空间向量及立体几何复习题

合集下载

空间向量与立体几何单元练习题

空间向量与立体几何单元练习题

《空间向量与立体几何》习题一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是A .-21a +21b +c B .21a +21b +c C .21a -21b +c D .-21a -21b +c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.OC OB OA OM --=23B.OC OB OA OM 513121++=C.0=+++OC OB OA OMD.0=++MC MB MA3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ⋅等于A.41B.41- C.43 D.43-4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453 D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是①正方体 ②圆锥 ③三棱台 ④正四棱锥A .9πB .10πC .11πD .12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A .6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD的距离为 .三、解答题(共80分)俯视图 正(主)视图 侧(左)视图 2 32 215.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG ..17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证: (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD .224侧视图正视图624GEFC'B'D'C A B DMPD C BAED CBA P 18.(本小题满分14分)如图,已知点P 在正方体''''D CB A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=o ,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD所成最大角的正切值为2,求二面角E AF C --的余弦值.PBDFA D 'C 'B'A'PD C BA练习题参考答案一、选择题1.)(21111BC BA A A BM B B M B ++=+==c +21(-a +b )=-21a +21b +c ,故选A.2.1),,(=++∈++=⇔z y x R z y x z y x C B A M 且四点共面、、、由于MC MB MA MC MB MA C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在y x y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF 21,21//=∴=∴且,41120cos 1121,210-=⨯⨯⨯>=<=⋅=⋅∴ 故选B .4.B5.B6.D7.D8.D9.D 10.4,cos ==><=,5==,故选A二、填空题 11.9 12.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则++=θθcos 6)180,0,0,2530-=-=⋅=⋅=⋅===0022222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=θθθθ由于AC DB DB CD CD AC DB CD AC14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系设平面P AD 的法向量是(,,)m x y z =u r,(0,2,0),(1,1,2)AD AP ==u u u r u u u r Q ,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-u r,1(2,0,2)B A =-u u u rQ ,∴1B 到平面PAD的距离1B A m d m⋅==u u u r u r u r.三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21AB AP AD BP BC BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于 23)]110(2211[41)](2[41)(4122222222=+-+++=⋅+⋅-⋅-+++=++-=∴c b c a b a c b a c b a BM 2626的长为,BM BM ∴=∴. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中, 连结AD ',则AD BC ''∥. 因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥, 从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴E F ∥AD ,∵AD ⊂面ACD ,E F ⊄面ACD ,∴直线E F ∥面ACD ;(2)∵AD ⊥BD ,E F ∥AD ,∴E F ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵B D ⊂面BCD ,∴面EFC ⊥面BCD .A BC D E F GA 'B 'C 'D '18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =u u u r ,,,(001)CC '=u u u u r,,.连结BD ,B D ''. 在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>u u u u r,,,由已知60DH DA <>=o u u u u r u u u r ,, 由cos DA DH DA DH DA DH =<>u u u r u u u u r u u u r u u u u r u u u r u u u u rg ,,可得2m =.解得2m =,所以1DH ⎫=⎪⎪⎝⎭u u u u r . (1)因为0011cos 2DH CC ++⨯'<>==u u u u r u u u u r ,, 所以45DH CC '<>=o u u u u r u u u u r,,即DP 与CC '所成的角为45o . (2)平面AA D D ''的一个法向量是(010)DC =u u u r ,,.因为01101cos 2DH DC +⨯<>==u u u u r u u u r ,,所以60DH DC <>=o u u u u r u u u r,,可得DP 与平面AA D D ''所成的角为30o . 19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=⋅=Y(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又AC PC C =I ∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ⊂平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EB ∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE ,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ⋅==BG在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGBzyxEDC BAP∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===-u u u r u u u r u u u r u u u r设平面ADE 和平面ABE 的法向量分别为 (,,),(',',')m a b c n a b c ==u r r由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+=令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==--u r r设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅u r r u u r r∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=o ,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PA AD A =I , 所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角. 在Rt EAH △中,3AE =, 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大. 此时36tan 2AE EHA AH AH ∠===, 因此2AH =.又2AD =,所以45ADH ∠=o , 所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E作EO AC⊥于O,则EO⊥平面PAC,过O作OS AF⊥于S,连接ES,则ESO∠为二面角E AF C--的平面角,在Rt AOE△中,sin30EO AE==og3cos302AO AE==og,又F是PC的中点,在Rt ASO△中,sin454SO AO==og,又SE===Rt ESO△中,cos SOESOSE∠===,.解法二:由(1)知AE AD AP,,两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E F,分别为BC PC,的中点,所以(000)10)0)(020)A B C D-,,,,,,,,,,1(002)0)12P E F⎫⎪⎪⎝⎭,,,,,,,,所以10)12AE AF⎫==⎪⎪⎝⎭u u u r u u u r,,,,.设平面AEF的一法向量为111()x y z=,,m,则AEAF⎧=⎪⎨=⎪⎩u u u rgu u u rg,,mm因此1111122x y z=++=⎪⎩,.取11z=-,则(021)=-,,m,因为BD AC⊥,BD PA⊥,PA AC A=I,所以BD⊥平面AFC,故BDu u u r为平面AFC的一法向量.又(0)BD=u u u r,,所以cosBDBDBD<>===u u u ru u u r gu u u rg,mmm因为二面角E AF C--为锐角,所以所求二面角的余弦值为5.B。

高二数学空间向量与立体几何测试题

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .//B .⊥C .也不垂直于不平行于,D .以上三种情况都可能4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B. 637 C. 647 D. 6575.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A.+-a b cB. -+a b cC. -++a b cD. -+-a b c6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对7.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( )A .2B .3C .4D .59.已知的数量积等于与则35,2,23+-=-+=( )EM GDCBA10.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .12.12、若向量 ()()1,,2,2,1,2a b λ==-,,a b 夹角的余弦值为89,则λ等于__________.13.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 。

第1章 空间向量与立体几何 章末测试(基础)(解析版)

第1章 空间向量与立体几何 章末测试(基础)(解析版)

