隔板法、插入法、捆绑法解决组合问题

隔板法、插入法、捆绑法解决组合问题
隔板法、插入法、捆绑法解决组合问题

1 10.3 组合(六)教学目标: 1.掌握组合数的性质,并能应用组合数的性质解题. 2.培养学生应用公式、性质的能力. 教学重点: 隔板法、插入法、捆绑法解决组合问题. 教学难点: 隔板法、插入法、捆绑法. 教学过程: 讲授新课例1.有10 个相同的小球,放入编号为1、2、3 的三个不同盒子,?7?6要求每个盒子非空,共有多少种放法??7?7要求每个盒子放入的小球数不少于盒子的编号数,共有多少种放法?方法一:?7?6设x+y+z=10, x≥y≥z, 其正整数解为:x=8,y=1,z=1;x=7,y=2,z=1;x=6,y=3,z=1;x=6,y=2,z=2;x=5,y=4,z=1;x=5,y=3,z=2;x=4,y=4,z=2;x=4,y=3,z=3.则放法有?7?7先将1 个、

2 个小球分别放入第2、

3 个盒子,再按?7?6放入每个盒子的小球数> 0,设x+y+z=7, x≥y≥z, 其正整数解为:x=5,y=1,z=1;x=4,y=2,z=1;x=3,y=3,z=1;x=3,y=2,z=2.则放法有: . 15 3 3 方法二:隔板法.如: 对应: ?7??7?

C 答:?6?7 练习1.某中学从高中7 个班中选出12 名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1 人参加的选法有多少种?

练习2. 6 人带10 瓶汽水参加春游,每人至少带1 瓶汽水,共有多少种不同的带法?练习3.北京市某中

学要把9 台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2 台,共有种不同送法. 例2. 已知方程x+y+z+w=100,求这个方程的正整数解的组数. 练习4. 已知方程x 1 +x 2 +x3=50,求这个方程有多少组非负整数解. 1号2号3号1号2号3号1号2号3号 2 隔板法:就是把“|”当成隔板,把考察的对象分成若干份.例3. 一座桥上有编号为1,2,3?6?7,10 的十盏灯,为节约用电又不影响照明,可以把其中的三盏关掉,但不能关掉相邻的两盏或三盏,也不能关掉两端的路灯,问不同的关灯方法有多少种?练习5. 一条长椅上有9 个座位,3 个人坐,若相邻2 人之间至少有2 个空椅子,共有几种不同的坐法?例 4. 一条长椅上有七个座位,四人坐,要求三个空位中有两个空位相邻,另一个空位与这两个相邻空位不相邻,共有几种坐法?课堂小结 1. 隔板法;2. 插入法;3. 捆绑法 . 捆绑法和插空法是解排列组合问题的重要方法之一,主要用于解决"相邻问题" 及"不邻问题"。总的解题原则是"相邻问题捆绑法,不邻问题插空法"。在实际公务员考试培训过程中,我发现学员经常碰到这样的困惑,就是一样类型的题目,不过表达的形式有所变化,就很难用已解过的题目的方法去解决它,从而降低了学习效率。下面结合有关捆绑法和插空法的不同变化形式,以实际例题详细讲解。"相邻问题"捆绑法,即在解决对于某几个元素要求相邻的问

题时,先整体考虑,也就是将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.〔注〕运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题内部各元素间排列顺序的解题策略。例1.若有A、B、C、D、E 五个人排队,要求A 和B 两个人必须站在相邻位置,则有多少排队方法?【解析】:题目要求A 和B 两个人必须排在一起,首先将A 和B 两个人"捆绑",视其为"一个人",也即对"A,B"、C、D、E"四个人"进行排列,有种排法。又因为捆绑在一起的A、B 两人也要排序,有种排法。根据分步乘法原理,总的排法有种。例2.有8 本不同的书;其中数学书3 本,外语书2 本,其它学科书3 本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的 3 排法共有多少种.(结果用数值表示) 解:把3 本数学书“捆绑”在一起看成一本大书,2 本外语书也“捆绑”在一起看成一本大书,与其它3 本书一起看作5 个元素,共有A(5,5)种排法;又3 本数学书有A(3,3)种排法,2 本外语书有A(2,2)种排法;根据分步计数原理共有排法

A(5,5)A(3,3)A(2,2)=1440(种). 【解析】:把3 本数学书"捆绑"在一起看成一本大书,2 本外语书也"捆绑"在一起看成一本大书,与其它3 本书一起看作5 个元素,共有种排法;又3 本数学书有种排法,2 本外语书有种排法;根

据分步乘法原理共有排法种。【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意"捆绑"起来的大元素内部的顺序问题。解题过程是"先捆绑,再排列"。6 个球放进5 个盒子,有多少种不同的方法?其实,由抽屉原理可知,必然有两个球在一起。所以答案是C(6, 2)X A(5,5) 其实就是6 取2,与5 的阶乘的积1、有10 本不同的书:其中数学书4 本,外语书3 本,语文书3 本。若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种。2、5 个人站成一排,要求甲乙两人站在一起,有多少种方法? 4 3、6 个不同的球放到5 个不同的盒子中,要求每个盒子至少放一个球,一共有多

少种方法?4、一台晚会上有6 个演唱节目和4 个舞蹈节目,4 个舞蹈节目要排在一起,有多少不同的安排节目的顺序?1、有ABCDE 共5 个人并排站在一起,如果AB 必须相邻,并B 在A 的右边,那么不同的排法有多少种2、将袋子里面的所有球排成一排,要求红色的球彼此相邻,有()种方法3、将袋子里面的所有球排成一排,要求红色的球互不相邻,有()种方法部分题目答案:2、【解】P(5,5)×P(5,5) 3、【解】P(4,4)×P(5,5) 1、将袋子里面的所有球分成三组,每组至少一个,有()种方法2、将袋子里面的所有球分成三组,每组恰好三个,有()种方法3、将袋子里面的所有球分成至多三组,每组至少一个,有()种方法 5 4、

