负压输送系统

负压输送系统
负压输送系统

负压系统指利用压风机(真空泵)产生系统负压,将在受料器处与空气均匀混合的粉粒状物料通过管道抽送至贮料装置的输送系统,主要用于燃煤电厂的灰处理系统,又称负压气力除灰系统,为国外引进技术,其系统设计技术已为国内除灰系统设计人员完全掌握。

负压气力输送系统投资较省,可以多点受料,要求灰斗下部的净空较小,适用于300MW及以下火电机组的除灰系统,且由于设备和管路在真空状态下只能发生内泄漏,因而环境比较清洁。缺点是由于负压值有限,因而输送距离较短,一般输送的极限几何距离为200m,实际工程宜按≤150m设计;单个系统的最大出料量一般为40t/h(粉煤灰)。

2组成

通常由物料输送阀、进气止回阀、输送管道及阀门、灰气分离设备、贮灰库及辅助设备、负压风机和控制系统等组成。

物料输送阀又称E形阀,作为受料器的输送阀是负压系统的关键设备之一,其作用是通过物料输送阀上的补气阀和灰量调节装置的工作,使灰斗内的灰与空气均匀混合,灰气

混合物具有良好的流动性,可使其顺利进入输送管道,以保证输送系统高效、通畅地运行。物料输送采用气支控制,其阀体和阀具有良好的耐磨性。

进气止回阀采用旋启式结构,当输送管道内浓度过高造成输送支管进气端真空值过高时,进气止回阀自动打开,补人适量的空气以稀释过高的物料浓度,以防止堵管的发生。

由于负压气力输送系统选择了较高的管内流速,且管道又不太长,故管道一般选用耐磨合金材料(包括直管、弯头等)。通常一个负压输送系统用一根输送管,每个电场(单侧或双侧)的灰斗组成一条支线,通过的切换阀门与主管相连。切换阀门通常采用专用的隔离滑阀。

负压系统的受料装置为料(灰)库或中转站。库顶装有灰气分离设备、料位计和保护料库不受过高背压功真空破坏的真空压力释放阀;库内设有气化斜槽,以使库内物料能顺利卸出;库底通常按工程需要设有不同形式的卸料设备。灰库气化风机、加热器及卸料控制设备一般也布置在库底。

负压气力输送系统所用的灰气分离设备,通常山旋风除尘器和布袋除尘器组成。旋风除尘器采用双门室结构,布袋除尘器底部用负压锁气阀与灰库连接,以隔绝管道负压与库内常压,保证输送和灰库的安全。旋风除尘器作为一级分离设备,除尘器效率>70%,二级布袋除尘器的效率在>99%以上,这二个设备均按压力容器制造。经二级除尘后的干净空气通过负压风机排入大气。此外,灰库上还另设有排气布袋除尘器,用于处理库内气化空气等含尘气体处理后的干净空气直接排入大气。根据粉煤灰的物理、化学特性,布袋除尘器均宜采用脉冲反吹式,反吹空气的露点温度宜为-23~-40℃(常压露点)。

负压气力输送系统的气源由负责压风机或真空提供,一般要求负责压在-0.6Mpa以下,由于通过风机的气流中难免有一定量的尘料,因此要求负压风机过流通道上的零件应耐磨蚀,密封件防尘效果良好。负压风机一般布置在灰为库附近。

负压气力输送系统的控制一般采用PLC程控,可选用模似或CRT显示,上位机进行数据处理,全自动运行,信号的输出、处理、联网均很方便。

南京金铂锐工业设备有限公司是一家高科技工业企业,专业从事粉体技术研发、粉体设备制造的骨干企业。公司生产的设备如;真空输送机、气动真空输送机、电动真空输送机、真空输送设备、气动真空输送设备、电动真空输送设备、真空上料机、气动真空上料机、电动真空上料机、真空上料设备、气动真空上料设备、电动真空上料设备、真空加料机、气动真空加料机、电动真空加料机、真空加料设备、气动真空加料设备、电动真空加料设备、真空给料机、气动真空给料机、电动真空给料机、真空给料设备、气动真空给料设备、电动真空给料设备、吨包拆包站,吨包卸料站,人工拆包站,..

公司全面吸收国内外同类产品的先进技术,在粉体的输送、转运、贮存、筛分、定量给料、自动配料及整套粉体系统方面,为客户提供适合的解决方案。

公司的生产制造严格按照CE标准执行,产品通过CE认证。从设计、生产、到客户现场安装及售后服务,产品质量得到全程监控。

金铂锐公司与南京理工大学、上海交通大学、北京化工大学共同合作研发。已成为国内研发能力较强的自动化设备生产厂商,获得七个国家专利,应用于多个黄页,已获得德国、日本在内的诸多厂商首肯。

金铂锐公司一直致力于自动化设备代替人工为核心任务,以全方位创新、品源于专业来满足客户的特殊需求,引领客户的职能转型及产业升级,提升客户的产品竞争力,同时也为我们提供一个展示综合实力的机会。

气力输送系统基本参数计算知识

系统基本参数计算 更新时间:2005年07月20日 系统基本参数计算 1.输灰管道当量长度Leg 输灰管道的总当量长度为 Leg=L+H+∑nLr (m)(5-19) 2.灰气比μ 根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比 μ=φGhX103/[ Qmγa(t2+t3)](kg/kg) (5-20) Gh=ψγhνp (t/仓) (5-21) 式中Gh—仓泵装灰容量,t/仓。 灰气比的选择取决于管道的长度、灰的性质等因素。对于输送干灰的系统,μ值一般取7-20 kg/kg。当输送距离短时,取上限值;当输送距离长时,则取下限值。 3.输送系统所需的空气量 因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min) (5-22) 质量流量Ga=Qaγa=16.67 Gm/μ (kg/min) (5-23) 4.灰气混合物的温度 输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24) 式中Gm—系统出力,kg/min; ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算 th—灰的温度,℃; ca—空气的比热容,一般采用o.24kcal/(kg℃); ta—输送空气的温度,℃。 因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。根据经验,每100m的温降值一般为6—20℃。当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。 5.输送速度 仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:

通风除尘与气力输送系统的设计说明

第一章通风除尘与气力输送系统的设计 第一节概述 在食品加工厂中,车间的通风换气、设备和物料的冷却、粉尘的清除等都需要通风除尘系统来完成。粉状、颗粒状的物料(如奶粉、谷物等)的输送都可借助气力输送系统实现。通风除尘和气力输送系统是食品加工厂的常用装置。 食品加工厂中粉尘使空气污染,影响人的身体健康。灰尘还会加速设备的磨损,影响其寿命。灰尘在车间或排至厂房外,会污染周围的大气,影响环境卫生。由于粉尘的这些危害性,国家规定工厂中车间部空气的灰尘含量不得超过10mg/m3,排至室外的空气的灰尘含量不得超过150mg/m3,为了达到这个标准,必须装置有效的通风除尘设备。 图1是食品加工厂常见的通风除尘装置。主要由通风机、吸风罩、风管和除尘器等部分组成。当通风机工作时,由于负压的作用,外界空气从设备外壳的缝隙或专门的风管引入工作室,把设备工作时产生的粉尘、热量和水汽带走,经吸风罩沿风管送入除尘器净化,净化后的空气排出室外。 气力输送系统的形式与通风除尘系统相似,但其目的是输送物料,主要由接料器(供料器)、管道、卸料器、除尘器、风机等部分组成。气力输送系统除了起到输送作用外,还可以在输送过程中对物料进行清理、冷却、分级和对作业机完成除尘、降温等。小型面粉厂气力输送工艺流程如图2。

风机 气力输送具有设备简单、一次性投资低、可以一风多用等特点,与机械输送相比,气力输送的缺点主要是能耗较大,对颗粒物料易造成破碎。 通风除尘和气力输送都是利用空气的流动性能来进行空气的净化或物料的搬运的,因此,流体力学是本章的基础知识。有关流体力学的知识可参阅相关书籍资料,在此不再敷述。本章主要讨论食品加工厂通风除尘和气力输送系统的设计。 第二节通风除尘系统的设计与计算 1 通风除尘系统的设计原则和计算容 通风除尘系统也叫除尘网路或风网。通风除尘网路有单独风网和集中风网两种形式。在确定风网形式时,当: 1)吸出的含尘空气必须作单独处理; 2)吸风量要求准确且需经常调节; 3)需要风量较大;或设备本身自带通风机;

固体料仓的选型

固体料仓 一、固体料仓简介 料仓的种类繁多,其结构和制造工艺也相差甚远。其中金属板制料仓具有占地面积小,具有先进的装卸工艺,机械化程度高,能够保证储存物料的质量等优点,成为工业料仓中的一个不可缺少的设备。石油、化工、化纤、粮食、建筑等行业中广泛采用金属板制料仓。考虑到储存的是松散的固体物料,在流动过程中会产生积料等不利影响,所以通常将仓壳筒设计为受力均匀、流动性较好的长圆筒形,也就是所谓的筒仓,料仓的顶部为拱顶型或锥顶形,料仓底部为锥体形。 焊制料仓是目前行业中的主要形式,料仓结构包括仓壳顶、仓壳锥体、仓壳圆筒、支座、接管和法兰、梯子平台等部位。 二、料仓容积 料仓的容积包括底部的锥体容积与筒仓容积之和。其容积由所成物料的体积来确定。 固体物料的体积的确定可根据出料流量与要储存的天数来确定。

三、料仓壳体的确定 1.仓壳顶结构 料仓仓壳顶结构一般有两种形式---自支撑式锥顶和自支撑式拱顶,自支撑式拱顶又分为封头顶和球冠顶两种。 当料仓直径较小时从制造的简便考虑优先采用自支撑式锥顶或者椭圆形封头作为仓顶,根据需要有时也可以采用蝶形封头。 2.仓壳锥体 2.1仓壳锥体形式 仓壳锥体一般采用大端无折边锥形封头和大端带折边锥形封头两种形式 大端无折边的仓壳锥体结构较少采用,一般用于小直径、重量轻的料仓。大端带折边的仓壳锥体结构用得较多。 2.2仓壳锥体半顶角θ的选取 仓壳锥体半顶角θ的选取需要根据物料的特性来确定,保证物料的顺利流动,过小不经济,过大容易造成排料不畅、积料或架桥。 2.2.1松散物料流动形式 松散物料的种类很广,物料间的堆积特性、流动性差异很大。一般而言,研究者认为物料在料仓中的流动形态分为两大类;漏斗流形态(又称为中心流型)即图1-2中的a、b、c和柱塞形态(又称为整体流动型)即图1-2中的d

气力输送系统介绍

气力输送系统介绍 气力输送是一项综合性技术,它涉及流体力学、材料科学、自动化技术、制造技术等领域,属输送效率高、占地少、经济而无污染的高新技术项目。随着我国经济的快速发展,各行各业的生产也在不断扩大,有些行业如火力发电厂、化工厂、水泥厂、制药厂、粮食加工厂等的一些原材料、粉粒料在输送生产工程中产生的环境污染越来越得到广泛的重视。气力输送技术于是得到了逐步的推广。气力输送是清洁生产的一个重要环节,它是以密封式输送管道代替传统的机械输送物料的一种工艺过程,是适合散料输送的一种现代物流系统。将以强大的优势取代传统的各种机械输送。 气力输送系统具有以下特点: ◆气力输送是全封闭型管道输送系统 ◆布置灵活 ◆无二次污染 ◆高放节能 ◆便于物料输送和回收、无泄漏输送 ◆气力输送系统以强大的优势。将取代传统的各种机械输送。 ◆计算机控制,自动化程度高 气力输送形式: ◆气力输送系统按类型分:正压、负压、正负压组合系统 ◆正压气力输送系统:一般工作压力为0.1~0.5MPa ◆负压气力输送系统:一般工作压力为-0.04~0.08 MPa ◆按输送形式分:稀相、浓相、半浓相等系统。 气力输送系统功能表: 常见适合气力输送物料 可以气力输送的粉粒料品种繁多,每种物料的料性对气力输送装置的适合性和效率都有很大的影响。因此在选定输送装置前要先对物料进行性能测定。现在常见适合气力输送物料示例如下:

浓相气力输送系统 浓相气力输送系统根据国外先进技术及经验,结合科学实验,经过数年实践,被确认为是一种既经济又可靠的气力输送系统。该系统输送灰气比高,耗气量少,输送速度低,有效降低管道磨损。该系统主要由压缩空气气源,发送器、控制柜、输送管、灰库五大部分。 1、压缩空气气源: 由空气压缩机、除油器、干燥器、储气罐及管道组成,主要为发送器及气控元件提供高质量的压缩空气。 2、发送器: 器集灰斗的飞灰,经流化后通过输送管道送至灰库。 3、控制柜: 以电脑集中控制各种机械元件动作,并附有手动操作机构。 4、输送管道: 经实验,输送距离可达1300米,管路寿命可达20000小时以上。 5、灰库: 由灰库本体、布袋除尘器、真空释放阀、料位计、卸灰设备等组成。 浓相气力输送系统示意图