第1章 空间向量与立体几何章末测试(基础)一.单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·北京)如图,在三棱锥O ABC -中,D 是BC 的中点,若OA a =,OB b =,OC c =,则AD 等于( )A .a b c -++B .a b c -+-C .1122a b c -++D .1122a b c --- 【答案】C 【解析】()11112222OD OB BD OB BC OB OC OB OB OC =+=+=+-=+, 因此,11112222AD OD OA OA OB OC a b c =-=-++=-++.故选:C. 2.(2021·广东广州市)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,已知PA a =,PB b =,PC c =,12PE PD =,则BE =( )A .131222a b c -+ B .111222a b c -+C .131222a b c ++D .113222a b c -+ 【答案】A【解析】连接BD ,如图,则()()()1111122222BE BP BD PB BA BC PB PA PB PC PB =+=-++=-+-+- ()11131131222222222PB PA PB PC PA PB PC a b c =-+-+=-+=-+. 故选:A.3.(2021·嫩江市高级中学)对空间任意一点O ,若311488OP OA OB OC =++,则A ,B ,C ,P 四点( ) A .一定不共面B .一定共面C .不一定共面D .与O 点位置有关【答案】B 【解析】因为311488OP OA OB OC =++,所以()()()6OP OA OB OP OC OP -=-+-, 所以6AP PB PC =+,即1166AP PB PC =+,故P ,A ,B ,C 四点共面,故选:B. 4.(2021·全国高二课时练习)已知(2,3,1)a =-,则下列向量中与a 平行的是( )A .(1,1,1)B .(-4,6,-2)C .(2,-3,5)D .(-2,-3,5)【答案】B【解析】若(4,6,2)b =--,则2(2,3,1)2b a =-⋅-=-,所以//a b ;而b 为(1,1,1)、(2,-3,5)、(-2,-3,5)时,不存在b a λ=的关系.故选:B 5.(2021·福建泉州市)已知()1,0,1a λ=+,()3,21,2b μ=-,其中λ,R μ∈,若//a b ,则λμ+=( )A .0B .1C .2D .3【答案】B 【解析】因为()1,0,1a λ=+,()3,21,2b μ=-,//a b ,所以1132210λμ+⎧=⎪⎨⎪-=⎩,解得12λμ==, 因此1λμ+=.故选:B.6.(2021·浙江高二单元测试)已知点()1,1,A t t t --,()2,,B t t ,则A ,B 两点的距离的最小值为ABCD .35【答案】C【解析】因为点()1,1,A t t t --,()2,,B t t 所以22222(1)(21)()522AB t t t t t t =++-+-=-+ 有二次函数易知,当15t =时,取得最小值为95 AB ∴故选:C. 7.(2021·全国高二课时练习)已知(2,1,3),(1,4,2),(3,2,)a b c λ=-=--=,若,,a b c 三向量共面,则实数λ等于( )A .2B .3C .4D .5【答案】C【解析】∵a 与b 不共线,则取a ,b 作为平面的一组基向量,又,,a b c 三向量共面,则存在实数12,λλ使得12c a b λλ=+, ∴121212322432λλλλλλλ=-⎧⎪=-+⎨⎪=-⎩,解得12214λλλ=⎧⎪=⎨⎪=⎩.故选:C8.(2021·天津)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是( ) AB.7 C.6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =, ()0,1,0AB =, 67AB nd n ⋅∴==. 故选:D.二、多选题(每题至少有两个选项为正确答案,每题5分,4题共20分)9.(2021·全国高二课时练习)(多选题)如图,在长方体1111ABCD A B C D -中,5AB =,4=AD ,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B对称的点为(5,8,3)-C .点A 关于直线1BD 对称的点为(0,5,3)D .点C 关于平面11ABB A 对称的点为()8,5,0【答案】ACD【解析】根据题意知:点1B 的坐标为(4,5,3),选项A 正确;B 的坐标为(4,5,0),1C 坐标为()0,5,3,故点1C 关于点B 对称的点为()8,5,3-,选项B 错误;在长方体中15AD BC AB ====,所以四边形11ABC D 为正方形,1AC 与1BD 垂直且平分,即点A 关于直线1BD 对称的点为()10,5,3C ,选项C 正确;点C 关于平面11ABB A 对称的点为()8,5,0,选项D 正确;故选:ACD.10.(2020·朝阳市第一高级中学)下列说法正确的是( )A .若{},,MA MB MC 为空间的一组基底,则,,A B C 三点共线B .若1111ABCD A BCD -为四棱柱,则11AA AB AD AC ++= C .若(),,AB AC AD R λμλμ=+∈则,,,A B C D 四点共面D .若A BCD -为正四面体,G 为BCD △的重心,则3AG AB AC AD =++【答案】CD【解析】A :若{},,MA MB MC 为空间的一组基底,则向量,,MA MB MC 不共面,知,,A B C 三点不共线,故错误;B :若1111ABCD A BCD -为四棱柱且底面为平行四边形,即AB AD AC +=时,才满足11AA AB AD AC ++=,故错误;C :已知(),AB AC AD R λμλμ=+∈,若向量AC 与AD 共线,则AB 也与,AC AD 共线,即,,,A B C D 四点共面;若向量AC 与AD 不共线,则点B 在面ACD 内,即,,,A B C D 四点共面,故正确; D :设G 为BCD △的重心,若M 为BC 的中点,则13MG MD =,所以AG AM MG =+()1123AB AC MD =++()()111232AB AC BD CD =++⋅+ ()()1126AB AC AD AB AD AC =++-+-()13AB AC AD =++, 即3AG AB AC AD =++,故正确.故选:CD.11.(2021·山东泰安市)如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则( )A .1D D AF ⊥B .1//A G 平面AEFC .()11110AC A B A A ⋅-=D .向量1A B 与向量1AD 的夹角是60【答案】BC 【解析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()2,0,0A 、()2,2,0B 、()0,2,0C 、()0,0,0D 、()1,2,0E 、()0,2,1F 、()2,2,1G 、()12,0,2A 、()12,2,2B 、()10,2,2C 、()10,0,2D .对于A 选项,()10,0,2DD =,()2,2,1AF =-,则120DD AF ⋅=≠,故A 选项错误; 对于B 选项,设平面AEF 的法向量为(),,m x y z =,()1,2,0AE =-,()1,0,1EF =-,由200m AE x y m EF x z ⎧⋅=-+=⎨⋅=-+=⎩,可得2x y z x⎧=⎪⎨⎪=⎩,取2x =,可得()2,1,2m =,()10,2,1=-A G , 1220m AG ⋅=-=,1m AG ∴⊥,1A G ⊄平面AEF ,1//AG ∴平面AEF ,故B 选项正确;对于C 选项,()10,2,2AB =,()12,2,2AC =--,()111111440A B C A B A AC A A ⋅=-⋅=-=,故C 选项正确;对于D 选项,()10,2,2A B =-,()12,0,2AD =-,1111111cos ,22A B AD A B AD A B AD ⋅<>===-⋅, 所以,向量1A B 与向量1AD 的夹角是120,故D 选项错误.故选:BC.12.(2021·湖南常德市)如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列结论中正确的是( )A .三棱锥11A PB D -的体积不变B .//DP 平面11AB DC .11A P BD ⊥D .平面1ACP ⊥平面PBD 【答案】ABD【解析】对于A ,11AB D 的面积是定值,11//AD BC ,1AD ⊂平面11AB D ,1BC ⊄平面11AB D , ∴1//BC 平面11AB D ,故P 到平面11AB D 的距离为定值,∴三棱锥11P AB D -的体积是定值,即三棱锥11A PB D -的体积不变,故A 正确;对于B ,111111111/,,///,AD BC B D BD AD B D D BC BD B ⋂=⋂=,∴平面11//AB D 平面1BDC ,DP ⊂平面1BDC ,//DP ∴平面11AB D ,故B 正确;对于C ,以1D 为原点,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,P 在1BC 上,故可设(,2,),02P a a a ,则11(2,0,0),(2,2,2),(0,0,0)A B D ,1(2,2,)A P a a =-,1(2,2,2)BD =---,则()1122424A P BD a a a ⋅=----=-不一定为0,1A P ∴和1BD 不垂直,故C 错误;对于D ,设(,2,),02P a a a ,则11(2,0,0),(0,2,2),(2,2,2),(0,0,0),(0,0,2)A C B D D ,1(2,2,)A P a a =-,1(2,2,2)AC =-,(,2,2)DP a a =-,(2,2,0)DB =, 设平面平面1A CP 的法向量(,,)n x y z =,则11(2)202220n A P a x y az n ACx y z ⎧⋅=-++=⎪⎨⋅=-++=⎪⎩,取1x =,得221,,22a a n a a -⎛⎫= ⎪--⎝⎭, 设平面PBD 的法向量(,,)m a b c =,则20220m DP ax y az m DB x y ⎧⋅=+-=⎨⋅=+=⎩,取1x =,得()1,1,1m =--,221022a a m n a a-⋅=--=--. ∴平面1A CP 和平面PBD 垂直,故D 正确.故选:ABD.三.填空题(每题5分,4题共20分)13.(2021·全国高二单元测试)若(2,3,5),(3,1,4)a b =-=--,则2a b -=______.【解析】因为(2,3,5),(3,1,4)a b =-=--所以2(8,5,13)a b -=-,所以228(a b -=+=14.(2021·安徽芜湖市)已知空间三点A (0,2,3),B (2-,1,1),C (1,1-,3),四边形ABCD 是平行四边形,其中AC ,BD 为对角线,则||BD =___________.【解析】空间三点(0A ,2,3),(2B -,1,1),(1C ,1-,3),四边形ABCD 是平行四边形, 设(D x ,y ,)z , (2AB =-,1-,2)-,(1DC x =-,1y --,3)z -,AB DC =, 21x ∴-=-,11y -=--,23z -=-,解得3x =,0y =,5z =,(3D ∴,0,5),∴(5BD =,1,4),||BD ∴==15.(2021·浙江高二期末)已知点(1,1,3),(2,0,0),(3,3,9)--A B C λμ三点共线,则λ=_____,μ=_____. 【答案】0 0【解析】因为(1,1,3),(2,0,0),(3,3,9)--A B C λμ,所以()21,1,3AB λ=--,()2,2,6AC μ=- 因为,,A B C 三点共线,所以//AB AC ,所以=AB k AC ,即()()21,1,32,2,6k λμ--=-,即()2121236k k k λμ-=⎧⎪=-⎨⎪-=⎩,解得1200k λμ⎧=-⎪⎪=⎨⎪=⎪⎩故答案为:0;0;16.(2021·浙江舟山市)已知空间向量()()2,1,1,1,1,2a b =-=,则a b +=__________;向量a 与b 的夹角为___________.【答案】060【解析】由()()2,1,1,1,1,2a b =-=,则()3,0,3a b +=,所以23a b +=+=2111121cos ,241a ba b a b⨯+-⨯+⨯⋅===+, 所以向量a 与b 的夹角为060. 故答案为:060四.解答题(17题10分,其余每题12分,7题共70分)17.(2021·全国高二课时练习)已知长方体1111ABCD A B C D -中,1||||2,3AB BC D D ===,点N 是AB 的中点,点M 是11B C 的中点.建立如图所示的空间直角坐标系.(1)写出点,,D N M 的坐标; (2)求线段,MD MN 的长度;(3)判断直线DN 与直线MN 是否互相垂直,说明理由.【答案】(1)(0,0,0),(2,1,0),(1,2,3)D N M ;(2;(3)不垂直,理由见解析. 【解析】(1)由于D 为坐标原点,所以(0,0,0)D由1||||2,3AB BC D D ===得:11(2,0,0),(2,2,0),(0,2,0),(2,2,3),(0,2,3)A B C B C 点N 是AB 的中点,点M 是11B C 的中点,(2,1,0),(1,2,3)N M ∴;(2)由两点距离公式得:MD ==,MN ==(3)直线DN 与直线MN 不垂直 理由:由(1)中各点坐标得:(2,1,0),(1,1,3),(2,1,0)(1,1,3)10DN MN DN MN ==--∴⋅=⋅--=≠DN ∴与MN 不垂直,所以直线DN 与直线MN 不垂直18.(2021·全国高二课时练习)如图所示,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .【答案】证明见解析【解析】由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E 1(0,0,)2,则1AA =(0,0,1),AC =(-2,2,0),1AC =(-2,2,1),AE =1(2,0,)2-. 设平面AA 1C 1C 的一个法向量为1n =(x 1,y 1,z 1).则111110,.0,2200z n AA x y n AC ⎧=⎧=⎪⇒⎨⎨-+=⋅=⎪⎩⎩令x 1=1,得y 1=1.⊥1n =(1,1,0).设平面AEC 1的一个法向量为2n =(x 2,y 2,z 2).则22.0,.0n AC n AE ⎧=⎪⎨=⎪⎩⊥22222220,120,2x y z x z -++=⎧⎪⎨-+=⎪⎩令z 2=4,得x 2=1,y 2=-1.⊥2n =(1,-1,4). ⊥21n n ⋅=1×1+1×(-1)+0×4=0. ⊥12n n ⊥,⊥平面AEC 1⊥平面AA 1C 1C .19.(2021·全国高二课时练习)如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,1190,1,2,BAC AB BC BB C D CD ∠======1CC D ⊥平面11ACC A(1)求证:1AC DC ⊥;(2)若M 为1DC 中点,求证://AM 平面1DBB ; 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)在直三棱柱111ABC A B C -中,∴1CC ⊥ 平面ABC ,又AC ⊂ 平面ABC ,⊥1CC AC ⊥,⊥平面1CC D ⊥平面11ACC A ,且平面1CC D ⋂平面111ACC A CC =, 又AC ⊂ 平面11ACC A ,⊥AC ⊥平面1CC D ,又1DC ⊂平面1CC D ,⊥1AC DC ⊥ (2)直三棱柱111ABC A B C -中,⊥1AA ⊥平面111A B C ,而1111,A B A C ⊂平面111A B C ⊥111111,AA A B AA AC ⊥⊥, 又90BAC ∠=,建立如图所示的空间直角坐标系,则()()()()()()112,0,0,,,2,0,1,0,0,1,A C C B B D ,所以()()12,0,0,1,1BB BD =-=--,设平面1DBB 的一个法向量为(),,n x y z =,则100n BB n BD ⎧⋅=⎨⋅=⎩,即200x x z -=⎧⎪⎨--=⎪⎩,令1y =,则(0,1,n =, ⊥M 为1DC的中点,则12M ⎛⎫⎪⎝⎭,所以32AM ⎛⎫=- ⎪⎝⎭, 因为0AM n ⋅=,所以AM n ⊥,又AM ⊄ 平面1DBB ,⊥//AM 平面1DBB . 20.(2021·广西)如图,在正方体1111ABCD A B C D -中,点E 在BD 上,且13BE BD =;点F 在1CB 上,且113CF CB =.求证:(1)EF BD⊥;(2)1EF CB ⊥.【解析】(1)如图建立空间直角坐标系,令正方体的棱长为3,则()0,0,0D ,()3,3,0B,()0,3,0C ()13,3,3B ,因为13BE BD =,113CF CB =,所以()2,2,0E ,()1,3,1F ,所以()1,1,1EF =-,()3,3,0DB =,所以1313100DB EF =-⨯+⨯+⨯=,所以EF BD ⊥(2)由(1)可知()13,0,3CB =,所以11313100CB EF =-⨯+⨯+⨯=,所以1EF CB ⊥22.(2021·河南商丘市·高二月考(理))如图,在正三棱柱111ABC A B C -中,124AB AA ==,1CE EC =,13AF FA =.(⊥)证明:BE ⊥平面1B EF ;(⊥)求二面角E BF A --的余弦值.【答案】(⊥)证明见解析;(⊥)20-.【解析】(⊥)由条件可知BE =BF =EF =,满足222BF BE EF =+,EF BE ∴⊥.1BE B E ==14BB =,满足22211B E BE BB +=,1BE B E ∴⊥.又1B EEF E =,BE ∴⊥平面1B EF .(⊥)以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则()B,()1,0,2E -,()1,0,3F .()1,BF ∴=,()1,BE =-,设平面BEF 的法向量为(),,n x y z =,00n BF n BE ⎧⋅=⎨⋅=⎩,30,20,x z x z ⎧+=⎪∴⎨-=⎪⎩取y =()3,5n =-. 易得平面ABF 的一个法向量为()3,1,0m =,3cos ,2m n m n m n⋅-〈〉===由图可知,二面角E BF A -=的平面角是m ,n 夹角的补角,故二面角E BF A --的余弦值为.。

专题1 空间向量与立体几何练习(三)

专题1 空间向量与立体几何练习(三)