将袋子中的五个红球排成一排,若要求1 号球不在第一个位置,3 号球不在第二个位置,5 号球不在第三个位置,7 号球不在第四个位置,9 号球不在第五个位置,有()种方法"不邻问题"插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。例3.若有A、B、C、D、E 五个人排队,要求A 和B 两个人必须不站在一起,则有多少排队方法?【解析】:题目要求A 和B 两个人必须隔开。首先将C、D、E 三个人排列,有种排法;若排成D C E,则D、C、E"中间"和"两端"共有四个空位置,也即是:〕D 〕C 〕E 〕,此时可将A、B 两人插到四个空位置中的任意两个位置,有种插法。由乘法原理,共有排队方法:。例4.在一张节目单中原有6 个节目,若保持这些节目相对顺序不变,再添加进去3 个节目,则所有不同的添加方法共有多少种?【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7 个空位(原来的6 个节目排好后,中间和两端共有7 个空位),有种方法;再用另一个节目去插8 个空位,有种方法;用最后一个节目去插9 个空位,有方法,由乘法原理得:所有不同的添加方法为=504 种。例5.一条马路上有编号为1、2、?6?7?6?7、9 的九盏路灯,为了节约用电,可以把其中的三盏关掉,但不能同时关掉相

邻的两盏或三盏,则所有不同的关灯方法有多少种?【解析】:若直接解答须分类讨论,情况较复杂。故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7 个空位,共有种方法(请您想想为什么不是),因此所有不同的关灯方法有种。【王永恒提示】:运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素"中间空位"和"两端空位"。解题过程是"先排列,再插空"。例6.练习:一张节目表上原有3 个节目,如果保持这3 个节目的相对顺序不变,再添加进去2 个新节目,有多少种安排方法?(国考2008-57)A.20 B.12 C.6 D.4 6 7 8 解排列组合应用题的21 种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1. 五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有()9 A、60 种B、48 种C、36 种D、24 种解析:把视为一人,且固定在的右边,则本题相当于4 人的全排列,种,选 . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.

七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440 种B、3600 种C、4820 种D、4800 种解析:除甲乙外,其余5 个排列数为种,再用甲乙去插6 个空位有种,不同的排法种数是种,选 . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定

的顺序,可用缩小倍数的方法. 例3. 五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是()A、24 种B、60 种C、90 种D、120 种解析:在的右边与在的左边排法数相同,所以题设的排法只是5 个元素全排列数的一半,即种,选 . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4 填入标号为1,2,3,4 的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6 种B、9 种C、11 种D、23 种解析:先把1 填入方格中,符合条件的有3 种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9 种填法,选 . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2 人承担,乙丙各需一人承担,从10 人中选出4 人承担这三项任务,不同的选法种数是()

A、1260 种

B、2025 种

C、2520 种

D、5040 种解析:先从10 人中选出2 人承担甲项任务,再从剩下的8 人中选1 人承担乙项任务,第三步从另外的7 人中选1 人承担丙项任务,不同的选法共有种,选 . (2)12 名同学分别到三个不同的路口进行流量的调查,若每个路口 4 人,则不同的分配方案有()A、种B、种C、种D、种答案: . 6.全员分配问题分组法: 例6.(1)4 名优秀学生全部保送到3 所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3 组有种方法,再把三组学生分配到三所学校有种,故共有种方法. 说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配. 10 (2)5 本不同的书,全部分给4 个学生,每个学生至少一本,不同的分法种数为()A、480 种B、240 种C、120 种D、96 种答案: . 7.名额分配问题隔板法: 例7:10 个三好学生名额分到7 个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10 个名额分到7 个班级,就是把10 个名额看成10 个相同的小球分成7 堆,每堆至少一个,可以在10 个小球的9 个空位中插入6 块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为种. 8.限制条件的分配问题分类法: 例8.某高校从某系的10 名优秀毕业生中选 4 人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,

乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案种;②若甲参加而乙不参加,先安排甲有3 种方法,然后安排其余学生有方法,所以共有;③若乙参加而甲不参加同理也有种;④若甲乙都参加,则先安排甲乙,有7 种方法,然后再安排其余8 人到另外两个城市有种,共有方法.所以共有不同的派遣方法总数为种. 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5 组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210 种B、300 种C、464 种D、600 种解析:按题意,个位数字只可能是0,1,2,3,4 共5 种情况,分别有个,个,合并总计300 个,选 . (2)从1,2,3…,100 这100 个数中,任取两个数,使它们的乘积能被7 整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7 整除时,他们的乘积就能被7 整除,将这100 个数组成的集合视为全集I,能被7 整除的数的集合记做共有14 个元素,不能被7 整除的数

组成的集合记做共有86 个元素;由此可知,从中任取2 个元素的取法有,从中任取一个,又从中任取一个共有,两种情形共符合要求的取法有种. (3)从1,2,3,…,

100 这100 个数中任取两个数,使其和能被4 整除的取法(不计顺序)有多少种?解析:将分成四个不相交的子集,能被 4 整除的数集;能被4 除余1 的数集,能被 4 除余2 的数集,能被4 除余3 的数集,易见这四个集合中每一个有25 个元素;从中任取两个数符合要;从中各取一个数也符合要求;从中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式 . 例10.从6 名运动员中选出4 人参加4×100 米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6 人中任取 4 人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四11 棒的排列},根据求集合元素个数的公式得参赛方法共有:种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。例11.1 名老师和4 名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有种,4 名同学在其余 4 个位置上有种方法;所以共有种。. 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。例12.(1)6 个不同的元素排成前后两排,每排3 个元素,那么不同的排法种数是()A、36 种B、120 种C、720 种D、1440

种解析:前后两排可看成一排的两段,因此本题可看成6 个不同的元素排成一排,共种,选 . (2)8 个不同的元素排成前后两排,每排4 个元素,其中某2 个元素要排在前排,某1 个元素排在后排,有多少种不同排法?解析:看成一排,某2 个元素在前半段四个位置中选排2 个,有种,某1 个元素排在后半段的四个位置中选一个有种,其余5 个元素任排5 个位置上有种,故共有种排法. 13.“至少”“至多”问题用间接排除法或分类法: 例13.从4 台甲型和5 台乙型电视机中任取3 台,其中至少要甲型和乙型电视机各一台,则不同的取法共有()A、140 种B、80 种C、70 种D、35 种解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有种,选. 解析2:至少要甲型和乙型电视机各一台可分两种情况:甲型1 台乙型2 台;甲型2 台乙型1 台;故不同的取法有台,选 . 14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法. 例14.(1)四个不同球放入编号为1,2,3,4 的四个盒中,则恰有一个空盒的放法有多少种?解析:先取四个球中二个为一组,另二组各一个球的方法有种,再排:在四个盒中每次排 3 个有种,故共有种. (2)9 名乒乓球运动员,其中男5 名,女4 名,现在要进行混合双打训练,有多少种不同的分组方法?解析:先取男女运动