负压气力输送系统

负压气力输送系统 负压气力输送系统指利用负压风机(真控泵)产生系统负压,将在受料器处与空气均匀混合的粉粒状物料通过管道

抽送至贮料装置的输送系统,主要用于燃煤电厂的灰处理系统,又称负压气力除灰系统,为国外引进技术,其系统设计技术已为国内除灰系统设计人员完全掌握。 负压气力输送系统投资较省,可以多点受料,要求灰斗下部的净空较小,适用于300MW及以下火电机组的除灰系统,且由于设备和管路在真空状态下只可能发生内泄漏,因而环境比较清洁。缺点是由于负压植有限,因而输送距离较短,一般输送的极限几何距离为200米,实际工程宜按≤150米设计;单个系统的最大出力一般为40吨/小时(粉煤灰)。 负压气力除灰系统通常由物料输送阀、进气止回阀、输送管道及阀门、灰气分离设备、贮灰库及辅助设备、负压风机和控制系统等组成。 物料输送阀又称E形阀,作为受料器是负压系统的关键设备之一,其作用是通过物料输送阀上的补气阀和灰量调节装置的工作,使灰斗内的灰与空气均匀混合,使灰气混合物具有良好的流动性而顺利进入输送管道,以保证输送通畅高效地进行。物料输送阀采用气动控制,其阀体和阀板应具有良好的耐磨性。我厂百可提供其它形式的卧式或立式受灰器。在物料输送阀与灰斗之间,应设常开型手动检修门。灰斗宜采取气化加热措施。 进气止回阀采用旋启式结构,当输送管道内浓度过高造成输灰支管进气端真空值过高时,进气止回阀自动打开,补入适量地空气以稀释过高的物料浓度,以防止堵管的发生。 由于负压气力除灰系统选择了较高的管内流速,且管道又不太长,故管道一般选用耐磨合金材料(包括直管、弯头等)。通常一个负压除灰系统用一根主输送管,每个电场(单侧或双侧)的灰斗组成一条支线,通过切换阀门与主管相连。切换阀门通常采用专用的隔离滑阀。

气力输送风机的选型计算

气力输送风机的选型计算 现在的工业环境对利用气体来实现物料(如各种粉料、颗粒)的输送,应用层出不穷,不管是正压输送也好,还是负压(真空)吸送也好,均离不开风机的选型,合理的参数设计、工况的管路匹配,莫不是对经济性的考验,哪一般在气力输送中有那些参数需要确知,以便更好的作出风机的选型? 一、输送料与气体的混合比 混合比是粉料气力输送装置的一个非常重要的参数。混合比越大,越有利于增大输送能力,在相同的生产率条件下。所需的管道直径就越小,可选用容量较小的分离、除尘设备,所消耗的风量和能量也越小,从而使粉料气力输送装置的投资费用降低、单位能耗减小。 计算公式: M=Gm/Gq...(Gm代表每小时输送料的重量,Gq代表空气的比重) 二、输送风速 运送物料在所有的输送管段内可靠运转条件下,物料气力输送装置具有最经济的工作性能时侯允许的最小气流速度,就是输送风速。一般输送风速,应较“经济速度”有10%一20%的裕量。可参考常用的管道里的不同输送装置。低压压送式输送的气流速度,一般为20 m /s左右,高压压送式输送的气流速度,一般为8 m/s左右。 三、输送所需的风量 所需风量由物料的输送率、混合比确定,可参考公式: Q=(1.1-1.2)G/(Mч) 式中:G.—讲算输送率,kg/h;

ч——空气重度,在标准大气压下=1.2 kgm3; M——混合比。 四、输送管道直径 根据粉尘输送所需的风量和输送速度来确定管道的直径(m): D2=4Q/ЛV 式中:Q--风量 m3/h V--风速 m/s 五、输送压力 输送气体的压力必须大于物料在输送管中移动时各项压降的总和△P总。这些压降包括:物料在水平输送管中的压降△P1、物料在垂直输送管中的压降△P2、物料在输送弯管中的压降△P3、物料流经卸料器及除尘器的压降△P4等。 1.水平管道的压损: △P1=△P11+△P12=(λ11+Mλ12)(L/D)(ρV2/2) 式中: △P1——纯气体的压降,Pa; △P11一一由于管中输送物料所引起的附加压降(Pa); λ11——气体摩擦系数; λ12---附加摩擦系数(该系数主要根据试验确定) M--料气质量混合比; L一水平输送管长度,m; D—水平输送管直径,m; ρ—气体的平均密度,kgm3;

负压引流装置产品注册技术审查指导原则

附件11 负压引流装置产品注册技术审查指导原则 本指导原则旨在指导和规范负压引流装置的技术审评工作,帮助审评人员理解和掌握该类产品原理/机理、结构、性能、预期用途等内容,把握技术审评工作基本要求和尺度,对产品安全性、有效性作出系统评价。 本指导原则所确定的核心内容是在目前的科技认识水平和现有产品技术基础上形成的,因此,审评人员应注意其适宜性,密切关注适用标准及相关技术的最新进展,考虑产品的更新和变化。 本指导原则不作为法规强制执行,不包括行政审批要求。但是,审评人员需密切关注相关法规的变化,以确认申报产品是否符合法规要求。 一、适用范围 负压引流装置从其功能、原理上可划分为封闭式创伤负压引流/治疗系统和普通伤口负压引流装置两类产品。封闭式创伤负压引流/治疗系统一般指将纱布辅料、非功能性海绵等放入需引流治疗部位,封闭创口并实施负压引流治疗的产品。普通伤口负压引流装置一般指采用多孔引流管等置于创口处并连接负压源实施引流的产品。 本指导原则适用于负压引流装置中以非功能性海绵性材料作为引流/治疗端的封闭式创伤负压引流/治疗系统。产品类代号为:6866。

非功能性海绵是指不任何含药物及可吸收性材料等[包括抗菌、消炎药物、可吸收性水胶体粘胶(如:羟甲基纤维素钠)等]成分的海绵,当前市场上主要以聚氨酯海绵或聚乙烯醇海绵为主。 二、技术审查要点 (一)产品名称 以非功能性海绵作为引流/治疗端的封闭式创伤负压引流/治疗系统可根据实际审查产品命名,但必须体现出产品的引流方式,如:封闭式负压引流;同时宜反映出制造创口表面引流用海绵的主要材料并明确“非功能性”,并适当考虑临床的习惯称谓。一般采用“非功能性+引流/治疗端海绵材料+引流方式”的命名方法。如:非功能性聚乙烯醇封闭式负压引流系统、非功能性聚氨酯封闭式负压引流系统等。 (二)产品结构组成 本产品一般由引流管、贴膜、非功能性海绵、吸引连接管、Y型接头、阻水过滤器、止流夹等组成。(本指导原则所指产品不含任何负压源。)审查时应根据具体产品情况确定产品的结构组成。 (三)产品工作原理 该产品主要是利用负压吸引原理,将非功能性海绵放入患者创口部位,利用贴膜使开放创面封闭,通过与负压源连接产生一定的负压,通过引流管和海绵作用于清创后的创面,从而实现引流/治疗。 (四)产品作用机理 通过非功能性海绵具有吸水性强、与创口整个创腔接触紧密、压力分布均匀等特点,可实现对创口实施长时间持续高负压引流。相对于负压引流方式,其充分的封闭式负压可使创口长期置于干燥、洁净状态,有效抑