专题1空间向量与立体几何练习(三)1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒.(1)求证:1AC DB ⊥;(2)求异面直线1BD 与AC 所成角的余弦值.2.如图四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//,3AF DE DE AF =.(1)求证:AC ⊥平面BDE ;(2)若BE 与平面ABCD 所成角为60︒,求二面角F BE D --的正弦值.3.已知()1,4,2a =- ,()2,2,4b =- .(1)若12c b = ,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.4.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC ==.(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.5.已知向量()1,1,0a = ,()1,0,b c =- ,且a b += (1)求c 的值;(2)若ka b + 与2a b - 互相垂直,求实数k 的值.6.如图,在长方体1111ABCD A B C D -中,1226AD AB AA ===,,E F 分别是1111,A D A B 的中点,CG GE = ,以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -.(1)写出1,,,C D F G 四点的坐标;(2)求1cos ,CF D G <> .7.如图所示,在棱长为2的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF ·BA ;(2)EF ·BD ;(3)AB ·CD .8.如图所示,在正方体1111ABCD A B C D -中,化简向量表达式:(1)AB CD BC DA +++ ;(2)1111AA B C D D ++ ;(3)1111AA B C D D CB +++ .9.已知空间三点()4,0,4A -,()2,2,4B -,()3,2,3C -,设a AB = ,b BC =r u u u r .(1)求a ,b ;(2)求a 与b 的夹角.10.如图所示,已知在三棱锥A BCD -中,向量AB a = ,AC b = ,AD c =uuu r r ,已知M 为BC 的中点,试用a 、b 、c 表示向量DM .参考答案:1.(1)证明见解析【分析】(1)根据平面向量转化基底,以及加减运算和数量积的运算性质,得到10AC DB ⋅= ,即可证得1AC DB ⊥;(2)根据平面向量转化基底,求出1BD 、AC 、1AC BD ⋅ ,再利用夹角公式即可求解.【详解】(1)证明:∵以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒,∴11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒= ,∴()()1111111()()AC DB AA A B B C AB AD AA AB AD AB AD ⋅=++⋅-=++⋅- 22110AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅-= ,∴1AC DB ⊥.(2)∵111BD AD DD AB AD AA AB ==+-+- ,AC AB BC AB AD =+=+ ,∴1BD ==||AC ==== ,()11()BD AC AD AA AB AB AD ⋅=+-⋅+ 12211111122AD AB AA AB AA AD =+⋅-++⋅=-+= ,∴111cos ,6BD AC BD AC BD AC⋅==⋅ ,∴异面直线1BD与AC 所成角的余弦值为6.2.(1)证明见解析【分析】(1)由已知可得DE AC ⊥且AC BD ⊥,由线面垂直的判定定理即可得到证明;(2)以D 为原点,DA 方向为x 轴,DC 方向为y 轴,DE 方向为z 轴建立空间直角坐标系,利用已知条件求出平面BDE 的一个法向量和平面BEF 的一个法向量,利用向量的夹角公式计算即可.【详解】(1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE AC⊥因为四边形ABCD 是正方形,所以AC BD⊥又因为BD DE D ⋂=,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE(2)DE ⊥ 底面ABCD ,,⊂DA DC 平面ABCD ,,DE DA DE DC ∴⊥⊥,四边形ABCD 是正方形,DA DC∴⊥故DA ,DC ,DE 两两垂直,建立如图所示的空间直角坐标系D xyz -,因为BE 与平面ABCD 所成角为60 ,DE ⊥ 平面ABCD ,且垂足为D ,故60DBE ∠=,所以DE DB=又3,3AD DE AF ==,所以BD DE AF ===所以(3,0,0)A ,(3,3,0)B,F,E ,(0,3,0)C ,所以(0,,(3,0,BF EF =-=- 设平面BEF 的一个法向量(),,m x y z = ,则3030m BF y m EF x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令z =(4,m = 因为AC ⊥平面BDE ,所以CA 为平面BDE 的一个法向量,()3,3,0CA =- .所以cos ,13m CA m CA m CA ⨯+-⨯+⋅〈〉===,所以sin ,m CA〈〉=所以二面角F BE D --3.(1)42-(2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得()11,1,22c b ==- ,()1,4,2a =- ,∴114122cos ,42a c a c a c⨯-+⨯+-⨯⋅<>==- .(2)()2,42,24ka b k k k +=-+-+ ,()37,2,14a b -=-- ,∵()()3ka b a b +-∥ ,∴存在实数m 使得()3ka b m a b +=- ,∴27k m -=,422k m +=-,2414k m -+=-,联立解得13k =-.4.(1)1AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC uuu r ,平方即求得模长.(2)求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =uu u r r ,CB b =uu r r ,1CC c =uuu r r ,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+ ,所以()22211AC AC c a b ⎡⎤==-+⎣⎦222222c a b a c b c a b=++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++ ,1DC c a =- ,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线1CA 与1DC 所成的角为90°.5.(1)2c =±(2)75k =【分析】(1)求出()0,1,b a c += ,根据向量模长公式列出方程,求出2c =±;(2)分2c =与2c =-两种情况,根据向量垂直列出方程,求出实数k 的值.【详解】(1)()()()01,0,1,1,0,1,b c a c =-++= ,所以a b +== 2c =±;(2)当2c =时,()()()01,0,2,,1,,2k b k k k a k +=--=+ ,()()()2202,21,0,2,,23,a b -=-=-- ,因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,当2c =-时,()()()210,1,2,,0,,ka k k k b k +=-+---= ,()()()2202,21,0,2,,23,a b -=-=-- 因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,综上:75k =.6.(1)()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,393,,222G ⎛⎫ ⎪⎝⎭21【分析】(1)根据线段长度、中点坐标公式可求得点对应的坐标;(2)利用向量夹角的坐标运算可直接求得结果.【详解】(1)1226AD AB AA === ,13AB AA ∴==,则()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,()0,3,3E ,CG GE = ,G ∴为CE 中点,393,,222G ⎛⎫∴ ⎝⎭.(2)由(1)得:3,6,32CF ⎛⎫=-- ⎪⎝⎭ ,1333,,222D G ⎛⎫=-- ⎪⎝⎭,1119999424cos ,22CF D G CF D G CF D G -+-⋅∴<>=⋅⨯ .7.(1)1(2)2(3)0【分析】分别将EF ,BD ,CD 转化为AB ,AC ,AD 后根据数量积定义计算即可.【详解】(1)在正四面体ABCD 中,||||2,cos ,60BD BA BD BA ==〈〉=111||||cos ,22cos 601222EF BA BD BA BD BA BD BA ⋅=⋅=⋅〈〉=⨯⨯︒= (2)211||222EF BD BD BD BD ⋅=⋅== (3)()AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=||||cos ,||||cos ,AB AD AB AD AB AC AB AC ⋅⋅〈〉-⋅〈〉在正四面体ABCD 中,||||||AB AD AC == ,cos ,cos ,AB AD AB AC 〈〉=〈〉故0AB CD ⋅=8.(1)0(2)AD(3)0【分析】(1)(2)(3)结合图形,根据空间向量的线性运算直接化简可得.【详解】(1)0AB CD BC DA AB BC CD DA AC CD DA AD AD +++=+++=++=-= (2)由图知,1111B C A D = 所以1111111111AA B C D D AA A D D D AD D D AD++=++=+= (3)由图知,CB DA =所以由(2)可得11110AA B C D D CB AD DA AD AD +++=+=-= 9.(1)(2)2π3【分析】(1)(2)由空间向量的坐标运算求解,【详解】(1)由题意得所以()2,2,0a AB == ,所以a == 因为()2,2,4B -,()3,2,3C -,所以()1,0,1b BC ==--r u u u r ,所以b ==r (2)由(1)可知1cos ,2a b a b a b⋅==-⋅ ,又[],0,πa b ∈ ,所以2π,3a b = ,即a 与b 的夹角为2π3.10.()122DM a b c =+- 【分析】利用空间向量的线性运算的几何表示运算即得.【详解】∵M 为BC 的中点,∴()12AM AB AC =+uuu r uu u r uuu r ,∴()()11222DM AM AD AB AC AD a b c =-=+-=+- .。

《第一章 空间向量与立体几何》单元检测试卷与答案解析(共三套)

《第一章 空间向量与立体几何》单元检测试卷与答案解析(共三套)