员各2 名,有种,这四名运动员混和双打练习有中排法,故共有种. 15.部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求. 例15.(1)以正方体的顶点为顶点的四面体共有()A、70 种B、64 种C、58 种D、52 种解析:正方体8 个顶点从中每次取四点,理论上可构成四面体,但6 个表面和6 个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有个. 12 (2)四面体的顶点和各棱中点共10 点,在其中取4 个不共面的点,不同的取法共有()A、150 种B、147 种C、144 种D、141 种解析:10 个点中任取 4 个点共有种,其中四点共面的有三种情况:①在四面体的四个面上,每面内四点共面的情况为,四个面共有个;②过空间四边形各边中点的平行四边形共3 个;③过棱上三点与对棱中点的三角形共6 个.所以四点不共面的情况的种数是种. 16.圆排问题单排法:把个不同元素放在圆周个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列个普通排列:在圆排列中只算一种,因为旋转后可以重合,故认为相同,个元素的圆排列数有种.因此可将某个元素固定展成单排,其它的元素全排列. 例16.5 对姐妹站成一圈,要求每对姐妹相邻,

有多少种不同站法?解析:首先可让5 位姐姐站成一圈,属圆排列有种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2 种方式,故不同的安排方式种不同站法. 说明:从个不同元素中取出个元素作圆形排列共有种不同排法. 17.可重复的排列求幂法:允许重复排列问题的特

点是以元素为研究对象,元素不受位置的约束,可逐一安

排元素的位置,一般地个不同元素排在个不同位置的排列数有种方法. 例17.把6 名实习生分配到7 个车间实习共有多少种不同方法?解析:完成此事共分6 步,第一步;将第一名实习生分配到车间有7 种不同方案,第二步:将第二名实习生分配到车间也有7 种不同方案,依次类推,由分步计数原理知共有种不同方案. 18.复杂排列组合问题构造模型法: 例18.马路上有编号为1,2,3…,9 九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也

不能关掉两端的两盏,求满足条件的关灯方案有多少种?

解析:把此问题当作一个排对模型,在 6 盏亮灯的 5 个空隙中插入 3 盏不亮的灯种方法, 所以满足条件的关灯方案有10 种. 说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题

容易解决. 19.元素个数较少的排列组合问题可以考虑枚举法: 例19.设有编号为1,2,3,4,5 的五个球和编号为1,2,3,4,5 的盒子现将这5 个球投入5 个盒子要求每个盒

子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?解析:从5 个球中取出2 个与盒子对号有种,还剩下3 个球与3 个盒子序号不能对应,利用枚举法分析,如果剩下3,4,5 号球与3,4,5 号盒子时,3 号球不能装入3 号盒子,当3 号球装入4 号盒子时,4,5 号球只有1 种装法,3 号球装入5 号盒子时,4,5 号球也只有1 种装法,所以剩下三球只有2 种装法,因此总共装法数为种. 20.复杂的排列组合问题也可用分解与合成法: 例20.(1)30030 能被多少个不同偶数整除?解析:先把30030 分解成质因数的形式:

30030=2×3×5×7×11×13;依题意偶因数2 必取,3,5,7,11,13 这5 个因数中任取若干个组成成积,所有的偶因数为13 个. (2)正方体8 个顶点可连成多少队异面直线?解析:因为四面体中仅有3 对异面直线,可将问题分解成正方体的8 个顶点可构成多少个不同的四面体,从正方体8 个顶点中任取四个顶点构成的四面体有个,所以8 个顶点可连成的异面直线有3×58=174 对. 21.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理. 例21.(1)圆周上有10 点,以这些点为端点的弦相交于圆内的交点有多少个?解析:因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆

内的一个交点,于是问题就转化为圆周上的10 个点可以确定多少个不同的四边形,显然有个,所以圆周上有10 点,以这些点为端点的弦相交于圆内的交点有个. (2)某城市的街区有12 个全等的矩形组成,其中实线表示马路,从到的最短路径有多少种?解析:可将图中矩形的一边叫一小段,从到最短路线必须走7 小段,其中:向东4 段,向北3 段;而且前一段的尾接后一段的首,所以只要确定向东走过4 段的走法,便能确定路径,因此不同走法有种. 排列组合问题的求解策略(本周回顾)方肇飞(归纳版) 1.计数原理:①加法原理:N=n1+n2+n3+?6?7+nM (分类) ②乘法原理:N=n1·n2·n3·?6?7nM (分步);2. 排列(有序)与组合(无序);排列一般为总元素中选部分,然后对选出元素进行安排,要各得其所。(一对一) 3.公式和性质:(自己写)4. 排列组合混合题的解题原则:先选后排,先分再排。5. 排列组合题的主要解题方法:解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。同时还要注意讲究一些策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法。14 一、合理分类与准确分步法解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,作到分

类标准明确,分步层次清楚,不重不漏。例1 、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有()A.120 种B.96 种C.78 种D.72 种分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有种排法;2)若甲在第二,三,四位上,则有种排法,由分类计数原理,排法共有种,选C。二、正难反易转化法对于一些生疏问题或直接求解较为复杂或较为困难问题,从正面入手情况较多,不易解决,这时可从反面入手,将其转化为一个简单问题来处理。例2、马路上有8 只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?分析:关掉第1 只灯的方法有6 种,关第二只,第三只时需分类讨论,十分复杂。若从反面入手考虑,每一种关灯的方法对应着一种满足题设条件的亮灯与关灯的排列,于是问题转化为“在5 只亮灯的4 个空中插入3 只暗灯”的问题。故关灯方法种数为。三、混合问题“先选后排” 对于排列组合混合问题,可先选出元素,再排列。例3、4 个不同小球放入编号为1,2,3,4 的四个盒中,恰有一空盒的方法有多少种?分析:因有一空盒,故必有一盒子放两球。1)选:从四个球中选2 个有种,从4 个盒中选3 个盒有种;2)排:把选出的2 个球看作一个元素与其余2 球共3 个