料仓隔墙设计计算书原

料仓隔墙设计计算书 一、工程概况 根据本标段混凝土使用地为乐平互通式立体交叉、龙眼园高架桥、三花路高架桥、太院高架桥、芦泡涌大桥、卫东高架桥及涵洞和附属工程,为满足混凝土质量和施工需求,结和现场实际施工情况现于西二环MK62+50位置的线路右侧建立混凝土拌和站,共占地约11000m2。料仓8个约2800m2,拟设置两座拌和楼,HZS120型,每座拌和楼每小时理论产量可达120m3。 按拌合站配料要求,不同粒径、不同品种分仓存放,不得混堆或交叉堆放,分料仓应采用50cm砼砌筑,2.5m高,采用水泥砂浆抹面,料仓内硬化C20砼浇筑20cm。隔墙底部采用与之同宽的砼条形基础。 二、设计参数 挡墙高度H=2.5m,挡墙厚度B=50cm,墙身采用C25砼浇筑成。基础采用C25浇筑成的条形基础。C25混凝土抗压强度设计值fc=mm2,混凝土抗拉强度设计值ft= (N/mm2),混凝土弹性模量Ec=28000 (N/mm2), 砼强度系数 βc=。 初步设计:条形基础采用500mm×400mm的C25砼浇筑,即b=500mm。取挡墙钢筋混凝土:25~26KN/M3;每米挡墙荷载N=××25=m。初步考虑条形基础底部承载力为200KPa。 即:b=500mm,h=400mm,考虑保护层ca=35mm,得h0=h-ca=365mm。 三、条形基础计算 1、配筋计算 (1)、主筋验算 取受弯钢筋为4@φ16,得As=804mm2,N=4,φ=16mm; ρ=As/(b*h0)=804/(500*365)=% 受拉钢筋为4@φ12,得Asy=452mm2,Ny=4,φy=12mm; ρy=Asy/(b*h0)=452/(500*365)=% 得ξ=ρ*fy/(α1*fc)=<ξb=…………………(α1=) 得受压区高度x=ξ*h0=*365=18mm<2ca,满足要求。

混凝土负压溜槽性能参数

负压溜槽 负压溜槽是一种结构简单的混凝土输送设备,它能够在斜坡上快速、安全地向下输送混凝土,尤其是适用于碾压混凝土。在碾压混凝土筑坝施工中,混凝土拌和物经汽车或皮带机输送至溜槽集料斗,然后由溜槽输送至仓面接料汽车,这样就能完成整个大坝的混凝土运输任务。这种设备结构简单、不需要外加动力,输送能力很强,是一种适应于深山峡谷地形筑坝的经济高效的混凝土输送手段。负压原理的运用,有效地控制了物料的下滑速度,对防止混凝土骨料分离、保证输送质量起到了重要作用,同时也使得这一技术更加成熟完善。湖北中葛项目管理有限公司于92年1月24日申报国家专利,专利号:ZL92 2 02468.5。 负压溜槽的适用坡度为1:1~1:0.75,适用高差为0~100米。 一、负压溜槽的基本结构及功能 负压溜槽由受料料斗、垂直加速段、溜槽体和出料口弯头等部分组成。(如图1所示) 料斗:料斗由斗体和液动弧门组成。斗体容量为6~16m3。料斗具有受料集料和整条运输系统的调控作用。 垂直加速段:物料从料斗出口处速度为零,而为保证混凝土进入溜槽槽体后能够顺利下行,必须使物料具有一定的初速度。 槽体:槽体是负压溜槽的主体部分,槽体截面图2所示,由刚性槽体、柔性盖带和压带装置等组成。负压溜槽的负压大小决定于混凝土的流速,流速大小决定于开度K(自然状态下过流断面最大高度H与刚性槽体半径R 之比)。当需要调节不同的开度K时,可通过张紧或放松柔性盖带实现。 出料口(弯头):混凝土在负压溜槽出口处的速度V一般为10~15m/s(沿溜槽槽体轴线方向),如果直接泄出,会产生巨大冲击力,损坏仓内的受料设备,且物料容易飞溅,影响安全。增设弯头后,使混凝土改变流向,出口速度方向由沿槽体轴向变为垂直向下。 二、负压溜槽的工作原理 在密封管道内通过定量流体,当外界条件发生变化时,管道内的压力同时发生变化。流速增大,压力减少;反之流速减小,压力增大。 当混凝土在负压溜槽内流动时,由于重力作用,流速逐渐增大,导致密封的溜槽内压力减小,与外界大气压力形成一定压差P负。由于压差P负作用,使混凝土速度减小时,密封溜槽内压力增加,与外界大气压的压差减小,混凝土加速。图3所示负压溜槽工作时,纵向剖面示意图。当不存在负压作用时,混凝土下行,只有与刚性槽体的摩擦力阻止混凝土下行(忽略柔性盖的重量),混凝土呈等截面下行。产生负压后,混凝土就非等截面下行,而是呈周期性波浪形下行。在僵滞力的作用下,混凝土呈波浪形下行,有力地保证了混凝土的运输质量。 三、负压溜槽的主要技术参数: 料斗容量6—16m3 刚性槽半径275—325mm 溜槽长度42~72m 生产率240~540 m3/h 负压值范围100~1000Pa 出口速度10~15m/s 四、负压溜槽推广应用前景