《第一章 空间向量与立体几何》单元检测试卷(一)第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为( )A .1-B .1CD .732.已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A .9B .﹣9C .﹣3D .33.下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等4.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( ) A .l α⊂B .//l αC .l α⊥D .l 与α相交5.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-6.已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .3C .3D .137.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB .2C D 8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫ ⎪⎝⎭B .133,,224⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .447,,333⎛⎫ ⎪⎝⎭二、多选题(每题不止一个正确的选项,5分/题,共20分)9.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥ B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π 10.正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π 11.设a ,b ,c 是空间一个基底,则( ) A .若a ⊥b ,b ⊥c ,则a ⊥cB .则a ,b ,c 两两共面,但a ,b ,c 不可能共面C .对空间任一向量p ,总存在有序实数组(x ,y ,z),使p xa yb zc =++D .则a +b ,b +c ,c +a 一定能构成空间的一个基底12.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90时,PC =D .存在某个位置,使得B 到平面PDC第II 卷(非选择题)三、填空题(每题5分,共20分)13.若(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =,则()a b c +=___________.14.已知平面α的一个法向量10,,2n ⎛=- ⎝,A α∈,P α∉,且122PA ⎛=- ⎝,则直线PA 与平面α所成的角为______.15.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =________.16.如图,棱长为3的正方体的顶点A 在平面α上,三条棱,,AB AC AD 都在平面α的同侧,若顶点,B C 到平面α,则顶点D 到平面α的距离是_____.四、解答题(17题10分,其余题目12分每题,共70分)17.如图,2BC =,原点O 是BC 的中点,点A 的坐标为(2,12,0),点D 在平面yOz 上,且90BDC ∠=︒,30DCB ∠=︒.(1)求向量CD 的坐标.(2)求AD 与BC 的夹角的余弦值.18.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ︒∠=∠=.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值.19.如图所示,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点.(1)求证:NM ∥平面11A ADD ; (2)求证:NM ⊥平面11A B M .20.如图,在直棱柱1111ABCD A B C D -中,//AD BC ,90BAD ∠=︒,AC BD ⊥,1BC =,14A D A A ==.(1)证明:面1ACD ⊥面1BB D ; (2)求二面角11B AC D --的余弦值.21.如图,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB DC ,E 为线段PD 的中点,已知2PA AB AD CD ====,120PAD ∠=︒.(1)证明:直线//PB 平面ACE ;(2)求直线PB 与平面PCD 所成角的正弦值.22.如图,已知梯形ABCD 中,//AD BC ,90DAB ∠=︒,22AB BC AD ===,四边形EDCF 为矩形,2DE =,平面EDCF ⊥平面ABCD . (1)求证://DF 平面ABE ;(2)求平面ABE 与平面BEF 所成二面角的正弦值;(3)若点P 在线段EF 上,且直线AP 与平面BEF ,求线段AP 的长.答案解析第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为( )A .1-B .1CD .73【答案】A 【解析】如图所示由正四面体的性质可得:PA BC ⊥ 可得:0PA BC ⋅=E 是棱AB 中点12PEPA PB 111122cos12012222PE BC PA PB BCPA BC PB BC 故选:A【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.2.已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A .9 B .﹣9C .﹣3D .3【答案】B【解析】由P ,A ,B ,C 四点共面,可得,,PA PB PC 共面,(2,2,33)(7,6,)xPA yPB x y x y C y P x λ∴=+=-+-+=,272633x y x y x y λ-=⎧⎪+=⎨⎪-+=⎩,解得419x y λ=⎧⎪=⎨⎪=-⎩. 故选:B.3.下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等 【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底, 所以A 错.B 项,空间基底有无数个, 所以B 错.D 项中因为基底不唯一,所以D 错.故选C .4.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( ) A .l α⊂ B .//l αC .l α⊥D .l 与α相交【答案】C【解析】∵直线l 的方向向量为()1,2,3a =-, 平面α的法向量为()3,6,9n =--,∴13a n =-,∴a n , ∴l α⊥. 故选C .5.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-【答案】A【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则1111cos ,66MN OD MN OD MN OD ⋅===. ∴异面直线MN 与1OD 所成角的余弦值为16,故选A .6.已知正四棱柱1111ABCD A B C D -中,12AAAB =,则CD 与平面1BDC 所成角的正弦值等于() A .23B C.3D .13【答案】A【解析】设1AB =11BD BCDC ∴===,1BDC ∆面积为3211C BDC C BCD V V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴== 7.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB.2CD【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1), 1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=||2||5EM n n ⋅==,N 为EM 中点,所以N到该面的故选:D .8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭【答案】C【解析】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=, 即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选:C.二、多选题(每题不止一个正确的选项,5分/题,共20分)9.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.10.正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π 【答案】BC【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG , 则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点, 可知11////EF BC AD ,所以AEF ∆⊂平面1AD EF , 则平面AEF平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴, 则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=,设平面AEF 的法向量为(),,n x y z =,则00n AF n EF ⎧⋅=⎨⋅=⎩,即20x y x z -+=⎧⎨-=⎩,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =,所以10A H n ⋅=,所以1//A H 平面AEF ,则C 选项正确; 由图可知,1AA ⊥平面AFC ,所以1AA 是平面AFC 的法向量, 则1112cos ,3AA n AA n AA n⋅<>===⋅. 得知二面角E AF C --的大小不是4π,所以D 不正确. 故选:BC.11.设a ,b ,c 是空间一个基底,则( ) A .若a ⊥b ,b ⊥c ,则a ⊥cB .则a ,b ,c 两两共面,但a ,b ,c 不可能共面C .对空间任一向量p ,总存在有序实数组(x ,y ,z),使p xa yb zc =++D .则a +b ,b +c ,c +a 一定能构成空间的一个基底 【答案】BCD【解析】对于A 选项,b 与,a c 都垂直,,a c 夹角不一定是π2,所以A 选项错误. 对于B选项,根据基底的概念可知a ,b ,c 两两共面,但a ,b ,c 不可能共面.对于C 选项,根据空间向量的基本定理可知,C 选项正确.对于D 选项,由于a ,b ,c 是空间一个基底,所以a ,b ,c 不共面.假设a +b ,b +c ,c +a 共面,设()()()1a b x b c x c a +=++-+,化简得()1x a x b c ⋅=-+,即()1c x a x b =⋅+-,所以a ,b ,c 共面,这与已知矛盾,所以a +b ,b +c ,c +a 不共面,可以作为基底.所以D 选项正确. 故选:BCD12.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90时,PC =D .存在某个位置,使得B 到平面PDC 【答案】BC【解析】如图所示:A 项:取BD 的中点O ,连结OP 、OC , 因为四边形ABCD 是菱形,O 是线段BD 的中点, 所以,,OP BD OC BD OPOC O ⊥⊥=,BD ⊥平面POC ,BD ⊂平面BCD ,所以POC ⊥平面BCD ,所以POC 平面BCDOC ,所以PC 在平面BCD 的射影为OC ,PCO ∠即PC 与平面BCD 所成角,PO OC ,三角形POC 是等腰三角形,当60POC ∠=时,PC 与平面BCD 所成角为60,故A 错误; B 项:当PD PC =时,取CD 的中点N ,可得CD PN ⊥,CD BN ⊥,故CD ⊥平面PBN ,PB CD ⊥,故B 正确; C 项:因为四边形ABCD 是菱形,O 是线段BD 的中点, 所以PO BD ⊥,CO BD ⊥,因为BD 是平面PBD 与平面CBD 的交线, 所以POC ∠即平面PBD 与平面CBD 所成角,因为二面角P BD C --的大小为90,所以90POC ∠=,因为PO OC ==PC =C 正确;D 项:因为BN =B 到平面PDC则BN ⊥平面PCD ,2PB =,BN =1PN =,1DN =,则PD =D 错误,故选:BC.第II 卷(非选择题)三、填空题(每题5分,共20分)13.若(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =,则()a b c +=________. 【答案】3.【解析】因为(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =所以()5,4,5b c += 所以()()2534153a b c +=⨯+-⨯+⨯=故答案为:314.已知平面α的一个法向量10,,2n ⎛=- ⎝,A α∈,P α∉,且122PA ⎛=- ⎝,则直线PA 与平面α所成的角为______. 【答案】π3【解析】设直线PA 与平面α所成的角为θ,则s 0in cos n PA n PAθθ===⋅=⋅, ∴直线PA 与平面α所成的角为π3.故答案为:π3.15.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =________. 【答案】60︒【解析】由条件,知0CA AB ⋅=,0AB BD ⋅=,CD CA AB BD =++.2222222CD CA AB BD CAAB AB BD CA BD=+++⋅+⋅+⋅(2222648268cos ,CA BD =+++⨯⨯=.∴1cos ,2CA BD =-,又∵0,180CA BD ︒≤≤︒,∴,120CABD =︒,∴二面角的大小为60︒. 故答案为:60︒.16.如图,棱长为3的正方体的顶点A 在平面α上,三条棱,,AB AC AD 都在平面α的同侧,若顶点,B C 到平面α,则顶点D 到平面α的距离是______.【解析】如图,以O 为坐标原点,建立空间直角坐标系, 则(0,0,0),(3,0,0),(0,3,0),(3,3,0),(3,3,3)O C B A D , 所以(3,0,0),(0,3,0),(0,0,3)BA CA AD ===, 设平面α的一个法向量为(,,)n x y z =, 则点B 到平面α距离为12||||BA n d n x ⋅===点C 到平面α距离为12||||CA n d n x ⋅===由①②可得||||,|||y x zx==, 所以D 到平面α的距离为2|||||AD n n x x ⋅===故答案为四、解答题(17题10分,其余题目12分每题,共70分) 17.如图,2BC =,原点O 是BC的中点,点A 的坐标为(2,12,0),点D 在平面yOz 上,且90BDC ∠=︒,30DCB ∠=︒.(1)求向量CD 的坐标.(2)求AD 与BC 的夹角的余弦值.【答案】(1)3(0,2-;(2).【解析】(1)过D 作DE BC ⊥于E ,则sin302DE CD =⋅︒=,11cos60122OE OB BD =-︒=-=,所以D 的坐标为1(0,2D -,又因为(0,1,0)C ,所以3(0,2CD =-.(2)依题设有A 点坐标为1,0)2A ,所以(2AD =--,(0,2,0)BC =,则AD 与BC 的夹角的余弦值为·cos ,·AD BC AD BC AD BC==-.18.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ︒∠=∠=.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值. 【答案】(1)1BC a c b =+-;12BC =(2【解析】(1)1111111111BC BB BC BB AC A B AA AC AB a c b =+=+-=+-=+-, 因为11||||cos 11cos602a b a b BAA ︒⋅=⋅∠=⨯⨯=,同理可得12a cbc ⋅=⋅=,所以22221()2221111BC a c b a c b a c a b c b =+-=+++⋅-⋅-⋅=+++-=.(2)因为1AB a b =+,所以2221()2111AB a b a b a b =+=++⋅=++=因为2211()1111111222)2(AB BC a b a c b a a ca b b a c b b ⋅=+⋅+-=+⋅+-⋅+⋅+⋅=+-+=--,所以111111cos ,62AB BC AB BC AB BC ⋅<>===所以异面直线1AB 与1BC 所成角的余弦值为619.如图所示,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点.(1)求证:NM ∥平面11A ADD ; (2)求证:NM ⊥平面11A B M .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点,(0M ∴,1,1),(1N ,1,0),(1=MN ,0,1)-,平面11A ADD 的法向量可设为(0n =,1,0),∴0=MN n ,MN ⊂/平面11A ADD ,MN ∴平面11A ADD .(2)1(1A ,0,2),1(1B ,2,2),11(0A B =,2,0),1(1A M =-,1,1)-, 11·0MN AB ∴=,1·0MN AM =, 11MN A B ∴⊥,1MN A M ⊥, 1111A B A M A ⋂=,NM ∴⊥平面11A B M .20.如图,在直棱柱1111ABCD A B C D -中,//AD BC ,90BAD ∠=︒,AC BD ⊥,1BC =,14A D A A ==.(1)证明:面1ACD ⊥面1BB D ; (2)求二面角11B AC D --的余弦值.【答案】(1)证明见解析;(2)63. 【解析】(1)证明:1BB ⊥平面ABCD ,AC ⊂平面ABCD ,∴1AC BB ⊥. 又∵AC BD ⊥,且1BB BD B ⋂=,1,BD BB ⊂平面1BB D , ∴AC ⊥平面1BB D . 又∵AC ⊂平面1ACD , ∴面1ACD ⊥面1BB D .(2)易知AB 、AD 、1AA 两两垂直,以A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 轴、y 轴、z 轴建立如图的空间直角坐标系,设AB t =,则相关各点的坐标为()0,0,0A ,(),0,0B t ,()1,0,4B t ,(),1,0C t , ()1,1,4C t ,()0,4,0D ,()10,4,4D .从而(),1,0AC t =,(),4,0BD t =-. ∵AC BD ⊥,∴2400AC BD t ⋅=-++= 解之得2t =或2t =-(舍去).()10,4,4AD =,()2,1,0AC =设()1,,n x y z =是平面1ACD 的一个法向量, 则11100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即20440x y y z +=⎧⎨+=⎩令1x =,则()11,2,2n =-.同理可求面1ACB 的法向量为()22,4,1n =-.∴12122cos 63||||3n n n n θ⋅-===⋅.又∵二面角11B AC D --是锐二面角, ∴二面角11B AC D --21.如图,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB DC ,E 为线段PD 的中点,已知2PA AB AD CD ====,120PAD ∠=︒.(1)证明:直线//PB 平面ACE ;(2)求直线PB 与平面PCD 所成角的正弦值.【答案】(1)证明见解析;(2【解析】(1)证明:连接BD 交AC 于点H ,连接HE//AB DC ,AB CD =,四边形ABCD 是平行四边形,H ∴是AC 中点,又E 为线段PD 的中点,//B HE P ,又HE ⊂平面ACE ,PB ⊄平面ACE∴ 直线//PB 平面ACE(2)AB ⊥平面PAD ,作Ax AP ⊥,建立如图所示空间直角坐标系A xyz -由已知2PA AB AD CD ====,120PAD ∠=︒ 得(0,0,2)B ,(0,2,0)P,1,0)D -,1,2)C -(0,2,2)PB =-- , (3,3,0)PD =- (0,0,2)CD =-设平面PCD 的法向量(,,)n x y z =·0·0n CD n PD ⎧=⎨=⎩ , 200Z y -=⎧⎪-=,不妨取(1,3,0)n =2cos ,422PB n PBn PB n-∴<>===⨯所以直线PB 与平面PCD 所成角的正弦值为422.如图,已知梯形ABCD 中,//AD BC ,90DAB ∠=︒,22AB BC AD ===,四边形EDCF 为矩形,2DE =,平面EDCF ⊥平面ABCD . (1)求证://DF 平面ABE ;(2)求平面ABE与平面BEF 所成二面角的正弦值;(3)若点P 在线段EF 上,且直线AP 与平面BEF ,求线段AP 的长.【答案】(1)证明见解析;(2;(3)3【解析】(1)证明:四边形EDCF 为矩形,DE CD ∴⊥,又平面EDCF ⊥平面ABCD ,平面EDCF⋂平面ABCD CD =,ED ∴⊥平面ABCD .