元素,对选出的3 盒作全排列有种,故所求放法有种。四、“优先安排法”:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 例4、用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有()。A.24 个B。30 个C。40 个D。60 个[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0 不能排首位,故0 15 就是其中的“特殊”元素,应该优先安排,按0 排在末尾和0 不排在末尾分两类:1)0 排末尾时,有个,2)0 不排在末尾时,则有个,由分数计数原理,共有偶数=30 个,选B。五、间接法(总体淘汰法)对于含有否定字眼的问题,可以从总体中把不符合要求的除去,此时需注意不能多减,也不能少减。例如在例4 中,也可用此法解答:五个数字组成三位数的全排列有个,排好后发现0 不能排首位,而且数字3,5 也不能排末位,这两种排法要除去,故有个偶数。六、局部问题“整体优先法” 对于局部排列问题,可先将局部看作一个元与其余元素一同排列,然后在进行局部排列。例5、7 人站成一排照相,要求甲乙两人之间恰好隔三人的站法有多少种?分析:甲、乙及间隔的3 人组成一个“小整体”,这3 人可从其余5 人中选,有种;这个“小整体”与其余2 人共3 个元素全排列有种方法,它的内部甲、乙两人有种站法,中间选的3 人也有种排法,故符

合要求的站法共有种。七、相邻问题“捆绑法” 对于某几个元素要求相邻的排列问题,可将相邻的元素看作一个“元”与其他元素排列,然后在对“元”内部元素排列。例6、7 人站成一排照相,甲、乙、丙三人相邻,有多少种不同排法?分析:把甲、乙、丙三人看作一个“元”,与其余4 人共5 个元作全排列,有种排法,而甲乙、丙、之间又有种排法,故共有种排法。八、不相邻问题“插空法” 对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。例7、在例6 中,若要求甲、乙、丙不相邻,则有多少种不同的排法?分析:先将其余四人排好有种排法,再在这人之间及两端的 5 个“空”中选三个位置让甲乙丙插入,则有种方法,这样共有种不同排法。九、顺序固定问题用“除法” 对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同排列,然后用总排列数除以这几个元素的全排列数。例8、6 个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?分析:不考虑附加条件,排队方法有种,而其中甲、乙、丙的种排法中只有一种符合条件。故符合条件的排法有种。十、构造模型“隔板法” 对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。例9、方程a+b+c+d=12 有多少组正整数解?分析:建立隔板模型:将12 个完全相同的球排成一

列,在它们之间形成的11 16 个间隙中任意插入3 块隔板,把球分成4 堆,而每一种分法所得4 堆球的各堆球的数目,即为a,b,c,d 的一组正整解,故原方程的正整数解的组数共有。再如方程a+b+c+d=12 非负整数解的个数;三项式,四项式等展开式的项数,经过转化后都可用此法解。十一、分排问题“直排法” 把几个元素排成前后若干排的排列问题,若没有其它的特殊要求,可采取统一排成一排的方法来处理。例10、7 个人坐两排座位,第一排3 个人,第二排坐4 个人,则不同的坐法有多少种?分析:7 个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有种。十二、表格法有些较复杂的问题可以通过列表使其直观化。例11、9 人组成篮球队,其中7 人善打前锋,3 人善打后卫,现从中选5 人(两卫三锋,且锋分左、中、右,卫分左右)组队出场,有多少种不同的组队方法?分析:由题设知,其中有1 人既可打锋,又可打卫,则只会锋的有6 人,只会卫的有2 人。列表如下:人数 6 人只会锋 2 人只会卫 1 人即锋又卫结果不同选法 3 2 3 1 1(卫) 2 2 1(锋)由表知,共有种方法。除了上述方法外,有时还可以通过设未知数,借助方程来解答,简单一些的问题可采用列举法,还可以利用对称性或整体思想来解题等等。排列组合是高中数学的重点和难点之一,也是进一步学习概率的基础。事实上,许多概

率问题也可归结为排列组合问题。这一类问题不仅内容抽象,解法灵活,而且解题过程极易出现“重复” 和“遗漏”的错误,这些错误甚至不容易检查出来,所以解题时要注意不断积累经验,总结解题规律,掌握若干技巧。 6. 在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)用何种方法?(4)分析题目条件,避免“选取”时重复和遗漏;(5)列出式子计算和作答. 三经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想. 7.解排列组合题的一般思路(步骤)及方法:(刚开始学时的关键所在,即找出框架)a、先分析事件是什么,并判断完成这件事情是分步还是分类?17 如分步,则分几步?每个步骤又分几种情况?如分类,如何分类,在你选好某种个人分类方法后则分几类?每类又有几种情

况?在某类中是否依步进行不了还需再分类。b、先考虑以上两个原则,再考虑这件事情的发生有无顺序,有序则排列,无序则组合;然后考虑题意,根据题意选择用何种方法:插空法、优先法、捆绑法、间接法、去杂法、树形法等等;一定要确保其中无重复,无遗漏!当然只要找准套路就没问题。题型可由你归纳为排队问题,数字问题和几何问题(染色)等。要以典型例题为本来模仿!不要以为是出现了新问题而束手无策。同学们在学习时,若能把一个题的

隔板法在解排列组合问题中的应用

隔板法在解排列组合问题中的应用 河南省三门峡市卢氏一高(472200)赵建文 隔板法又称隔墙法、插板法是处理名额分配、相同物体的分配等排列组合问题的重要方法,本文将将通过例题将这种方法作以介绍,供同学们学习时参考. 一、将n 件相同物品(或名额)分给m 个人(或位置),允许若干个人(或位置)为空的问题 例1将20个大小形状完全相同的小球放入3个不同的盒子,允许有盒子为空,但球必须放完,有多少种不同的方法? 分析:本题中的小球大小形状完全相同,故这些小球没有区别,问题等价于将小球分成三组,允许有若干组无元素,用隔板法. 解析:将20个小球分成三组需要两块隔板,将20个小球及两块隔板排成一排,两块隔板将小球分成三块,从左到右看成三个盒子应放的球数,每一种隔板与球的排法对应一种分法.将20个小球和2块隔板排成一排有22个位置,先从这22个位置中取出两个位置放隔 板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有222C 种不同的放法,再将小球 放入其他位置,由于小球与隔板都无差别,故小球之间无序,只有1种放法,根据分步计数 原理,共有222C ×1=231种不同的方法. 点评:对n 件相同物品(或名额)分给m 个人(或位置),允许若干个人(或位置)为空的问题,可以看成将这n 件物品分成m 组,允许若干组为空的问题.将n 件物品分成m 组,需要1m -块隔板,将这n 件物品和1m -块隔板排成一排,占1n m +-位置,从这1n m +-个位置中选1m -个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有11m n m C -+-种不同的方法, 再将物品放入其余位置,因物品相同无差别,故物品之间无顺序,是组合问题,只有1种放法,根据分步计数原理,共有11m n m C -+-×1=11m n m C -+-种排法,因 1m -块隔板将n 件相同物品分成m 块,从左到右可以看成每人所得的物品数,每一种隔板与物品的 排法对应于一种分法,故有11m n m C -+-种分法. 二、将n 件相同物品(或名额)分给m 个人(或位置),每人(或位置)必须有物品问题 例2将20个优秀学生名额分给18个班,每班至少1个名额,有多少种不同的分配方法? 分析:本题是名额分配问题,用隔板法. 解析:将20个名额分配给18个班,每班至少1个名额,相当于将20个相同的小球分成18组,每组至少1个,将20个相同的小球分成18组,需要17块隔板,先将20个小球排成一排,因小球相同,故小球之间无顺序,是组合,只有1种排法,再在20个小球之间的19个空档中,选取17个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故 隔板有1719C 种不同的放法,根据分步计数原理,共有1719C 种不同的方法,因17块隔板将20个小球分成18组,从左到右可以看成每班所得的名额数,每一种隔板与小球的排法对应于 一种分法,故有11m n m C -+-种分法. 点评::对n 件相同物品(或名额)分给m 个人(或位置),每个人(或位置)必须有