克莱德气力输送系统介绍

克莱德贝尔格曼华通 物料输送 气力输送系统介绍 现场培训用材料(试行版) 05.3.30

前言:气力输送的相关概念和原理 一:电厂输送的物料(输送对象) 1:电除尘的飞灰。 2:省煤器和空气预热器灰。 3:循环流化床锅炉的炉底渣。 4:循环流化床锅炉的石灰石粉料。 二:电除尘飞灰的主要性能指标及对输送的影响 1:粒度 粒度是对粉煤灰颗粒大小的度量,是粉煤灰的基本物理参数之一。粉煤灰许多的物化性能与此参数有密切的联系。 测量方法:筛分(围)和粒度分析仪(围更小的数值围)。 粒度大将引起在浓相输送中不容易形成灰栓、导致输送困难并引起耗气量增加。2:密度 密度:单位容积的重量。 气化密度:灰层处于气化状态下的密度。 在粒度相同时,密度小、孔隙率高,易输送。 3:粘附力 粘附力是分子力(分子间的引力,和距离的)、静电力(带相同电荷和相反电荷之间颗粒的引力和排斥力)、毛细粘附力(2个相邻湿润颗粒之间的拉力)总合。 分子力:分子间的引力,和距离的成反比,距离超过100A(1A=0.00001μM)时,此力忽略不计。当分子力很大时,粉粒从环境中吸收水分,增加粘性力. 静电力:带相同电荷和相反电荷之间颗粒的引力和排斥力.在相邻带电的粒子间的空气介质湿度教大,册静电力的作用就会显著减弱或全部消失. 粘附力大,会导致灰的流动性差,导致落灰困难并会增加浓相输送的困难。 4:磨蚀性 粉煤灰在流动中对管道壁的磨损。 影响磨蚀性的因素:粉煤灰颗粒的硬度、灰的几何形状、大小、密度、强度、流动速度。 粉煤灰颗粒的硬度:是物料磨蚀性及抗破碎性程度的表征,又是物料强度、流动性好坏的度量。硬度高:流动性差;导致为输送高硬度的物料需要耗费大的耗气量。。 一般:多棱体比光滑表面磨蚀性大、粗灰比细灰磨蚀性大。 在5-10μ的颗粒磨蚀性可以忽略;颗粒增大;磨蚀性增加,增大到极限值后,磨蚀性下降。 磨蚀性与气流速度的2-3次方成正比。灰的浓度低,磨蚀性大;灰的浓度高、其磨蚀性低。 5:灰斗的架桥和离析 架桥(棚灰):粉料堵塞在排料口以至于不能进行自由落体的排料。 架桥的原因:堆积密度(大)、压缩性(高)、粘附性(粘、软)、可湿性(高)、喷流性(差)、拱顶物料强度(高)、储存时间(长)、出料口(小) 括号是增加架桥发生的诱因变化趋势。

气力输送系统操作规程

气力输送系统操作规程 1 范围 本标准规定了LD-0.6型仓泵组成的气力输送系统及其辅助设备的操作过程、遵循标准、使用维护及常见故障处理等内容程序。 本标准仅适用于本烟气制酸装置LD-0.6型仓泵组成的气力输送系统及其辅助设备的使用操作。 2 内容 2.1 概述 LD型浓相气力输送系统根据国内外先进技术及经验,结合科学实验,并经过多年实际运行的考验,被确认是一种既经济又可靠的气力输送系统。 该系统输送中灰气比高,耗气量少,输送时物料速度低,有效降低了管道的磨损。系统结构简单,操作维修方便,为一高效低耗的气力输送系统。 该系统主要由LD型仓泵、压缩空气气源、控制系统、输送管、灰库等五大部分组成。其系统的布置见图1。 2.1.1 LD型仓泵 LD型浓相仓泵具有较厚的壁厚,能承受粉煤灰的长期冲刷磨损,为一耐疲劳耐磨损的低压容器。在整个系统中,它接受除尘器集灰斗的飞灰,经加压流化后通过输灰管送至灰库,是整个输送系统的发送部分。 LD型仓泵采用间断输送的方式,每进、出料一次为一个工作循环。 2.1.2 压缩空气气源 由空气压缩机、除油器、干燥器、储气罐及供气管道等组成,主要为仓泵及气动控制部分提供高质量的压缩空气。 除油器和干燥器等是用于降低压缩空气中含有的油、水、杂质,提高压缩空气的质量。 2.1.3 控制系统 以PLC可编程控制器(也可以采用工控机)作为控制系统的核心部件,对仓泵工作中的各种参数进行控制,并通过气动元件控制各种机械元件动作,通过模拟屏或CRT显示器显示当前工作状态。同时并附有手动就地操作功能。 2.1.4 输送管道 由于输送速度低,在一般情况下,可以不采用耐磨钢管而采用一般的无缝钢管即可。经实验,气力输送的输送距离可达1000米以上。 2.1.5 灰库 由灰库本体、布袋除尘器、真空释放阀、料位计、卸灰设备等组成。 它是气力输送系统的接收部分,它可以是混凝土的,也可以是钢结构的。其中布袋除尘器是用于库内排放废气用,真空释放阀用于保护灰库免受过高的正压或负压影响,料位计用于检测灰库内的灰位高低。卸灰设备用于卸出灰库内部的灰进行装车或装船。 LD浓相气力输送系统的组成见下图(1)

负压封闭引流技术(VSD)

负压封闭引流技术(VSD) 负压封闭引流技术(VSD) 一、引流的定义 引流是在机体的某一部分与机体其他部分间、或与外界间建立开放通道以达到治疗目的的外科手段,它是外科治疗中的重要组成部分,是外科手术的基本操作之一。 二、引流的目的 1、及时排除体腔、器官或组织中的脓性积液、坏死组织、异物、异常积聚的血液和消化液等有害物质,以减低压力消灭死腔,消除对机体的炎性刺激,改变感染部位的生物环境,减轻机体的炎性反应,抑制局部细菌繁殖,防止感染扩散,促进炎症消退,也就是说预防或治疗由于脓性渗出液、坏死组织、异物、血液、消化液等积聚而对机体造成的生物学损害; 2、保证缝合部位的正常愈合,减少并发症的发生; 3、观察引出物的数量和性状,以便判断被引流区内的情况; 三、引流的分类 1、治疗性引流:对已感染的病灶的引流如脓肿引流,或在手术、创伤后体腔内积液的引流。 2、预防性引流:以预防积液、感染或吻合口漏为目的的

引流,严格的说,引流不能预防吻合漏口的发生,只能在发生漏时避免造成弥漫性腹膜炎。 3、诊断性引流:如诊断性腹腔灌洗,经皮经肝胆管穿刺,经纤维内镜胰胆管插管造管引流,十二指肠引流等。 四、引流的原则 1、慎重决定是否放置引流,不必要的引流是有害的; 2、严重污染或可能发生感染的创面,应予引流; 3、引流的目的是建立由被引流区到体外的有效通道; 4、引流可以重力、毛细血管作用、虹吸作用或负压吸引作为动力; 5、引流物对人体是一种异物,可增加感染的机会(腹腔的引流有可能成为肠梗阻、消化道漏或腹避疝气的原因),引流物尽可能用对人体组织无刺激的材料制作; 6、开放的引流为细菌逆行污染提供了途径,应尽可能采用封闭式引流,避免逆行感染。 7、柔软的、易曲的引流物可以减少临近组织因机械压迫发生糜烂、坏死的可能性、有侧孔的引流管可因临近组织的吸入或长入而闭塞; 8、填塞既可有引流作用,又可有压迫止血作用,但留置时间过长可诱致感染; 9、引流物应尽可能取最短途径引出,放置时应保证其通畅,避免扭曲、受压,戳空放置引流管或其它引流物时应注