取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立空间直角坐标系, 如图,则(1A ,0,0),(1B ,2,0),(1C -,2,0),(0E ,0,2),(1F -,2,2), 设平面ABE 的法向量(,,)m x y z =,(1,2,2)BE =--,(0,2,0)AB =,由·220·20m BE x y z m AB y ⎧=--+=⎨==⎩,取1z =,得(2,0,1)m =,又(1,2,2)DF =-,∴2020DF m =-++=,则DF m ⊥, 又DF ⊂/平面ABE ,//DF ∴平面ABE ;(2)解:设平面BEF 的法向量111(,,)n x y z =,(1,2,2)BE =--,(1,2,0)EF =-,由11111·220·20n BE x y z n EF x y ⎧=--+=⎪⎨=-+=⎪⎩,取11y =,可得(2,1,2)n =,42cos ,||||35m n m n m n +∴<>===,5sin ,5m n ∴<>=, 即平面ABE 与平面BEF ;(3)解:点P 在线段EF 上,设EP EF λ=,[0λ∈,1],∴(1AP AE EF λ=+=-,0,2)(1λ+-,2,0)(1λ=--,2λ,2),又平面BEF 的法向量(2,1,2)n =,设直线AP 与平面BEF 所成角为θ,∴|||2(1sin |cos ,|||||3(AP n AP n AP n θλ-=<>===-,24518110λλ∴+-=,即(31)(1511)0λλ-+=,[0λ∈,1],∴13λ=.∴4(3AP =-,23,2),则||(AP =-,AP ∴.《第一章 空间向量与立体几何》单元检测试卷(二)一、选择题1.在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )323向量()()(,1,1,b 1,,1,c 2,4,2a x y ===-且,//c a c b ⊥,则b a +=( )3.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )4.空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( )5.(多选题)在四面体P ABC -中,以上说法正确的有( ).若1233AD AC AB =+,则可知3BC BD = 的重心,则111333PQ PA PB PC =++C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=1MN = 6.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥二、填空题7.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,则直线1D E 与1A D 所成角的大小是__________,若1D E EC ⊥,则AE =__________.8.已知四棱柱1111ABCD A B C D -的底面是边长为2的正方形,侧棱与底面垂直.若点C 到9.在正方体1111ABCD A B C D -中,E ,F 分别为线段11A B ,AB 的中点,O 为四棱锥11E C D DC -的外接球的球心,点M ,N 分别是直线1DD ,EF 上的动点,记直线OC 与MN 所成的角为θ,则当θ最小时,tan θ=__________.10.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点.给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定题序号都填上)三、解答题, ,为的中点,为的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题: (1)证明:直线;(2)求异面直线AB 与MD 所成角的大小; (3)求点B 到平面OCD 的距离.为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;答案解析一、选择题1.在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )A .1223EF AC AB AD →→→→=+-B .112223EF AC AB AD →→→→=--+OA ABCD ⊥底面2OA =M OA N BC MN OCD平面‖C .112223EF AC AB AD →→→→=-+D .112223EF AC AB AD →→→→=-+-【答案】B【解析】在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,所以EF EB BA AF →→→→=++1223AB AC AB AD →→→→⎛⎫=--+ ⎪⎝⎭112223AC AB AD →→→=--+,即112223EF AC AB AD →→→→=--+.故选:B.2.设,x y R ∈,向量()()(),1,1,b 1,,1,c 2,4,2,a x y ===-且,//c a c b ⊥,则b a +=( )A .BC .3D .4【答案】D 【解析】(),241,2,1,21b c y y b ∴=-⨯∴=-∴=-,,,a b ⊥()214+20,a b x ∴⋅=+⋅-=1x ∴=,()()1,112,1,2a a b ∴=∴+=-,(223a b ∴+=+=,故选C. 3.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A B .2C .3λ D 【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1), 1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则1·20·20n ED x z n EF y ⎧=-+=⎨==⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=255EM nn==,N 为EM 中点,所以N 到该面的距,选D .4.空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( ) A .2γβα≤≤B .2γβα≤≤ C .2γαβ≤≤D .2γαβ≤≤【答案】A【解析】因为空间线段AC AB ⊥,BD AB ⊥,所以可将其放在矩形中进行研究,如图,绘出一个矩形,并以A 点为原点构建空间直角坐标系:因为::1:3:1AC AB BD =,所以可设AC x =,3AB x =,BD x =,则()0,0,0A ,0,3,0B x ,0,0,C x ,,3,0D x x ,,3,CD x x x ,0,3,0AB x ,0,3,CBx x ,故CD 与AB 所成的角α的余弦值229311cos α11113CD AB x CD ABx x, 因为根据矩形的性质易知平面ABD ⊥平面ABC ,BD ⊥平面ABC ,所以二面角C ABD --的平面角为γ90,γ452,γ2cos22,所以BCD ∠即CD 与面ABC 所成的角β,故110cos β11CD CB CD CB,因为311211112,所以2γβα≤≤,故选:A.5.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为ABC ∆的重心,则111333PQ PA PB PC =++C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若四面体P ABC -各棱长都为2,M ,N 分别为PA ,BC 的中点,则1MN = 【答案】ABC【解析】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- ,2BD DC ∴=,3BD BD DC ∴=+即3BD BC =,故A 正确;对于B ,若Q 为ABC ∆的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=,3PQ PA PB PC ∴=++即111333PQ PA PB PC =++,故B 正确;对于C ,若0PA BC ⋅=,0PC AB ⋅=,则PA BC PC AB ⋅=⋅,0PA BC PC AB ∴⋅+⋅=,()0PA BC PC AC CB ∴⋅+⋅+= 0PA BC PC AC PC CB ∴⋅+⋅+⋅=,0PA BC PC AC PC BC ∴⋅+⋅-⋅=()0PA PC BC PC AC ∴-⋅+⋅=,0CA BC PC AC ∴⋅+⋅=0AC CB PC AC ∴⋅+⋅=,()0AC CB PC ∴⋅+=0AC PB ∴⋅=故C 正确;对于D ,()()111222MN PN PM PB PC PA PB PC PA =-=+-=+-12MN PA PB PC ∴=--,222222PA PB PC PA PB PC PA PB PA PC PB PC --=++-⋅-⋅+⋅===2MN ∴=,故D 错误.故选:ABC6.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90︒时,PC =D .存在某个位置,使得B 到平面PDC 【答案】BC 【解析】如图所示:对A ,取BD 的中点O ,连结OP ,OC ,则当60POC ∠=时,PC 与平面BCD 所成的最大角为60︒,故A 错误;对B ,当PD PC =时,取CD 的中点N ,可得,,CD PN CD BN ⊥⊥所以CD ⊥平面PBN ,所以PB CD ⊥,故B 正确;对C ,当二面角P BD C --的大小为90时,所以90∠=POC ,所以PO OC ==所以PC =故C 正确;对D ,因为BN =所以如果B 到平面PDC ,则BN ⊥平面PCD ,则2,1,1PB BN PN DN ====,所以PD =D 错误;故选:BC.二、填空题7.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,则直线1D E 与1A D 所成角的大小是__________,若1D E EC ⊥,则AE =__________.【答案】90; 1【解析】长方体ABCD ﹣A 1B 1C 1D 1中以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,又11AD AA ==,2AB =,点E 在棱AB 上移动则D (0,0,0),D 1(0,0,1),A (1,0,0),A 1(1,0,1),C (0,2,0), 设E (1,m ,0),0≤m≤2,则1D E =(1,m ,﹣1),1A D =(﹣1,0,﹣1), ∴1D E •1A D =﹣1+0+1=0,∴直线D 1E 与A 1D 所成角的大小是90°. ∵1D E =(1,m ,﹣1),EC =(﹣1,2﹣m ,0),D 1E ⊥EC ,∴1D EEC =﹣1+m (2﹣m )+0=0,解得m=1,∴AE=1.故答案为900,1.8.已知四棱柱1111ABCD A B C D -的底面是边长为2的正方形,侧棱与底面垂直.若点C 到平面11AB D,则直线1B D 与平面11AB D 所成角的余弦值为______.【解析】如图,连接11A C 交11B D 于O 点,过点C 作CH AO ⊥于H ,则CH ⊥平面11AB D ,则CH =,设1AA a =,则AO CO ==AC =得1122AOC S AO CH AC ∆=⨯⨯=⨯a =以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -.则(A ,()12,0,0B ,()10,2,0D,(D ,(10,2,AD =-,(12,0,AB =-,(1B D =-,设平面11AB D 的法向量为(),,n x y z =,则1100n AD n AB ⎧⋅=⎪⎨⋅=⎪⎩,即20220y x ⎧-=⎪⎨-=⎪⎩,令x,得()2,2,1n =.11110cos ,10B D n B D n B D n⋅==1B D 与平面1111D C B A所成的角的余弦值为.9.在正方体1111ABCD A B C D -中,E ,F 分别为线段11A B ,AB 的中点,O 为四棱锥11E C D DC -的外接球的球心,点M ,N 分别是直线1DD ,EF 上的动点,记直线OC 与MN 所成的角为θ,则当θ最小时,tan θ=__________. 【答案】42【解析】如图,设,P Q 分别为棱CD 和11C D 的中点,则四棱锥11E C D DC -的外接球即为三棱柱11DFC D EC -的外接球,因为三棱柱11DFC D EC -为直三棱柱,所以其外接球球心O 为上、下底面三角形外心G 和H 连线的中点,由题意,MN 是平面1DD EF 内的一条动直线,所以θ最小是直线OC 与平面1DD EF 所成角,即问题转化为求直线OC 与平面1DD EF 所成角的正切值,不妨设正方体的棱长为2,2EQ =,1ED =,因为11EC D △为等腰三角形,所以11EC D △外接圆的直径为11152sin 2ED GE EC D ===∠,则54GE =,从而53244GQ PH =-==,如图,以D 为原点,以1,,DA DC DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系D xyz -,则()0,0,0D ,()10,0,2D ,()0,2,0C ,()2,1,0F ,3,1,14O ⎛⎫⎪⎝⎭,()10,0,2DD ∴=,()2,1,0DF =,设平面1DD EF 的一个法向量为(),,n x y z =,则12020n DD z n DF x y ⎧⋅==⎨⋅=+=⎩,令1x =,则()1,2,0n =-,因为3,1,14OC ⎛⎫=-- ⎪⎝⎭,所以sin cos ,n OC θ===10.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点.给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为其中正确命题的序号是__________.(将你认为正确的命题序号都填上)【答案】①③④【解析】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则()0,0,1P ,()1,0,0B ,()1,2,0C ,()0,,0E y ,则()1,0,1BP =-,()1,2,0CE y =--,cos ,2BP CE BP CE BP CE⋅==≤⋅2y =时等号成立, 此时,4BP CE π=,故直线PB 与直线CE 所成的角中最小的角为45,①正确;()()1,,01,2,121BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点,1111112323226BCE E BCO OBCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D , 则''CE PE C E PE PC +=+≥=='PEC 共线时等号成立,④正确.故答案为:①③④.三、解答题11.如图,在四棱锥中,底面是边长为1的菱形,,, ,为的中点,为的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题: (1)证明:直线;(2)求异面直线AB 与MD 所成角的大小;O ABCD -ABCD 4ABC π∠=OA ABCD ⊥底面2OA =M OA N BC MN OCD平面‖(3)求点B 到平面OCD 的距离.【解析】作于点P,如图,分别以AB,AP,AO 所在直线为轴建立坐标系, (1)设平面OCD 的法向量为,则即 取解得(2)设与所成的角为, , 与所成角的大小为(3)设点B 到平面OCD 的距离为,则为在向量上的投影的绝对值,AP CD ⊥,,x yz (0,0,0),(1,0,0),(0,((0,0,2),(0,0,1),(122244A B P D O M N -2222(1,,1),(0,,2),(2)44222MN OP OD =--=-=--(,,)n x y z =0,0n OP n OD ==2022022y z x y z -=⎪⎪⎨⎪-+-=⎪⎩z =(0,4,2)n =22(1,,1)(0,4,2)044MN n =--=∵MN OCD ∴平面‖AB MD θ(1,0,0),(1)2AB MD ==--∵1cos ,23AB MDAB MD πθθ===⋅∴∴AB MD 3πd d OB (0,4,2)n =由 , 得.所以点B 到平面OCD 的距离为12.在三棱锥A —BCD 中,已知,BD=2,O 为BD 的中点,AO ⊥平面BCD ,AO=2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF=14BC ,设二面角F —DE —C 的大小为θ,求sinθ的值. 【解析】(1)连,CO BC CD BO OD CO BD ==∴⊥以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -∴(1,0,2),(1,1,1)cos ,15AB DE AB DE ∴=-=∴<>==- 从而直线AB 与DE 所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z =(1,0,2)OB =-23OB n d n⋅==2311200(1,2,0),00x y n DC DC x y z n DE ⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩令112,1(2,1,1)y x z n =∴=-=∴=- 设平面DEF 一个法向量为2111(,,),n x y z =11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩令111272,5(2,7,5)yx z n =-∴==∴=-12cos ,n n ∴<>==,因此sin 13θ==.《第一章 空间向量与立体几何》单元检测试卷(三)一、单选题1.空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( ) A .平行 B .垂直 C .相交但不垂直D .无法确定2.如图,在平行六面体中,为与的交点若,,,则下列向量中与相等的向量是( )111ABCD A B C D -M AC BD 11A B a =11A D b =1A A c =1B MA .B .C .D . 3.已知向量,.若向量与向量平行,则实数的值是( ) A .2B .C .10D .4.如图,已知正方体ABCD ﹣A'B'C'D'中,E 是CC'的中点,,,,x y z ,则( )A .x =1,y =2,z =3B .x ,y =1,z =1C .x =1,y =2,z =2D .x ,y =1,z5.正方体不在同一侧面上的两顶点,,则正方体外接球体积是( ) A .B .C .D .6.已知,若点D 是AC 中点,则( ) A .2B .C .-3D .67.平行六面体中,,则实数x ,y ,z 的值分别为( ) A . B .C .D .8.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为( )1122a b c -++1122a b c ++1122a b c -+1122a b c --+()0,1,1a =()1,2,1b =-a b +()2,,4c m =--m2-10-1'2a AA =12b AB =13c AD =AE =a +b +c 12=12=32=(1,2,1)A--(1,0,1)B323π4π(1,2,3),OA =(2,2,1),OB =-(1,1,2)OC =BC OD ⋅=32-1111ABCD A B C D -12,AM MC =1AM xAB yAD zAA =++1,32,3232,31,3232,32,3132,31,223111ABC A B C -1160BAA CAA ︒∠=∠=1AB 1BCABCD .9.如图,在三棱柱中,底面,,,则与平面所成角的大小为A .B .C .D .10.在一直角坐标系中,已知,现沿轴将坐标平面折成的二面角,则折叠后两点间的距离为( )A .BCD .二、多选题11.已知点P 是平行四边形ABCD 所在的平面外一点,如果,,,下列结论正确的有( )A .B .C .是平面ABCD 的一个法向量D .12.在正方体中,,分别是和的中点,则下列结论正确的是( )6111ABC A B C -1AA ⊥ABC 13AA =2AB AC BC ===1AA 11AB C 3045︒60︒90︒(1,6),(3,8)A B --x 60︒,A B ()2,4,1AB =--()4,2,0AD =()1,2,1AP =--AP AB ⊥⊥AP AD AP //AP BD 1111ABCD A B C D -E F 11A D 11C DA .平面B .平面C .D .点与点到平面的距离相等 13.在正三棱柱中,所有棱长为1,又与交于点,则( )A .=B .C .三棱锥的体积为D .与平面BB′C′C 所成的角为三、填空题14.已知向量2,,x ,,且,则x 的值为______. 15.若向量,,且与的夹角为钝角,则实数的取值范围为________.16.如图所示,在正方体中,M 为棱的中点,则异面线与AM 所成角的余弦值为________.17.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.11//A C CEF 1B D ⊥CEF 112DA DD C DC E =+-D 1B CEF ABC A B C '''-BC 'B C 'O AO 111222AB AC AA '++AO B C '⊥A BB O '-24AO π6(3,a =-5)(1,b =1)-8a b ⋅=(2,1,2)a =-(4,2,)b m =-a b m 1111ABCD A B C D -1CC 1BD ABCD ADPQ ,,M E F ,,PQ AB BC ME ABCD EMAF四、解答题18.如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值; (2)求直线AE 和平面OBC 的所成角.19.如图,在长方体中,,,点、分别为、的中点.(1)证明:平面; (2)求二面角的余弦值.20.如下图所示,在四棱锥中,底面四边形,四边形是直角梯形,且,,点是棱的中点,是上的点,且.O ABC -OA OB OC ,,1OA =2OB OC ==EOC BEAC S OABC -SO ⊥OABC OABC 90COA OAB ∠=∠=︒1,4OA OS AB OC ====M SB N OC :1:3ON NC =(1)求异面直线与所成的角的余弦值; (2)求与平面所成的角的正弦值.21.如图,在正方体中,分别是的中点。