排列组合问题之捆绑法_插空法和插板法

“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。 例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法? 【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“A,B”、C、D、E“四个人”进行排列,有种排法。又因为捆绑在一起的A、B两人也要排序,有种排法。根据分步乘法原理,总的排法有种。 例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种? 【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有种排法;又3本数学书有种排法,2本外语书有种排法;根据分步乘法原理共有排法种。 【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。解题过程是“先捆绑,再排列”。 “不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。

例3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法? 【解析】:题目要求A和B两个人必须隔开。首先将C、D、E三个人排列,有种排法;若排成D C E,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺ D ︺ C ︺ E ︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。由乘法原理,共有排队方法:。 例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种? 【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有方法,由乘法原理得:所有不同的添加方法为=504种。 例4.一条马路上有编号为1、2、……、9的九盏路灯,为了节约用电,可以把其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种? 【解析】:若直接解答须分类讨论,情况较复杂。故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7个空位,共有种方法(请您想想为什么不是),因此所有不同的关灯方法有种。 【王永恒提示】:运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。解题过程是“先排列,再插空”。 练习:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个新节目,有多少种安排方法?(国考2008-57)

排列组合问题之捆绑法-插空法和插板法

行测答题技巧:排列组合问题之捆绑法,插空法和插板法 “相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再 考虑大元素内部各元素间排列顺序的解题策略。 例1 ?若有A、B、C、D E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法 【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“ A,B”、C D E “四个人”进行排列,有■< 种排法。又因为捆绑在一起的A、B两人也要排序,有I种排法。根据分步乘法原理,总的排法有I -种 例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。若 将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法 共有多少种 【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有丄种排法;又3 本数学书有丄种排法,2本外语书有雹种排法;根据分步乘法原理共有排法.<■'I - -- I 种。 【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑” 起来的大元素内部的顺序问题。解题过程是“先捆绑,再排列”。 “不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将 问题解决的策略。 例3.若有A、B、C、D E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法

【解析】:题目要求A和B两个人必须隔开。首先将C、D E三个人排列, 有「「种排法;若排成D C E,则D C E “中间”和“两端”共有四个空位置,也即是:?D C E ,此时可将 A B两人插到四个空位置中的任意两个位置,有q种插法。由乘法原理,共有排队方法:匚二 :-。 例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种 【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目 去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有「种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有」:.方法,由乘法原理得:所有不同的添加方法为匚-.,=504种。 例4.一条马路上有编号为1、2、……、9的九盏路灯,为了节约用电, 可以把其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种 【解析】:若直接解答须分类讨论,情况较复杂。故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7个空位,共有'种方法(请您想想为什么不是八),因此所有不同的关灯方法有'_「种。 【王永恒提示】:运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。解题过程是“先排列,再插空”。 练习:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个新节目,有多少种安排方法(国考2008-57) A. 20 B . 12 C . 6 D . 4 插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求

排列组合问题之 插板法应用小结!

数算]排列组合问题之插板法应用小结! 插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。 应用插板法必须满足三个条件: (1)这n个元素必须互不相异 (2)所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。QZZN有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。有条件的朋友可以到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的一个网站,极力的推荐给大家(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)。大家好好学习吧!最后,祝大家早日上岸。此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。 =================================================== 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用 a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法) 例1 :把10个相同的小球放入3个不同的箱子,问有几种情况? 3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入 1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况? 显然就是c12 2=66 ------------------------------------------------- 例2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?

隔板法”解决排列组合问题

“隔板法”解决排列组合问题(高二、高三) 排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。 例1、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种? (2)12个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种? (3)12个相同的小球放入编号为1,2,3,4的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种? 解:(1)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若把“1”,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11个间隔中选出3个间隔的组合对应于一种放法,所以不同的放法有3 11C =165种。 (2)法1:(分类)①装入一个盒子有144C =种;②装入两个盒子,即12个相同的小球装入两个不同的盒子,每盒至少装一个有2141166C C =种;③装入三个盒子,即12个相同的小球装入三个不同的盒子,每盒至少装一个有32411C C =220种;④装入四个盒子,即12个相同的小球装入四个不同的盒子,每盒至少装一个有311165C =种;由加法原理得共有4+66+220+165=455种。 法2:先给每个小盒装入一个球,题目中给定的12个小球任意装,即16个小球装入4个不同的盒子,每盒至少装一个的装法有3 15455C =种。 (3)法1:先给每个盒子装上与其编号数相同的小球,还剩2个小球,则这两个小球可以装在1个盒子或两个盒子,共有124410C C +=种。 法2:先给每个盒子装上比编号小1的小球,还剩6个小球,则转化为将6个相同的小球装入4个不同的盒子,每盒至少装一个,由隔板法有3510C = 由上面的例题可以看出法2要比法1简单,即此类问题都可以转化为至少分一个的问题。 例2、(1)方程123410x x x x +++=的正整数解有多少组? (2) 方程123410x x x x +++=的非负整数解有多少组? (3)方程1231023x x x x ++++=L 的非负整数整数解有多少组?