简析浓相正压输送高压仓泵气力输送系统

简析浓相正压输送高压仓泵气力输送系统 正压浓相气力输送系统主要由进料装置、发送仓泵、管道、阀门、库底除尘装置、库底气化装置、库底卸料装置、动力气源、程控装置等结构组成,采用全自动PLC智控制,也可切换手动,操作简单易维护。 正压密相气力输送系统是输送颗粒、粉状型、块状型物料常用的输送设备之一,主要由压缩空气作为输送介质,采用强制性气力输送,依靠密闭压力容器作为发送器,一般气源压力为0.5Mpa-0.7Mpa,运行压力0.3Mpa-0.5Mpa,发送罐只能采取间歇性输送方式,输送距离可达1000米以上。物料在管道内以较低速度,、沙丘状态、流态化或团聚状态输送,输送效率高,输送质量好。输送能耗远低于其形式的气力输送系统,吨输送量每百米能耗为1.5kw,是其他形式气力输送系统的65%左右。 工作原理 1.进料阶段 进料阀和排气阀打开,物料自由落入泵体内,料满后,料位计发出信号,进料阀和排气阀自动关闭,完成进料过程; 2.流化加压阶段 打开进气阀,压缩空气进入泵体上部及底部,上部加压,下部空气扩散后穿过流化床,使物料呈流态化状态,同时泵内压力上升; 3.输送状态 当泵内压力达到一定值时,压力表或压力开关发出信号,出料阀自动打开,流化床上的物料流化加强,输送开始,泵内物料逐渐减少,此时流化床上的物料始终处于边流化边输送的状态; 4.吹扫阶段 当泵内物料输送完毕,压力下降到管道阻力时,压力表或压力开关发出信号,通气延续一定时间,压缩空气清扫管道,然后进气阀关闭,间隔一段时间,关闭出料阀,打开进料阀,完成一次输送循环。

系统特点 正压浓相气力输送系统是以空压机为气源,仓泵输送物料的一种密相高压气力输送系统。正压浓相气力输送系统具有流速低,耗气量小,适宜长距离,大容量的输送,便于实现流态化输送,具有噪声低、破碎少的特点,适宜输送水泥、粉煤灰、矿粉、铸造型砂、化工原料等磨削性大的物料。 1、输送管道配置灵活,使工厂生产工艺流程更合理; 2、输送系统完全密闭,粉尘飞扬少,可实现环保要求; 3、运动零部件少,维护保养方便,易于实现自动化; 4、物料输送效率高,降低了包装和装卸运输费用; 5、能避免输送的物料受潮,污损和混入其他杂物,保证了输送质量; 6、在输送过程中可同时实现多种工艺操作过程; 7、对于化学物质不稳定的物料,可采用惰性气体输送。 8、流速低,对管道的磨损小;耗气量小,适合长距离输送;单罐输送是间歇输送,实现连续输送,须用双罐;破碎少,噪音低;自动化程度较高。 我们目前正压浓相气力输送系统的气力输送泵是在汲取国内外同类产品的先进技术与结构的基础上,采用正压气力输送方式输送粉粒状物料,使用于电厂粉煤灰,水泥,铸造型沙,矿粉,粮食,化工原料等粉粒状物料的输送,可根据具体地形布置输送管道,实现集中,分散大高度长距离输送,输送过程不受条件限制,能确保物料不受潮湿,利用生产和环境保护,本设备配置自动化操作台,可实现手动和自动控制,自动控制采用继电器或PLC微处理器两种形式,通过长期运行,实践证明,其性能稳定,质量可靠,无粉尘污染,是较理想的气力输送设备。

正压浓相气力输送系统的工作原理及流程

正压浓相气力输灰工作原理及分步流程 正压浓相气力输送系统的工作原理:浓相干输灰是根据固气两相流的气力输送原理,利用压缩空气的静压和动压高浓度、高效率输送物料。飞灰在仓泵内必须得到充分流化,而且是边流化边输送。整个系统由五个部分组成:气源部分、输送部分、管路部分、灰库部分和控制部分。其中输送部分根据输灰量的要求,配以相应规格的输送机(仓泵)组成,每台输送机都是一个独立体,既可单机运行,也能多台组成系统运行。 仓泵 它是系统的核心部分,通过它将干灰与压缩空气充分混合并流态化,从而得以顺利在系统中运行。它是一个密闭的钢罐,上面装有进出料阀、流化盘、料位计、安全阀等配套设备。 仓泵工作原理: 仓泵是一个带有空气喷嘴的压力容器,这种设备具有输灰距离远、工作可靠、自动化程度高等特点,且需要用比较高压力的压缩空气作为输送介质,要配备一套空压机。它的工作过程是:先打开排气阀和进料阀进行装料,料满后关闭进料阀和排气阀,打开缸体加压阀,压缩空气将缸体内的粉尘带走。如此循环往复,就可将粉尘输送出去。

1、进料阶段:进料阀呈开启状态,一次进气阀和出料阀关闭,仓泵上部与灰斗连接,除尘器捕集的飞灰藉重力自由或经卸料机落入仓泵内,当灰位高至使料位计发出料满信号,或按系统进料设定时间到,进料阀关闭,排气阀关闭,进料状态结束。 2、加压流化阶段:进料阶段完成后,系统自动打开一次进气阀,经过处理的压缩空气经过流量调节阀进入仓泵底部流化锥,穿过流化锥后使空气均匀包围在每一粒飞灰周围,同时仓泵内压力升高,当压力高至使压力传感器发出信号时,系统自动打开出料阀,加压流化阶段结束。 3、输送阶段:出料阀、二次进气阀打开,一次进气阀不停,此时仓泵一边继续进气,边气灰混合物通过出料阀进入输灰管,飞灰始终处于边流化边进入输送管道进行输送,当仓泵内飞灰输送完后,管路压力下降,仓泵内压力降低,使压力传感器发出信号时,二次进气阀关闭,当仓泵内压力继续下降,至使压力传感器发出信号时,输送阶段结束,进气阀和出料阀保持开启状态,进入吹扫阶段。 4、吹扫阶段:进气阀和出料阀保持开启状态,压缩空气吹扫仓泵和输灰管道,定时一段时间后,吹扫结束,关闭进气阀,待仓泵内压力降至常压时,关闭出料阀,打开进料阀、排气阀,进入进料阶段,至此,系统完成一个输送循环,自动进入下一个输送循环。