空间向量与立体几何基础测试题

空间向量与立体几何基础测试题

空间向量与立体几何基础测试题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章:空间向量与立体几何专题复习1. 直三棱柱ABC —A 1B 1C 1中,若====B A C CC b CB a CA 11,,,则( ) A .c b a -+B .c b a +-C .c b a ++-D .c b a -+-2.在空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则21AB +→--(→--BD +→--BC )等于 ( )A 、→--ADB 、→--GAC 、→--AGD 、→--MG 4.对空间任意两个向量b a o b b a //),(,≠的充要条件是( )A .b a =B .b a -=C .a b λ=D .b a λ=2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角,〈〉a b 为 ( )(A )30° (B )45° (C )60° (D )以上都不对6.已知线段AB 、BC 都在平面α内,BC ⊥AB,线段DA ⊥α,若AB=1,BC=2,CD=3,则DA= . 6. 已知b a ,是空间二向量,若b a b a b a 与则,7||,2||,3||=-==的夹角为7.已知 b a ,c 两两之间的夹角都是︒60且1||=a ,1||=b ,1||=c 则2)2(c b a +-=1. 已知向量(0,2,1)=a ,(1,1,2)=--b ,则a 与b 的夹角为 ( ) (A )0° (B )45° (C )90° (D )180°3.设|m |=1,|n |=2,2m +n 与m -3n 垂直,a =4m -n ,b =7m +2n ,则,〈〉a b =4. 已知→-a =(3,-3,-1),→-b =(2,0,3),→-c =(0,0,2),求→-a ·(→-b +→-c )=__________。

(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。

(常考题)人教版高中数学选修一第一单元《空间向量与立体几何》测试(答案解析)(3)