排列组合--插板法、插空法、捆绑法32415

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻) 插板法(m为空的数量) 【基本题型】 有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法? ”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的, 【总结】 需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。 注意:这样对于很多的问题,是不能直接利用插板法解题的。但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。 插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法. 应用插板法必须满足三个条件: (1)这n个元素必须互不相异 (2)所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用 e 二次插板法 例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况? -o - o - o - o - o - o - 三个节目abc 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 所以一共是c7 1×c8 1×c9 1=504种 【基本解题思路】 将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。

(小学奥数)7-5-4 组合之插板法.教师版

1.使学生正确理解组合的意义;正确区分排列、组合问题; 2.了解组合数的意义,能根据具体的问题,写出符合要求的组合; 3.掌握组合的计算公式以及组合数与排列数之间的关系; 4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合 技巧,如排除法、插板法等. 一、组合问题 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某 项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元 素中取出m 个元素的一个组合. 从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合. 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的 组合数.记作m n C . 一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法; 第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法. 根据乘法原理,得到m m m n n m P C P =?. 因此,组合数12)112321 m m n n m m P n n n n m C m m m P ?-?-??-+==?-?-????()(()()(). 这个公式就是组合数公式. 二、组合数的重要性质 一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤) 这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个 元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法. 例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n n C =,01n C =. 7-5-4.组合之插板法 知识要点 教学目标

插板法插空法解排列组合问题

插板法、插空法解排列组合问题 华图教育 邹维丽 排列组合问题是行测数学运算中的经常碰到的一类问题,试题具有一定的灵活性、机敏性和综合性,也是考生比较头疼的问题。掌握排列组合问题的关键是明确基本概念,熟练基本题型。解决排列组合问题的方法很多,有插板法,捆绑法,优先法等等,本文主要介绍插板法、插空法在行测数学运算中的应用,以供大家参考。 所谓插板法,就是在n 个元素间的n-1个空中插入若干个(b )个板,可以把n 个元素分成b+1组的方法,共有b n C 1-种方法。 应用插板法必须满足三个条件: (1) 这n 个元素必须互不相异; (2) 所分成的每一组至少分得一个元素; (3) 分成的组别彼此相异 举个普通的例子来说明。 把8个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题 干满足条件(1),(2),(3),所以适用插板法。在8个小球间的7个空插入3个板,共有3537=C 种情况。 上面介绍的插板法主要是用解决相同元素的名额分配问题,而对于排列组合中常出现的几个元素的不相邻问题,我们可以用插空法来解决,对这种问题,可先将余下的元素进行排列,然后在这些元素形成的空隙中将不相邻的元素进行排列。 下面我们通过几道题来熟悉这两种方法的应用。 例1 某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?( )(国2010 -46) A.7 B.9 C.10 D.12 【解析】C 。本题乍一看不满足应用插板法的条件,插板法的条件(2)要求所分成的每一组至少分得一个元素,可本题要求每个部门至少发放9份材料。事实上,我们可以分两步来解这道题: 1. 先给每个部门发放8份材料,则还剩下30-8*3=6份材料。 2. 本题即可转化为:将6份学习材料发放给3个部门,每个部门至少发放1份材料。 问一共有多少种不同的发放方法?应用插板法可得共有1035=C

[隔板法解排列组合问题]解读隔板法

[隔板法解排列组合问题]解读隔板法[隔板法解排列组合问题]解读隔板法篇一 : 解读隔板法 隔板法就是在n个元素间的个空中插入 k个板,可以把n个元素分成k+1组的方法。应用隔板法必须满足3个条件: 这n个元素必须互不相异 所分成的每一组至少分得1个元素 分成的组别彼此相异 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有 m2种不同的方 法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有: 种不同的方法( 2.分步计数原理 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有: 种不同的方法(

3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件( 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步 与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题还是组合问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,1 先排末位共有C3 1 然后排首位共有C4 3 最后排其它位置共有A4 113 由分步计数原理得C4C3A4?288 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法, 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.

“隔板法”解决排列组合问题

隔板法”解决排列组合问题(高二、高三)排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。对于不同元素只涉及名额分配问题也可以借助隔板法来求解, 下面通过典型例子加以解决。 例1、(1)12个相同的小球放入编号为1,2,3,4 的盒子中,问每个盒子中至少有一个小球的不同放法有多少种 (2)12 个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种 (3)12 个相同的小球放入编号为1,2,3,4 的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种 解:(1)将12个小球排成一排,中间有11个间隔,在这11 个间隔中选出3个,放上“隔板”,若把“ 1”看成隔板,则如图00 隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4 四个盒子相应放入2个,4个,4个,2 个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11 个间隔中选出 3 个间隔的组合对应于一种放法,所以不同的放法有C131 =165 种。 1 (2)法1 (分类)①装入一个盒子有C4 4种;②装入两个盒子,即12个相同的小 21 球装入两个不同的盒子,每盒至少装一个有C42C111 66种; ③装入三个盒子,即12个相同 的小球装入三个不同的盒子,每盒至少装一个有C:Gi=220种;④装入四个盒子,即12个 相同的小球装入四个不同的盒子,每盒至少装一个有C131 165种;由加法原理得共有 4+66+220+165=455 种。 法2:先给每个小盒装入一个球,题目中给定的12 个小球任意装,即16 个小球装入 4 个不同的盒子,每盒至少装一个的装法有C135 455 种。 (3)法1:先给每个盒子装上与其编号数相同的小球,还剩2 个小球,则这两个小球可以装在 1 个盒子或两个盒子,共有C41C4210 种。 法2:先给每个盒子装上比编号小 1 的小球,还剩 6 个小球,则转化为将 6 个相同的小球装入4 个不同的盒子,每盒至少装一个,由隔板法有C5310 由上面的例题可以看出法2要比法1简单,即此类问题都可以转化为至少分一个的问题。

(推荐)排列组合问题之插板法

排列组合问题之插板法: 插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢? 例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法? 【解析】:题目中球的分法共三类: 第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。其分法种数为C37=35。 第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。其分法种数2*C27=42。第三类:有1个班分到4个球,其余的6个班每班分到1个球。其分法种数C17=7。 所以,10个球分给7个班,每班至少一个球的分法种数为84:。 由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。 将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。 由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。 由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以 下3个条件: ①所要分的元素必须完全相同; ②所要分的元素必须分完,决不允许有剩余; ③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。 下面再给各位看一道例题: 例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法. A.35 B.28 C.21 D.45 【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。例2和例1的最大区别是:例1的每组元素都要求“非空”,而例2则无此要求,即可以出现空盒子。