电厂仓泵干除灰气力输送系统的PLC控制详述

电厂仓泵干除灰气力输送系统的PLC控制详述 文摘本文详细介绍了火力发电厂气力输送(干除灰)系统的工作流程和控制要求,仓泵气力输送技术开始在国内的运用,进一步促进了国内电厂粉煤灰气力输送技术的发展并且气力输送系统的输送距离、输送浓度、系统出力和设备的制造工艺及自动化水平得到加强和提高。 发电厂控制系统采用OMRON公司的C200H可编程序控制器,并在仓泵的输灰控制系统中的应用,实现了对仓泵的进料,进气,排气,出料等过程的计算机控制。本文给出了具体的实施方案,由该装置所构成的控制系统运行正常,其综合效益十分明显。 一、系统构成简介 在仓泵输灰控制过程中有大量连锁及闭锁。如: ①在仓泵体仍有余压得情况下就只能开放气阀降压而禁止开进料阀,进料和放气两阀未完全关闭时则禁止打开进风阀,以防止返灰;②在灰管压力较允许值高时则闭锁打开出料阀和进风阀,以防灰管堵塞或堵塞故障变大;③在空气母管压力较低时闭锁打开进风阀,防止堵管;④在进风阀未完全关闭时,闭锁大开放气阀和进料阀;⑤当仓泵内的灰料高度已达到预定位置、同侧的另一台仓泵不再出料状态且空气母管压力已达到规定值时,连锁打开出料计进风阀进行出料; 当空气母管压力降到规定值后,连锁关闭进风、出料阀,停止出料;另外还者有阀门故障检测系统,当一阀门从全关位置到全开位置或从全开位置到全关位置的动作时间超过一定时间值时,则发出声报警信号,提醒运行人员,该阀门已卡,应立即进行处理。 二、气力输送管中颗粒的运动状态 气力除灰是一种以空气为载体的方法,借助于某种压力设备(正压或负压)在管道中输送粉煤灰的方法。在输送管中,粉体颗粒的运动状态随气流速度与灰气比不同有显著变化,气流速度越大,颗粒在气流中的悬浮分布越均匀;气流速度越小,粉粒则越容易接近管低,形成停流,直至堵塞管道。 通过实验观察到某些粉体在不同的气流速度下所呈现的运动状况具有下面六种类型: (1)均匀流当输送气流速度较高,灰气比很低时,粉粒基本上及以接近均匀分布的状态在气流中悬浮输送。 (2)管底流当风速减小时,在水平管中颗粒向管底聚集,越接近管底,分布越密,当尚未出现停址。颗粒一面做不规则的旋转或碰撞,一面被输送走。 (3)疏密流当风速在降低或灰气进一步增大时,则会出现疏密流,这是粉体悬浮输送的极限状态。以上三种状态为悬浮流。 (4)集团流疏密流的风速再降低,则密集部分进一步增大,其速度也降低,大部分颗粒失去悬浮能力而开始在管道底滑动,形成集团流。粗大的颗粒透气好容易形成集团流。集团流只是在风速较小的水平管和倾斜管中产生。在垂直管中,颗粒所需要的浮力,已由气流的压力损失补偿了,所以不存在集团流。 (5)部分流常见的是栓塞流上部被吹走后的过度现象所形成的流动状态。 (6)栓塞流堆积的物料充满一段管路,水泥及粉灰煤灰一类不容易悬浮的粉粒,容易形成栓塞流。它的输送是靠料栓前后压差的推动。与悬浮流输送相比,在力的作用方式和管壁的摩擦上,都存在原则性区别,即悬浮流为气动力输送,栓塞流为压差输送。 2.1 气力除灰技术特点 气力除灰是一种以空气为载体,借助于某种压力设备在管道中输送粉煤灰的方法。气力除灰技术具有如下的特点: (1)节省大量的冲灰水; (2)在输送过程中,灰不与水接触,固灰的固有活性及其他特性不受影响,有利于粉煤灰的综合利用; (3)减少灰场占地; (4)避免灰场对地下水及周围大气环境的污染;

料仓隔墙设计计算手册原版

精心整理 料仓隔墙设计计算书 一、工程概况 根据本标段混凝土使用地为乐平互通式立体交叉、龙眼园高架桥、三花路高架桥、太院高架桥、芦泡涌大桥、卫东高架桥及涵洞和附属工程,为满足混凝土质量和施工需求,结和现场实际施工情况现于西二环MK62+50位置的线路右侧建立混凝土拌和站,共占地约11000m2。料仓8个约2800m2, ρ=As/(b*h0)=804/(500*365)=0.44% 受拉钢筋为4@φ12,得Asy=452mm2,Ny=4,φy=12mm; ρy=Asy/(b*h0)=452/(500*365)=0.25% 得ξ=ρ*fy/(α1*fc)=0.049<ξb=0.55…………………(α1=1.00) 得受压区高度x=ξ*h0=0.049*365=18mm<2ca,满足要求。 图1条形基础配筋示意图 图1条形基础配筋示意图(箍筋按照构造进行配筋,计算如下)

(2)、箍筋计算 如上图1所示进行配筋,初步考虑为2道箍筋,采用φ10@150mm进行布置。 即S=150mm,N=2,φ=10mm; 得:实际配筋率ρsv=Nsv1/Sb=0.209%>ρsvmin=4*ft/fyv=0.145%,满足最小配筋率要求。 2、软弱地基承载力验算 a、设计条件 考虑基础长度L=13000mm,基础底面宽度B=500mm,基础高度为h=400mm,荷载Fk=N=2.5×0.5× γ ,下层b、计算 pk pc pz pcz 3 条形基础抗弯承载力Mu=α1*fc*b*h0^2*ξ*(1-0.5*ξ)+fy*Asy*(h0-ca))/1000000=79.6KN*m Mu>N=2.5×0.5×25=31.25KN/m,满足隔墙自身受力要求。 需要的承载力为Ny=Mu*b=39.8Kpa<地基承载力N=200Kpa,满足地基承载力要求。 四、挡墙计算