一、选择题1.已知正三棱锥P ABC -的侧面PAB 上动点Q 的轨迹是以P 为焦点,AB 为准线的抛物线,若点Q 到底面ABC 的距离为d ,且2PQ d =,点H 为棱PC 的中点,则直线BH 与AC 所成角的余弦值为( ) A .8585 B .21 C .38585 D .321 2.已知在平行六面体中,3,4,5,120,60,60ABCD A B C D AB AD AA BAD BAA DAA '''''''-===∠=︒∠=︒∠=︒,则AC '的长为( )A .52B .9C .85D .73 3.在一直角坐标系中,已知(1,6),(3,8)A B --,现沿x 轴将坐标平面折成60︒的二面角,则折叠后,A B 两点间的距离为( )A .241B .41C .17D .217 4.在三棱锥P ABC -中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,2PA AC ==,3AB =.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为( )A .1111B .21111C .31111D .411115.ABC 中,90ACB ∠=︒,22AB BC ==,将ABC 绕BC 旋转得PBC ,当直线PC 与平面PAB 所成角正弦值为66时,P 、A 两点间的距离为( )A 2B .2C .42D .4 6.已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN →→⋅的取值范围为( )A .[]0,4B .[]0,2C .[]1,4D .[]1,2 7.已知二面角l αβ--的两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=,则二面角l αβ--的大小为( )A .6πB .56πC .6π或56πD .6π或3π 8.如图,在三棱柱11ABC A B C -中,底面ABC 为正三角形,侧棱垂直于底面,14,6AB AA ==.若E 是棱1BB 的中点,则异面直线1A E 与1AC 所成角的余弦值为( )A .13B .21313C .31313D .13 9.如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( )A .111333OA OB OC ++ B .111234OA OB OC ++ C .111244OA OB OC ++ D .111446OA OB OC ++ 10.正方形ABCD 沿对角线BD 折成直二面角,下列结论:①AD 与BC 所成的角为60︒:②AC 与BD 所成的角为90︒:③BC 与面ACD 所成角的正弦值为63:④二面角A BC D --2:其中正确结论的个数为( )A .4B .3C .2D .1 11.已知在四面体ABCD 中,点M 是棱BC 上的点,且3BM MC =,点N 是棱AD 的中点,若MN x AB y AC z AD =++其中,,x y z 为实数,则x y z ++的值是( )A .12B .12-C .-2D .212.以下四个命题中正确的是( )A .空间的任何一个向量都可用其他三个向量表示B .若{},,a b c 为空间向量的一组基底,则{},,a b b c c a +++构成空间向量的另一组基底 C .ABC ∆为直角三角形的充要条件是0AB AC ⋅=D .任何三个不共线的向量都可构成空间向量的一个基底13.如图,在所有棱长均为 a 的直三棱柱 ABC —A 1B 1C 1 中,D ,E 分别为 BB 1,A 1C 1 的中点,则异面直线 AD ,CE 所成角的余弦值为( )A .12B .32C .15D .45二、填空题14.在三棱锥P -ABC 中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,2PA AC ==,3AB =.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为________. 15.正四面体ABCD 的棱长为a ,点E 、F 分别是BC 、AD 的中点,则AE AF ⋅的值为_____________.16.如图,已知平面α⊥平面β,l αβ=,∈A l ,B l ∈,AC α⊂,BD β⊂,AC l ⊥,BD l ⊥,且4AB =,3AC =,12BD =,则CD =_________________.17.设空间任意一点O 和不共线三点A B C ,,,且点P 满足向量关系OP xOA yOB zOC =++,若,,,P A B C 四点共面,则x y z ++=______.18.设E ,F 是正方体1AC 的棱AB 和11D C 的中点,在正方体的12条面对角线中,与截面1A ECF 成60︒角的对角线的数目是______.19.若(2,3,1)a =-,(2,0,3)b =,(0,2,2)c =,则()a b c ⋅+=_____20.在空间直角坐标系O xyz -中,已知(1,0,2)A -,(0,1,1)B -,点,C D 分别在x 轴,y 轴上,且AD BC ⊥,那么CD →的最小值是______.21.已知()()1,1,0,1,0,2a b ==-,且ka b +与2a b -的夹角为钝角,则实数k 的取值范围为_____.22.如图,在四棱锥P ABCD -中,底面ABCD 是底边为1的菱形,60BAD ∠=,2PB =,PA PD =,当直线PB 与底面ABCD 所成角为30时,二面角P CD A --的正弦值为______.23.已知非零向量n b 、及平面α,向量n 是平面α的一个法向量,则0n b ⋅=是“向量b 所在直线在平面α内”的____________条件.24.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.25.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,122AA AB AC ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成(锐)二面角为3π,当1B M 最小时,AMB ∠=__________.26.在平行六面体1111ABCD A B C D -中,已知1160BAD A AB A AD ∠=∠=∠=︒,14,3,5AD AB AA ===,1AC =__.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】建立空间直角坐标系,用向量法求直线BH 与AC 所成角的余弦值【详解】设△ABC 的中心为O ,如图示:以OA 为x 轴,过O 平行于BC 的Oy 为y 轴,OP 为z 轴建立空间直角坐标系,不妨设|BC |=2,则有:()23330,0,0,,,1,0,,1,0333O A B C ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭过Q 作QD ⊥底面ABC 于D ,QE ⊥AB 于E ,由抛物线的定义知:|QE |=|PD |=2d ,|QD |=d . 在Rt △QDE 中,∠QDE =90°,所以°s 1in ,302QD QDE QDE QE ∠==∴∠=, 即侧面于底面所成的二面角为30°.设()0,0,P z 则有31333z ==, 所以()311331,,,,,3,1,0,626626H BH AC ⎛⎫⎛⎫--=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 设直线BH 与AC 所成角为θ,则||cos |cos ,|||||BH AC BH AC BH AC θ==⨯ (()()()()22222233|310|331310626⎛⎫+-⨯-+ ⎪⎝⎭=⎛⎫⎛⎫⎛⎫+-+⨯-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 38585= 即直线BH 与AC 所成角的余弦值为38585故选:C【点睛】向量法解决立体几何问题的关键:(1)建立合适的坐标系;(2)把要用到的向量正确表示;(3)利用向量法证明或计算.2.D解析:D【分析】直接利用AC AB BC CC AB AD AA '''=++=++,然后利用平面向量的数量积进行计算.【详解】如图,可得AC AB BC CC AB AD AA '''=++=++,故22||()AC AB AD AA ''=++222=|||||2()+|AB AD AA AB AD AB AA AD AA '''++⋅+⋅+⋅222111345234-+35+45222⎡⎤⎛⎫=+++⨯⨯⨯⨯⨯⨯ ⎪⎢⎥⎝⎭⎣⎦ =73. ∴=73AC '故选:D.【点睛】本题考查了几何体的对角线长的求解,根据已知条件,构造向量,将几何体的对角线长的求解转化为向量模的运算,是解答本题的关键,属于中档题.3.D解析:D【分析】画出图形,作,AC CD BD CD ⊥⊥,则6,8,4AC BD CD ===,可得0,0AC CD BD CD ⋅=⋅=,沿x 轴将坐标平面折成60︒的二面角,故两异面直线,CA DB 所成的角为60︒,结合已知,即可求得答案.【详解】如图为折叠后的图形,其中作,AC CD BD CD ⊥⊥则6,8,4AC BD CD ===,∴0,0AC CD BD CD ⋅=⋅=沿x 轴将坐标平面折成60︒的二面角∴两异面直线,CA DB 所成的角为60︒. 可得:.cos6024CA DB CA DB ︒⋅=⋅= 故由AB AC CD DB =++得22||||AB AC CD DB =++ 2222+22AC CD DB AC CD CD DB AC DB +++⋅⋅+⋅= 2222+22AC CD DB AC CD CD DB CA DB +++⋅⋅-⋅= 36166448=++-68=||17AB ∴=故选:D.【点睛】本题考查了立体几何体中求线段长度,解题的关键是作图和掌握空间向量的距离求解公式,考查了分析能力和空间想象能力,属于中档题.4.C解析:C【分析】首先利用线面角的定义,可知当D 为PC 的中点时,AD 取得最小值,此时BD 与平面PAC 所成角最大,再以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,利用向量坐标法求线面角的正弦值.【详解】,AB AC AB PA ⊥⊥,且PA AC A =,AB ∴⊥平面PAC ,易证AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,3tan AB ADB AD AD∠==, 当AD 取得最小值时,ADB ∠取得最大值在等腰Rt PAC ∆中,当D 为PC 的中点时,AD 取得最小值.以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(0,2,0)C ,(0,0,2)P ,(0,1,1)D ,则(0,1,1)AD =,(0,2,2)PC =-,(3,2,0)BC =-设平面PBC 的法向量为(,,)n x y z =,则0n PC n BC ⋅=⋅=,即220320y z x y -=⎧⎨-+=⎩令3y =,得(2,3,3)n =. 因为311cos ,11222n AD 〈〉==⨯,所以AD 与平面PBC 311. 故选:C【点睛】关键点点睛:本题重点考查线面角,既考查了几何法求线面角,又考查向量法求线面角,本题关键是确定点D 的位置,首先利用线面角的定义确定点D 的位置,再利用向量法求线面角. 5.B解析:B【分析】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由题意得到∠CPE 就是直线PC 与平面PAB 所成角,利用直线PC 与平面PAB 所成角的正弦值为66PC 3CE ,再求出CD ,可得PD ,即可得出结论. 【详解】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由已知得BC ⊥CA , BC ⊥CP , CA CP C =,则BC ⊥平面PAC , 得到BC ⊥PA ,CD BC C ⋂=,可得PA ⊥平面BCD ,又PA ⊂平面PAC ∴平面BCD ⊥平面PBA ,平面BCD 平面PBA =BD ,由两个平面互相垂直的性质可知:CE ⊥平面PBA ,∴∠CPE 就是直线PC 与平面PAB 所成角,∵直线PC 与平面PAB 所成角的正弦值为6,PC =AC =3, ∴CE =622PC =, 设CD =x ,则BD =21x +,21121122x x ∴⋅⋅=⋅+⋅ , ∴x =1,∵PC =3,∴PD =2,∴PA =2PD =22.故选:B .【点睛】本题考查直线与平面所成角的求法,考查空间想象能力和分析推理能力以及计算能力,属于中档题.6.B解析:B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO →-,根据正方体的特点可确定PO →的最大值和最小值,代入即可得到所求范围.【详解】设正方体内切球的球心为O ,则1OM ON ==,2PM PN PO OM PO ON PO PO OM ON OM ON →→→→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, MN 为球O 的直径,0OM ON →→∴+=,1OM ON →→⋅=-,21PM PN PO →→→∴⋅=-, 又P 在正方体表面上移动,∴当P 为正方体顶点时,PO →3P 为内切球与正方体的切点时,PO →最小,最小值为1,[]210,2PO →∴-∈,即PM PN →→⋅的取值范围为[]0,2. 故选:B .【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.7.C解析:C【分析】由于方向量的方向性,平面的法向量有正向量或负向量;当a 、b 为异号向量,二面角为π减去两法向量夹角;当a 、b 为同号向量,二面角即为两法向量的夹角,由此即可求得二面角l αβ--【详解】两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=由于向量的方向性,法向量与平面有两种情况当a 、b 为异号向量,如下图示:,a b 6π<>=∴有二面角l αβ--为56π 当a 、b 为同号向量,如下图示:,a b 6π<>=∴有二面角l αβ--为6π 综上,有二面角l αβ--为6π或56π 故选:C本题考查了二面角与平面法向量夹角的关系,依据法向量的夹角判断平面所成二面角的大小,注意法向量的方向性,讨论在不同情况下二面角的大小8.A解析:A【分析】以{},,a b c 为基底表示出11,A E AC ,利用向量夹角公式计算出异面直线1A E 与1AC 所成角的余弦值.【详解】设1,,AB a AC b AA c===,则{},,a b c 构成空间的一个基底, 111112A E AB B E a c =+=-, 11AC AC CC b c =+=+, 111111cos ,||||A E AC A E AC A E AC ⋅〈〉=⋅1()21||2a cbc a c b c ⎛⎫-⋅+ ⎪⎝⎭=-⋅+ ()222112212a b b c a c c a c b c ⋅-⋅+⋅-=⎛⎫-⋅+ ⎪22222144cos 600062124a a c c b b c c ⨯⨯︒-+-⨯=-⋅+⋅+⋅+===. 所以异面直线1A E 与1AC . 故选:A【点睛】本小题主要考查异面直线所成角的求法,属于中档题.9.C解析:C【分析】因为在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,12OE OA AD =+,即可求得答案.在四面体OABC 中,D 是BC 的中点,G 是AD 的中点 ∴12OG OA AD =+ 11()22OA AB AC =+⨯+ 1()4OA OB OA OC OA =+⨯-+- 111244OA OB OC =++ 故选:C.【点睛】本题主要考查了向量的线性运算,解题关键是掌握向量基础知识和数形结合,考查了分析能力和空间想象能力,属于基础题.10.A解析:A【分析】取BD 中点O ,连结AO ,CO ,以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法和空间中线线、线面、面面间的位置关系逐一判断四个命题得结论.【详解】解:取BD 中点O ,连结AO ,CO ,∵正方形ABCD 沿对角线BD 折成直二面角,∴以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系, 设1OC =,则()0,0,1A ,()0,1,0B -,()1,0,0C ,()0,1,0D ,()0,1,1AD =-,()1,1,0BC =, 1cos 22AD BCAD BC AD BC ⋅⋅===⋅, ∴异面直线AB 与CD 所成的角为60︒,故①正确: ()1,0,1AC =-,()0,2,0BD =,∵0AC BD ⋅=,∴AC BD ⊥,故②正确:设平面ACD 的一个法向量为(),,t x y z =, 由00t AC x z t AD y z ⎧⋅=-=⎨⋅=-=⎩,取1z =,得()1,1,1t =,()1,1,0BC =,设BC 与面ACD 所成角为θ,则6sin cos ,32BC t BC t BC t θ⋅====⋅⋅,故③正确: 平面BCD 的法向量()0,0,1n =,()0,1,1BA =,()1,1,0BC =,设平面ABC 的法向量(),,m x y z =,则0m BA y z m BC x y ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1m =-, cos ,3m nm n m n⋅<>==⋅, ∴6sin ,3m n <>=. ∴二面角A BC D --的平面角正切值是:2,故④正确.故选:A.【点睛】本题考查利用空间向量法解决立体几何中的问题,属于综合题.11.B解析:B【分析】利用向量运算得到131442MN AB AC AD =--+得到答案. 【详解】 ()3113142442MN MB BA AN AB AC AB AD AB AC AD =++=--+=--+故12x y z ++=-故选:B【点睛】 本题考查了空间向量的运算,意在考查学生的计算能力.12.B解析:B【分析】根据空间向量基底的定义:任何三个不共面的向量都可构成空间向量的一组基底,逐一分析A ,B ,D 可判断这三个结论的正误;根据向量垂直的充要条件,及直角三角形的几何特征,可判断C 的真假.【详解】对A ,空间的任何一个向量都可用其他三个不共面的向量表示,A 中忽略三个基底不共面的限制,故A 错误;对B ,若{},,a b c 为空间向量的一组基底,则,,a b c 三个向量互不共面;则,,a b b c c a +++,也互不共面,故{,,}a b b c c a +++可又构成空间向量的一组基底,故B 正确;对C ,0AB AC ABC ⋅=⇔∆的A ∠为直角ABC ⇒∆为直角三角形,但ABC ∆为直角三角形时,A ∠可能为锐角,此时0AB AC ⋅>,故C 错误;对D ,任何三个不共面的向量都可构成空间向量的一组基底,三个向量不共线时可能共面,故D 错误;故选:B .【点睛】本题以命题的真假判断为载体考查空间向量的基底概念、向量垂直的充要条件,考查对概念的理解与应用,属基础题.13.C解析:C【分析】取AC 的中点O ,以,,OB OC OE 为,,x y z 轴建立坐标系,求得向量,AD CE 的坐标,利用向量的夹角公式,即可求解.【详解】由题意,取AC 的中点O ,以,,OB OC OE 为,,x y z 轴建立坐标系,则(0,,0),(,0,),(0,,0),(0,0,)2222a a a A D C E a , 则3(,,),(0,,)222a a a AD a CE a ==-,设AD 与CE 成的角为θ ,则222223012222cos 534444a a a a a a a a a a θ⨯-⨯+⨯==++⋅+, 故选:C.【点睛】本题主要考查了空间向量的应用,以及异面直线所成角的求解,其中解答中建立适当的空间直角坐标系,利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题14.【分析】首先可证平面PAC 则BD 与平面PAC 所成角为所以当D 为PC 的中点时取得最大值如图建立空间直角坐标系利用空间向量法求出线面角的正弦值;【详解】解:因为PAABAC 两两垂直所以平面PAC 则BD 与解析:311 【分析】首先可证AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,所以当D 为PC 的中点时ADB ∠取得最大值,如图建立空间直角坐标系,利用空间向量法求出线面角的正弦值;【详解】解:因为PA ,AB ,AC 两两垂直,PA AC A =所以AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,所以3tan AB ADB AD AD∠==, 当AD 取得最小值时,ADB ∠取得最大值在等腰Rt PAC △中,当D 为PC 的中点时,AD 取得最小值,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则(0,0,0)A ,(3,0,0)B ,(0,2,0)C ,(0,0,2)P ,(0,1,1)D ,则(0,1,1)AD =,(0,2,2)PC =-,(3,2,0)BC =-,设平面PBC 的法向量为(,,)n x y z =,则0n PC n BC ⋅=⋅=,即220320y z x y -=⎧⎨-+=⎩,令3y =,得(2,3,3)n =.因为cos ,11n AD 〈〉==,所以AD 与平面PBC .【点睛】 (1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角. 15.【分析】结合由数量积定义计算【详解】正四面体中点EF 分别是BCAD 的中点连接则而所以平面又平面所以即所以故答案为:【点睛】关键点点睛:本题考查向量的数量积运算解题时选择用向量的加减数乘运算表示出要计解析:24a 【分析】AE AB BE =+,结合AD BC ⊥,由数量积定义计算.【详解】正四面体ABCD 中,点E 、F 分别是BC 、AD 的中点,连接,AE DE ,则,BC AE BC DE ⊥⊥,而AE DE E =,所以BC ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BC ⊥,即AF BE ⊥,所以21()cos 6024a AE AF AB BE AF AB AF BE AF a a ⋅=+⋅=⋅+⋅=⨯⨯︒=. 故答案为:24a .【点睛】关键点点睛:本题考查向量的数量积运算,解题时选择用向量的加减数乘运算表示出要计算的向量,然后由数量积定义计算,是基本方法,实质上也可以应用空间向量基本定理表示向量,把向量的运算转化为空间向量的基底进行运算.16.13【分析】根据面面垂直得线面垂直进而得再根据向量模的平方求得结果【详解】因为平面平面所以因为所以故答案为:13【点睛】本题考查面面垂直性质定理利用空间向量求线段长考查基本分析论证与求解能力属中档题 解析:13【分析】根据面面垂直得线面垂直,进而得AC BD ⊥,再根据向量模的平方求得结果.【详解】因为平面α⊥平面β,l αβ=,AC α⊂,AC l ⊥,所以AC β⊥,因为BD β⊂,所以AC BD ⊥,CD CA AB BD =++2222222CD CA AB BD CA AB CA BD AB BD ∴=+++⋅+⋅+⋅2222341200013||13CD =+++++=∴= 故答案为:13【点睛】本题考查面面垂直性质定理、利用空间向量求线段长,考查基本分析论证与求解能力,属中档题.17.【分析】先根据不共线三点用平面向量基底表示;再根据平面向量基本定理表示求和即得结果【详解】因为四点共面三点不共线所以因为因为是任意一点故可不共面所以故故答案为:1【点睛】本题考查用基底表示向量以及平 解析:1【分析】先根据不共线三点A B C ,,,用平面向量基底AB AC ,表示PA ;再根据平面向量基本定理表示,,x y z ,求和即得结果.【详解】因为,,,P A B C 四点共面,三点A B C ,,不共线,所以,,,m n R PA mAB nAC ∃∈=+()(),(1)OA OP m OB OA n OC OA OP m n OA mOB nOC -=-+-∴=++--因为OP xOA yOB zOC =++,因为O 是任意一点,故,,OA OB OC 可不共面,所以1,,x m n y m z n =++=-=-, 故1x y z ++=.故答案为:1【点睛】本题考查用基底表示向量以及平面向量基本定理应用,考查基本分析求解能力,属基础题. 18.【分析】由于平面不是特殊的平面故建系用法向量求解以为原点建系正方体三边为坐标轴求出平面的法向量求解面对角线和的夹角即可求得答案【详解】以点为原点所在直线为轴所在直线为轴所在直线为轴设正方体棱长为2如 解析:4【分析】由于平面1A ECF 不是特殊的平面,故建系用法向量求解,以D 为原点建系,正方体三边为坐标轴,求出平面1A ECF 的法向量n ,求解面对角线和n 的夹角,即可求得答案.【详解】以点D 为原点,AD 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴设正方体棱长为2,如图:则(2,0,0),(0,0,0),(2,2,0),(0,2,0)A D B C1111(2,0,2),(2,2,2,),(0,2,2),(0,0,2)A B C D ,(2,1,0),(0,1,2)E F∴ 1(2,1,0),((0,1,2),(2,2,0)EC A E AC =-==-1(2,2,0),(2,0,2)BD BC =--=-- 11(0,2,2),(0,2,2)B A A B =--=-当面对角线与截面1A ECF 成60︒角,∴ 需保证直线与法向量的夹角为30︒,即其余弦值3±设平面1A ECF 的法向量(,,)n x y z =100n EC n A E ⎧⋅=⎪⎨⋅=⎪⎩ 可得:2020y z x y -=⎧⎨-+=⎩ ,取2y = ∴ (1,2,1)n = ,则||6n =cos ,62||||8n AC AC n n AC ⋅<>===≠±⋅ cos,2BDn <>== 1cos ,B C n<>=≠ 1cos ,2B A n <>==- 1cos ,2A B n <>=≠± 当两条面对角线平行时,求解其中一条与面1A ECF 的法向量n 夹角即可.平面11AA D D 中1AD 与EF 平行,故不符合题意.综上所述,符合题意的面对角线为:1111,,,BD B D AB DC 共4条. 故答案为:4.【点睛】本题考查了线面角求法,根据题意画出几何图形,掌握正方体结构特征是解本题的关键.对于立体几何中角的计算问题,可以利用空间向量法,利用向量的夹角公式求解,属于基础题. 19.3【分析】根据向量加法以及向量数量积的坐标表示得结果【详解】【点睛】本题考查空间向量加法与数量积考查基本求解能力属于基础题解析:3【分析】根据向量加法以及向量数量积的坐标表示得结果.【详解】()()() 2,3,12,2,5465 3.a b c ⋅+=-⋅=-+=,【点睛】本题考查空间向量加法与数量积,考查基本求解能力. 属于基础题. 20.【分析】设0则由知所以由此能求出其最小值【详解】设001-即(当时取最小值)故答案为:【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法要根据已知【分析】设(C x ,0,0),(0D ,y ,0),则(1,,2)AD y →=-,(,1,1)BC x →=-,由20AD BC x y →→=--=,知2x y =+.所以||CD →【详解】设(C x ,0,0),(0D ,y ,0),(1A -,0,2),(0B ,1,-1),∴(1,,2)AD y →=-,(,1,1)BC x →=-, AD BC ⊥,∴20AD BC x y →→=--=,即2x y =+.(,,0)CD x y →=-,∴||CD →=2.(当1y =-时取最小值)【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解. 21.【分析】利用去掉反向的情形即得【详解】由所以解得若与反向则则所以所以与的夹角为钝角则且综上的范围是故答案为:【点睛】思路点睛:本题考查向量的夹角与向量的数量积的关系根据向量夹角求参数时可由是两个非零解析:()7,22,5⎛⎫-∞-⋃- ⎪⎝⎭ 【分析】利用()()20a b ka b <+⋅-去掉反向的情形即得.【详解】 由()()1,1,0,1,0,2a b ==-,()1,,2ka b k k +=-,()23,22a b -=-,所以()()()231240a a k k b b k -=+⋅⨯-+-<,解得75k <若ka b +与2a b -反向,则()20a ka b b λλ-<+=, 则21k λλ=⎧⎨=-⎩,所以2k =- 所以ka b +与2a b -的夹角为钝角则75k <且2k ≠-综上k 的范围是()7,22,5⎛⎫-∞-⋃- ⎪⎝⎭. 故答案为:()7,22,5⎛⎫-∞-⋃- ⎪⎝⎭ 【点睛】思路点睛:本题考查向量的夹角与向量的数量积的关系,根据向量夹角求参数时,可由,a b 是两个非零向量,则,a b 夹角是锐角时,0a b ⋅>,,a b 夹角是钝角时,0a b ⋅<,反之要注意,a b 可能同向也可能反向.属于中档题.22.1【分析】取中点过作于点;由等腰三角形三线合一和线面垂直的判定定理可证得平面从而得到;再根据线面垂直判定定理得到面由线面角定义可知通过勾股定理可求得由此可知在直线上从而得到面面垂直关系可知二面角为从 解析:1【分析】取AD 中点E ,过P 作PF BE ⊥于F 点;由等腰三角形三线合一和线面垂直的判定定理可证得AD ⊥平面PBE ,从而得到AD PF ⊥;再根据线面垂直判定定理得到PF ⊥面ABCD ,由线面角定义可知30PBF ∠=,通过勾股定理可求得EF BE =,由此可知F 在直线CD 上,从而得到面面垂直关系,可知二面角为90,从而得到正弦值.【详解】取AD 中点E ,连接BE 并延长,过P 作PF BE ⊥于F 点PA PD =,E 为AD 中点 PE AD ⊥∴四边形ABCD 为菱形,60BAD ∠= ABD ∴∆为等边三角形 BE AD ∴⊥,PE BE ⊂平面PBE ,PE BE E ⋂= AD ∴⊥平面PBEPF ⊂平面PBE AD PF ∴⊥又PF BF ⊥,,BF AD ⊂平面ABCD ,BFAD E = PF ∴⊥面ABCD ∴直线PB 与底面ABCD 所成角为PBF ∠ sin 2sin301PF PB PBF ∴=⋅∠=⨯=在PBE ∆中,由余弦定理得:22232cos 444222PE PB BE PB BE PBE =+-⋅∠=+-⨯=2EF ∴==,又2BE = F ∴在CD 延长线上 PF ∴⊂平面PCD ∴平面PCF ⊥平面ABCD∴二面角P CD A --的大小为90,正弦值为1故答案为:1【点睛】本题考查立体几何中二面角的求解问题,涉及到线面垂直的判定与性质、面面垂直的判定定理、直线与平面所成角、勾股定理等知识的应用;关键是能够通过线面垂直关系确定直线与平面所成角的位置.23.必要不充分【分析】根据充分条件和必要条件的定义进行判断即可【详解】解:若向量是平面的法向量则若则则向量所在直线平行于平面或在平面内即充分性不成立若向量所在直线平行于平面或在平面内则向量是平面的法向量 解析:必要不充分【分析】根据充分条件和必要条件的定义进行判断即可.【详解】解:若向量n 是平面α的法向量,则n α⊥,若0n b =,则//b α,则向量b 所在直线平行于平面α或在平面α内,即充分性不成立, 若向量b 所在直线平行于平面α或在平面α内,则//b α,向量n 是平面α的法向量,∴n α⊥,则n b ⊥,即0n b =,即必要性成立,则0n b =是向量b 所在直线平行于平面α或在平面α内的必要条件,故答案为:必要不充分【点睛】本题主要考查充分条件和必要条件的判断,根据向量和平面的位置关系是解决本题的关键.24.【分析】利用向量的加法公式得出再由得出的值即可得出的和【详解】即故答案为:【点睛】本题主要考查了用空间基底表示向量属于中档题 解析:78【分析】 利用向量的加法公式得出111222MN OA OB OC =-++,再由1324OG OM MG OA MN =+=+,得出,,x y z 的值,即可得出,,x y z 的和. 【详解】MN MA AB BN =++11111()22222OA OB OA OC OB OA OB OC =+-+-=-++ 13131112424222OG OM MG OA MN OA OA OB OC ⎛⎫∴=+=+=+-++ ⎪⎝⎭813388OA OB OC =++ 133,,888x y z ∴=== 即78x y z ++=故答案为:78【点睛】本题主要考查了用空间基底表示向量,属于中档题. 25.【分析】根据题意建立空间直角坐标系设出的长写出各个点的坐标求得平面与平面的法向量利用法向量及二面角大小求得的等量关系即可判断当取最小时各自的长即可求得的正切值进而求得的大小【详解】因为三棱柱中两两互 解析:6π【分析】根据题意,建立空间直角坐标系,设出,CN BM 的长,写出各个点的坐标,求得平面AMN 与平面ABC 的法向量,利用法向量及二面角大小,求得,CN BM 的等量关系.即可判断当1B M 取最小时,CN BM 各自的长.即可求得AMB ∠的正切值,进而求得AMB ∠的大小.【详解】因为三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,建立如下图所示的空间直角坐标系:122AA AB AC ==,M ,N 是线段1BB ,1CC 上的点可设,,1BM a CN b AB ===,则12,1AA AB ==所以()()0,0,0,1,0,0A B ,()()1,0,,0,1,M a N b则()()1,0,,0,1,AM a AN b ==设平面AMN 的法向量为(),,m x y z =则00AM m AN m ⎧⋅=⎨⋅=⎩,代入可得00x az y bz +=⎧⎨+=⎩,令1z =代入解得x a y b =-⎧⎨=-⎩ 所以(),,1m a b =--平面ABC 的法向量()0,0,1n =由题意可知平面AMN 与平面ABC 所成(锐)二面角为3π 则由平面向量数量积定义可知22cos31m n m n a b π⋅==⋅++ 化简可得223a b += 1B M 最小值,即a 取得最大值,当0b =时,a 取得最大值为3a = 所以3tan 33AB AMB MB ∠=== 所以6AMB π∠=故答案为:6π 【点睛】本题考查了空间向量在立体几何中的应用,由法向量法结合二面角求值,属于中档题. 26.【分析】先由空间向量的基本定理将向量用一组基底表示再利用向量数量积的性质计算即可【详解】∵六面体ABCD ﹣A1B1C1D1是平行六面体∵=++∴=(++)2=+++2+2+2又∵∠BAD=∠A1AB【分析】先由空间向量的基本定理,将向量1AC 用一组基底1AA AD AB ,,表示,再利用向量数量积的性质22a a =,计算1AC 即可【详解】∵六面体ABCD ﹣A 1B 1C 1D 1是平行六面体,∵1AC =1AA +AD +AB ∴21AC =(1AA +AD +AB )2=21AA +2AB +2AD +21AA AD ⋅+21AA AB ⋅+2AB AD ⋅ 又∵∠BAD=∠A 1AB=∠A 1AD=60°,AD=4,AB=3,AA 1=5, ∴21AC =16+9+25+2×5×4×cos60°+2×5×3×cos60°+2×3×4×cos60°=97 ∴197AC =【点睛】本题考察了空间向量的基本定理,向量数量积运算的意义即运算性质,解题时要特别注意空间向量与平面向量的异同。