排列组合--插板法、插空法、捆绑法

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻) 插板法(m为空得数量) 【基本题型】 有n个相同得元素,要求分到不同得m组中,且每组至少有一个元素,问有多少种分法? 图中“"表示相同得名额,“”表示名额间形成得空隙,设想在这几个空隙中插入六块“挡板",则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含得名额数分给第一、二、三……七所学校,则“挡板"得一种插法恰好对应了10 个名额得一种分配方法,反之,名额得一种分配方法也决定了档板得一种插法,即挡板得插法种数与名额得分配方法种数就是相等得, 【总结】?需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素得n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。? 注意:这样对于很多得问题,就是不能直接利用插板法解题得。但,可以通过一定得转变,将其变成符合上面3个条件得问题,这样就可以利用插板法解决,并且常常会产生意想不到得效果。 插板法就就是在n个元素间得(n—1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组得方法. 应用插板法必须满足三个条件: (1) 这n个元素必须互不相异 (2)所分成得每一组至少分得一个元素?(3)分成得组别彼此相异 举个很普通得例子来说明 把10个相同得小球放入3个不同得箱子,每个箱子至少一个,问有几种情况? 问题得题干满足条件(1)(2),适用插板法,c9 2=36 ?下面通过几道题目介绍下插板法得应用 e二次插板法?例8:在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况??-o — o -o-o -o—o —三个节目abc 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 所以一共就是c71×c81×c9 1=504种 【基本解题思路】 将n个相同得元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m—1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序得m份,每个组依次按组序号分到对应位置得几个元素(可能就是1个、2个、3个、4个、…。),这样不同得插入办法就对应着n个相同得元素分到m组得一种分法,这种借助于这样得虚拟“档板”分配元素得方法称之为插板法。

“隔板法”解决排列组合问题

创作编号:BG7531400019813488897SX 创作者:别如克* “隔板法”解决排列组合问题(高二、高三) 排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。 例1、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种? (2)12个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种?(3)12个相同的小球放入编号为1,2,3,4的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种? 解:(1)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若把“1”看成隔板,则如图001000010000100隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4四个盒子相应放入2个,4个,4个,2个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11个间隔中选出3个间隔的组合对应于一种放法,所以不同的放法有3 11 C=165种。 (2)法1:(分类)①装入一个盒子有1 44 C=种;②装入两个盒子,即12个相同 的小球装入两个不同的盒子,每盒至少装一个有21 41166 C C=种;③装入三个盒子,即 12个相同的小球装入三个不同的盒子,每盒至少装一个有32 411 C C=220种;④装入四 个盒子,即12个相同的小球装入四个不同的盒子,每盒至少装一个有3 11165 C=种;由加法原理得共有4+66+220+165=455种。 法2:先给每个小盒装入一个球,题目中给定的12个小球任意装,即16个小球

巧用隔板法解排列组合题

巧用隔板法解排列组合题 徐帮利 临沂市第二中学 解决排列组合问题的方法很多,从解题形式来看,可分为直接法和间接法两种;根据具体问题情景又有:相邻问题“捆绑法”;不相邻问题“插空法”;特殊定位“优限法”(优先排列受限制的位置或元素);同元问题“隔板法”等.这里我们重点看一下“隔板法”. “隔板法”适用于相同元素的分配问题,如投球进盒、名额或指标的分配、部分不定方程的整数解的组数等,解决时通常设计一个问题情景,构造一个隔板模型,将复杂的问题简单化,抽象的问题具体化,从而实现解题的目的.下举例述之. 例1.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽1辆,组成一个运输队,则不同的抽法有( )种. 解析:此题若使用其它方法,则需要分类,都比较麻烦,若用“隔板法”,则就轻而易举了.首先将10辆车排好,这样形成9个空,从这9个空中选6个,插入隔板,即将这10辆车分成7 份,每一种插法对应一种抽法,故共有6984C =种不同的抽法.所以选A. 例2.方程123410x x x x +++=共有多少组正整数解 解析:此题乍看上去,好象思路不太好找,那就只好列举了(麻烦啊!).殊不知,巧构隔板模型,即可化繁为简.将10个完全相同的小球排成一列,形成9个空,从中选3个,插入隔板,将球分成4份,每一种插法所得4份球的各份的数目,分别对应1234x x x x 、、、,即为原方程 的一组正整数解.故原方程组共有3984C =组不同的整数解. 例3.将10个相同的小球放入编号为1,2,3的三个盒子中,每个盒子中所放的球数不少于其编号数,问不同的放法有多少种 解析:由于条件要求每个盒子中所放的球数不少于其编号数,我们不妨先“找平了”,即先在第1,2,3个盒中各放0,1,2个球.问题即转化为求:将7个相同的小球放入编号为1,2,3的三个盒子中,每个盒中至少1个球的不同放法.将7个小球排成一排,形成6个空,从中选2个,插入隔板,把球分成三组,放入对应的盒子里,每一种插法,对应一种放法,故共有2615C =种不同的放法. 强化训练:

隔板法

隔板法题型总结 隔板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。 应用隔板法必须满足三个条件: (1)这n个元素必须相同(2)所分成的每一组至少分得一个元素 (3)分成的组别彼此相异 组合不排列的情况可以用隔板法 例如:某校组建一球队需16人,该校共10个班级,且每个班至少分配一个名额, 共有几种情况? 解:C[(16-1),(10-1)]=C(15,9)=1816214400种例1. 求方程X+Y+Z=10的正整数解的个数。 [分析]将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z 之值(如下图)。则隔法与解的个数之间建立了一一对立关系,故解的个数为C92=36(个)。实际运用隔板法解题时,在确定球数、如何插隔板等问题上形成了一些技巧。下面举例说明。 技巧一:添加球数用隔板法。 ○ ○ ○∣○ ○ ○∣○ ○ ○ ○ 例2. 求方程X+Y+Z=10的非负整数解的个数。 [分析]注意到x、y、z可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了,怎么办呢?只要添加三个球,给x、y、z各一个球。这样原问题就转化为求X+Y+Z=13的正整数解的个数了,故解的个数为C122=66(个)。 [点评]本例通过添加球数,将问题转化为如例1中的典型隔板法问题。 技巧二:减少球数用隔板法: 例3. 将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。 解法1:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,剩下14个球,有1种方法;再把剩下的球分成4组,每组至少1个,由例1知方法有C133=286(种)。 解法2:第一步先在编号1,2,3,4的四个盒子内分别放1,2,3,4个球,剩下10个球,有1种方法;第二步把剩下的10个相同的球放入编号为1,2,3,4的盒子里,由例2知方法有C133=286(种)。 [点评] 两种解法均通过减少球数将问题转化为例1、例2中的典型问题。 技巧三:先后插入用隔板法。