气力输送系统资料

气力输送系统资料 气力输送是一项综合性技术,它涉及流体力学、材料科学、自动化技术、制造技术等领域,属输送效率高、占地少、经济而无污染的高新技术项目。随着我国经济的快速发展,各行各业的生产也在不断扩大,有些行业如火力发电厂、化工厂、水泥厂、制药厂、粮食加工厂等的一些原材料、粉粒料在输送生产工程中产生的环境污染越来越得到广泛的重视。气力输送技术于是得到了逐步的推广。气力输送是清洁生产的一个重要环节,它是以密封式输送管道代替传统的机械输送物料的一种工艺过程,是适合散料输送的一种现代物流系统。将以强大的优势取代传统的各种机械输送。 气力输送系统具有以下特点: ★气力输送是全封闭型管道输送系统 ★布置灵活 ★无二次污染 ★高放节能 ★便于物料输送和回收、无泄漏输送 ★气力输送系统以强大的优势。将取代传统的各种机械输送。 ★计算机控制,自动化程度高 气力输送形式: ★气力输送系统按类型分:正压、负压、正负压组合系统 ★正压气力输送系统:一般工作压力为0.1~0.5MPa ★负压气力输送系统:一般工作压力为-0.04~0.08 MPa ★按输送形式分:稀相、浓相、半浓相等系统。 气力输送系统功能表:

常见适合气力输送物料 可以气力输送的粉粒料品种繁多,每种物料的料性对气力输送装置的适合性和效率都有很大的影响。因此在选定输送装置前要先对物料进行性能测定。现在常见适合气力输送物料示例如下: 浓相气力输送系统 浓相气力输送系统根据国外先进技术及经验,结合科学实验,经过数年实践,被确认为是一种既经济又可靠的气力输送系统。该系统输送灰气比高,耗气量少,输送速度低,有效降低管道磨损。该系统主要由压缩空气气源,发送器、控制柜、输送管、灰库五大部分。 1、压缩空气气源: 由空气压缩机、除油器、干燥器、储气罐及管道组成,主要为发送器及气控元件提供高质量的压缩空气。 2、发送器: 器集灰斗的飞灰,经流化后通过输送管道送至灰库。 3、控制柜: 以电脑集中控制各种机械元件动作,并附有手动操作机构。 4、输送管道: 经实验,输送距离可达1300米,管路寿命可达20000小时以上。 5、灰库: 由灰库本体、布袋除尘器、真空释放阀、料位计、卸灰设备等组成。

最新5低压吸运气力输送系统设计计算示例

5 低压吸运气力输送系统设计计算示例 (1)单管气力输送系统设计计算示例 例7.3 如图7.78所示,由压榨车间将破碎饼粕送至浸出车间的气力输送系统。浸出车间日处理25 T/d (1)设计输送量G 计的确定 根据浸出车间要求处理饼25T/d ,按24h 计,则 G =25/24=1000(kg/h ) 由公式7-25,得: G 计=α×G =1.1×1000=1100(kg/h ) (2)输送风速V 的选择 由表7.56,取V 为21m/s 。 (3)输送浓度μ的选择 取μ=0.4。 (4)输送风量Q a 的确定 由公式7-27,得: 29924 .02.11100 =?= = μ ρa a G Q 计 (m 3/h ) (5)确定管径D 的确定 由公式7-28,得: 195.021 14.336002992 4.36004=???= = V Q D a π(m ) 取200mm 。则实际输送浓度为: 39.02378 2.11100=?==a a Q G ρμ计 (6)压力损失计算 输料输送压力损失H 物 ①空气通过作业机的压力损失H 机 由表7.1,H 机=0 ②接料器压力损失H 接 采用诱导式接料器,由表7.57,阻力系数为0.7。由公式7-31,得: g V H a j 22 ρζ=接 9.1881.92212.17.02 =???= (mmH 2O ) ③加速物料压力损失H 加 查表7.60得,i 谷粗=17mmH 2O/t ,由公式7-, H 加= i 谷粗G 算=17×1.1=18.7 (mmH 2O ) ④摩擦压力损失H 摩 查表7.65,R =2.21mmH 2O/m ,K 粗=0.669;由公式7-35,得: 236)39.0669.01(70.8421.2)1(=?+?=+=μm K RL H 摩(mmH 2O ) ⑤弯头压力损失H 弯 采用弯头90°,曲率半径为6D ,ζw 为0.083,查表7.60,K w =1.6,由公式7-45,得: 6.3)39.06.11(81 .92212.1083.0)1(22 2=?+???=+=μρζw a w K g V H 弯(mmH 2O ) ⑥恢复压力损失H 复 查表7.61和表7.62,△=0.35,β=1.5,由公式7-47,得: H 复=βΔΗ加=1.5×0.35×18.7=9.8 (mmH 2O )

最新固体料仓设计计算

固体料仓设计计算

6 设计计算 固体料仓的校核计算按以下步骤进行: a) 根据地震或风载的需要,选定若干计算截面(包括所有危险截面)。 b) 根据JB/T 4735的相应章节,按设计压力及物料的特性初定仓壳圆筒及 仓壳锥体各计算截面的有效厚度δe 。 c) 按6.1~6.18条的规定依次进行校核计算,计算结果应满足各相应要 求,否则需要重新设定有效厚度,直至满足全部校核条件为止。 固体料仓的外压校核计算按GB 150的相应章节进行。 6.1 符号说明 A —— 特性纵坐标值,mm ; B —— 系数,按GB 150确定,MPa ; C —— 壁厚附加量,C =C 1+C 2,mm ; C 1 —— 钢板的厚度负偏差,按相应材料标准选取,mm ; C 2 —— 腐蚀裕量和磨蚀裕量,mm ; 腐蚀裕量对于碳钢和低合金钢,取不小于1 mm ;对于不锈钢,当介质的腐蚀性极微时,取为0;对于铝及铝合金,取不小于1 mm ;对于裙座壳取不小于2 mm ;对于地脚螺栓取不小于3 mm ; 磨蚀裕量对于碳素钢和低合金钢、铝及铝合金一般取不小于1mm ,对于高合金钢一般取不小于0.5mm 。 D i —— 仓壳圆筒内直径,mm ; D o —— 仓壳圆筒外直径,mm ; E t —— 材料设计温度下的弹性模量,MPa ; F f —— 物料与仓壳圆筒间的摩擦力,N ; F k1 —— 集中质量m k 引起的基本震型水平地震力,N ; F V —— 集中质量m k 引起的垂直地震力,N ; F Vi —— 集中质量i 引起的垂直地震力,N ; 00-V F —— 料仓底截面处垂直地震力,N ; I I V F -—— 料仓任意计算截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项,N ; g —— 重力加速度,取g =9.81m/s 2; H —— 料仓总高度,mm ; H o —— 仓壳圆筒高度,mm ; H c —— 仓壳锥体高度,mm ; H i —— 料仓顶部至第i 段底截面的距离,mm ;

相关文档
最新文档