)=cos α cos (2π-α)=sin α Sin (2π +α)=cos α cos (2π+α)=-sin α

Sin (23π-α)= - cos α cos (2 3π-α)= - sin α Sin (23π+α)= - cos α cos (2 3π+α)=sin α 两角和差三角函数: sin(A+B)=sinAcosB+cosAsinB sin(A- B)=sinAcosB- cosAsinB cos(A+B)=cosAcosB- sinAsinB cos(A- B)=cosAcosB+sinAsinB tan(A+B)= B tan A tan B tan A tan -+1 tan(A- B)=B tan A tan B tan A tan +-1 cot(A+B)=B cot A cot B cot A cot +-1 cot(A-B)=B cot -A cot B cot A cot 1+ 三角函数半角公式: sin(2A )=2A cos -1 cos(2A )=2A cos 1+ tan(2A )=A cos A cos 1+-1=A sin A cos -1=A cos A sin +1 cot(2A )=A cos A cos 1-+1 三角函数平方公式: sin 2α+cos 2α=1 1+tan 2α=sec 2α 1+cot 2α=csc 2α sin 2α=2 21αcos - cos 2α=αtan 211 +=2 21αcos + tan 2α=α tan tan 212- 三角函数2倍角公式:

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

相关文档
最新文档