关于隔板法的原理及应用

关于隔板法的原理和应用 一:原理 隔板法是一种排列组合中的一种解题应用模型,是将“实际分配问题”或较复杂的数学“球盒问题”转化为“球板模型”的一种重要方式。其中用球代表相同元素,用板所隔出的几个部分代表相应的分配集合,也就是“球”。通过隔板的不同插入方式,得到不同的分配结果。这里需注意的是,既然是插隔板,那么每个空只能插一个,即两个隔板间至少一个元素。(而板的插入方式则可由简单的计数原理插空法计算得出) 二:应用(为方便叙述,以下以球盒模型进行分析) ●应用条件 必须是相同元素分配到不同集合的相关问题,即’同球异盒’问题。具体说,主要有 两种。一种是“每盒至少一个球”,另一 种是“允许有盒子是空的”,前者较为常 见相对简单,是隔板法最原始的原理体 现。下面分别介绍。 ●模型应用 每盒至少有一个元素 允许有盒子空 此时实际已经超出原始隔板法的研究范围,但仍可通过转化,化为隔板法能解决的 问题。

●解题应用 1.求正整数范围内的不定方程解得组数。 例:在正整数范围内方程X+Y+Z=5有几组解。 解析:由于在正整数范围,则可联系到计数原理,转化为:将5个球分给 X,Y,Z这三个“盒”。即转化为了上述的例一的球盒模型问题。 ?拓展:若是a+b+c+3d+3e+4f=23该怎么解(提示:合并同系项, 分类讨论后结合隔板法解) 2.求有关盒序号问题。 例:将18个相同的球全部装入编号分别为1,2,3的三个盒子中,要求每 个盒子的球数不少于其编号数,则有几种不同装法? 解析:由于球是相同的,可将1,2,3中先分别放入0,1,2个球,转化为,每个 盒至少一个球的隔板法模型来解,即有14空插2板,91种。(也可先放1,2,3 个球,用“允许盒空”模型解)

行测答题技巧:插板法解决排列组合问题

行测答题技巧:插板法解决排列组合问题 一、直接使用插板型 例1、把9个苹果分给5个人,每人至少一个苹果,那么不同的分法一共有多少种?()(2010年河南政法干警考试A卷第41题) A.30 B.40 C.50 D.60 答案:D。该问题用分类计数法较复杂,但可以将9个苹果排成一行,9个苹果中间就出现8个空挡,再用,4个挡板把9个苹果分成有序的5份,每个人就依次按序分到对应的n个苹果(可能是1个﹑2个﹑3个﹑4个、5个)。即在8个空挡中插入4个挡板,由4个挡板把球分成5份,共有C84种方法。 在这道题目中,直接符合了使用插板法的2点要求:(1)每个苹果都相同;(2)每个人都至少拿到1个苹果。 二、一组多元素型 例2、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?()(2010年国家公务员考试行测第46题) A.12 B.10 C.9 D.7 答案:B。先拿出24份材料,每个部分发8份,这时变成"6份材料发给3个部门,每个部门至少发1份",再利用插板法,在5个空中插上2个挡板:C52=10(种)发放办法。 在这道题中,显然不符合使用插板法的第二点要求:"每组中至少分得一个元素"。题目要求"每个部分至少发放9份材料",因此可以把题目稍作变形,先给每个部分发8份材料,题目就变成了"每个部分至少发1份材料",符合使用插板法的2个要求,可以使用插板法。 三、允许空组型

例3、6个相同的苹果分给3个小朋友,请问一共有多少种分配方法?() A.16 B.20 C.24 D.28 答案:D。先"借"给每个小朋友一个苹果,现在一共有6+3=9个苹果。我们现在将这9个苹果分给3个小朋友,为了偿还刚才"借"的苹果,要求现在分配的时候"每个小朋友至少得到1个苹果",在8个空中插上2个挡板:C82=28(种)方法。 这道题中,题目要求"6个相同的苹果分给3个小朋友",允许有空组的存在,显然不符合使用插板法的第二点要求:"每组中至少分得一个元素",因此,先"借"给每个小朋友一个苹果,之后要求每个小朋友至少分得1个苹果,再把分得的苹果中拿出一个偿还,这就使题目变形符合使用插板法的2点要求,可以使用插板法。 从上面几道题目中不难看出,元素分组问题使用插板法后能变得较为简单。而使用插板法有2个要求:①元素相同;②每组中至少分一个元素。如果题目中的要求不符合其中一项,可将题目变形,使题意符合这2个要求,再使用插板法。

隔板法在排列组合中的应用

在排列组合中,对于将不可分辨的球装入到可以分辨的盒子中而求装入方法数的问题,常用隔板法。 例1. 求方程X+Y+Z=10的正整数解的个数。 [分析]将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z之值(如下图)。则隔法与解的个数之间建立了一一对立关系,故解的个数为C92=36(个)。实际运用隔板法解题时,在确定球数、如何插隔板等问题上形成了一些技巧。下面举例说明。 技巧一:添加球数用隔板法。 ○ ○ ○∣○ ○ ○∣○ ○ ○ ○ 例2. 求方程X+Y+Z=10的非负整数解的个数。 [分析]注意到x、y、z可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了,怎么办呢?只要添加三个球,给x、y、z各一个球。这样原问题就转化为求X+Y+Z=13的正整数解的个数了,故解的个数为C122=66(个)。 [点评]本例通过添加球数,将问题转化为如例1中的典型隔板法问题。技巧二:减少球数用隔板法: 例3. 将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。 解法1:先在编号1,2,3,4的四个盒子分别放0,1,2,3个球,剩下14个球,有1种方法;再把剩下的球分成4组,每组至少1个,由

例1知方法有C133=286(种)。 解法2:第一步先在编号1,2,3,4的四个盒子分别放1,2,3,4个球,剩下10个球,有1种方法;第二步把剩下的10个相同的球放入编号为1,2,3,4的盒子里,由例2知方法有C133=286(种)。 [点评] 两种解法均通过减少球数将问题转化为例1、例2中的典型问题。 技巧三:先后插入用隔板法。 例4. 为宣传党的十六大会议精神,一文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? [分析] 记两个小品节目分别为A、B。先排A节目。根据A节目前后的歌舞节目数目考虑方法数,相当于把4个球分成两堆,由例2知有C51种方法。这一步完成后就有5个节目了。再考虑需加入的B节目前后的节目数,同理知有C61种方法。故由分步计数原理知,方法共有C51* C61 (种)。[点评] 对本题所需插入的两个隔板采取先后依次插入的方法,使问题得到巧妙解决。 解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。下面介绍几种常用的解题方法和策略。

相关文档
最新文档