专题8.9 《空间向量与立体几何》单元测试卷-2021年新高考数学一轮复习学与练(原卷版)

专题8.9 《空间向量与立体几何》单元测试卷一、单选题1.(2021·湖南湘潭·月考(理))已知正四棱锥P ABCD -2AB =,则正四棱锥P ABCD -的侧面积为( )A .B .4C .D .2.(2020·北京高三二模)某四棱锥的三视图如图所示,则该四棱锥的最长侧棱的长为( )A .2B .C .D .43.(2020·四川武侯·成都七中月考)某几何体的三视图如图所示,则该几何体的体积为( )A .32B .1C .13D .124.(2019·陕西西安·高新一中高二期末(理))如图,在四面体O ABC -中,1G 是ABC 的重心,G 是1OG 上的一点,且12OG GG =,若OG xOA yOB zOC =++,则(,,)x y z 为( )A .111(, , )222B .222(,, )333 C .111(, , )333 D .222(, , )999 5.(2020·云南高三月考(理))如图所示,在正方体1111ABCD A BC D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1BC 与EF 所成角最小时,其余弦值为( )A .0B .12CD .11166.(2020·河北正定中学高三月考)已知平面α,β,γ和直线l ,下列命题中错误的是( ) A .若αβ⊥,//βγ,则αγ⊥B .若αβ⊥,则存在l α⊂,使得//l βC .若a γ⊥,βγ⊥,l αβ=,则l γ⊥D .若αβ⊥,//l α,则l β⊥7.(2020·山东济宁·高二月考)在正方体1111ABCD A BC D -中,棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的正弦值为( )A B C D 8.(2020·山东济宁·高二月考)如图,在棱长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上(包括边界....)移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A.B.C.D.359.(2020·福建省泉州第一中学月考)如图,已知正方体ABCD-A1B1C1D1棱长为8,点H在棱AA1上,且HA1=2,在侧面BCC1B1内作边长为2的正方形EFGC1,P是侧面BCC1B1内一动点,且点P到平面CDD1C1HP的最小值是()距离等于线段PF的长,则当点P在侧面BCC1B1运动时,2A.87B.88C.89D.9010.(2020·广西柳州·二模(理))如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中正确的个数()①AC∥平面BEF;②B、C、E、F四点可能共面;③若EF⊥CF,则平面ADEF⊥平面ABCD;④平面BCE与平面BEF可能垂直A.0B.1C.2D.3二、多选题11.(2020·山东曲阜一中)在正方体1111ABCD A BC D -中,若E 为11AC 的中点,则与直线CE 不垂直的有( )A .ACB .BDC .1AD D .1A A12.(2020·山东曲阜一中)如图,已知E 是棱长为2的正方体1111ABCD A BC D -的棱BC 的中点,F 是棱1BB 的中点,设点D 到面1AED 的距离为d ,直线DE 与面1AED 所成的角为θ,面1AED 与面AED 的夹角为α,则( )A .DF ⊥面1AEDB .43d =C .45sin 15θ=D .2cos 3α= 13.(2020·历下·山东师范大学附中高二月考)下列命题中不正确的是( )A .a b a b -=+是,a b 共线的充要条件B .若,C ABD 共线,则//AB CDC .,,A B C 三点不共线,对空间任意一点O ,若311488OP OA OB OC =++,则,,,P A B C 四点共面 D .若,,,P A B C 为空间四点,且有PA PB PC λμ=+(,PB PC 不共线),则1λμ+=是,,A B C 三点共线的充分不必要条件14.(2020·南京市第十四中学高二月考)如图,在直三棱柱111ABC A B C -中,12AC BC AA ===,90ACB ∠=︒,D ,E ,F 分别为AC ,1AA ,AB 的中点.则下列结论正确的是( )A .1AC 与EF 相交B .11//BC 平面DEFC .EF 与1AC 所成的角为90︒D .点1B 到平面DEF 的距离为2三、填空题 15.(2020·山东曲阜一中)已知向量1e ,2e ,3e 是三个不共面的非零向量,且1232a e e e =-+,12342b e e e =-+-,123115c e e e λ=++,若向量a ,b ,c 共面,则λ=________.16.(2020·扬州大学附属中学东部分校高三月考)在长方体1111ABCD A BC D -中,11,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为__________.17.(2020·江苏省梅村高级中学高三开学考试)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =,则该二面角的大小为________.18.(2020·全国高二课时练习)已知()3211a λ=-,,,()102b μμ=+,,.若a b ⊥,则μ=_____;若//a b ,则λ+μ=_____.19.(2020·福建省泉州第一中学月考)在长方体ABCD -A ’B ’C ’D ’中,AB =AA ’=2AD =2,以D 为原点,DA ,DC ,'DD 方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则'AC =_______,若点P 为线段AB 的中点,则P 到平面A ’BC ’距离为___________20.(2020·福建省泰宁第一中学月考)如图,在正四棱1111ABCD A BC D -中,底面边长为2,1CC =4,直线1A B 与1AD 所成角的余弦值为______.直线1CC 与平面1ACD 所成角的正弦值为 ______.21.(2020·山东潍坊·高三月考)正方体1111ABCD A BC D -的棱长为1,E ,F 分别为BC ,1CC 的中点.则平面AEF 截正方体所得的截面面积为______;以点E 11ACC A 的交线长为______.四、解答题22.(2020·历下·山东师范大学附中高二月考)如图,已知1111ABCD A BC D -是四棱柱,底面ABCD 是正方形,132AA AB ==,,且1160C CB C CD ︒∠=∠=,设1,,CD C a b B CC c ===.(1)试用,,a b c 表示1AC ; (2)已知O 为对角线1AC 的中点,求CO 的长.23.(2020·历下·山东师范大学附中高二月考)如图,在直三棱柱111ABC A B C -中,2ABC π∠=,D 是棱AC 的中点,且11AB BC BB ===.(1)求证: 1//AB 平面1BC D ;(2)求直线1AB 到平面1BC D 的距离.24.(2020·江苏鼓楼·南京师大附中高三月考)如图所示,在多面体ABCDFE 中,四边形ABEF 为正方形,平面ABEF ⊥平面,CDFE CD ∥,90,22EF CDF DFE EF CD ∠=∠=︒==.(1)若1DF =,证明:平面ACF ⊥平面BCE ;(2)若二面角A BC E --的余弦值为,求DF 的长. 25.(2020·宁夏高三其他(理))如图,在四棱柱1111ABCD A BC D -中,1AA ⊥平面ABCD ,底面ABCD满足AD ∥BC ,且12AB AD AA BD DC =====,(Ⅰ)求证:AB ⊥平面11ADD A ;(Ⅱ)求直线AB 与平面11B CD 所成角的正弦值.26.(2020·河南高三其他(理))如图,在三棱锥P ABC -中,底面是正三角形,24AB PA ==,PA ⊥底面ABC ,点E ,F 分别为AC ,PC 的中点.(1)求证:平面BEF ⊥平面P AC ;(2)在线段PB (不含端点)上是否存在点G ,使得平面EFG 与平面PBC 若存在,确定点G 的位置;若不存在,请说明理由.27.(2020·历下·山东师范大学附中高二月考)如图(1)所示,在Rt ABC 中,90︒∠=C ,3,6BC AC ==,,D E 分别是,AC AB 上的点,且//,2DE BC DE =,将ADE 沿DE 折起到1A DE △的位置,使1AC CD ⊥,如图(2)所示.(1)求证:1AC ⊥平面BCDE ;(2)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小;(3)线段BC (不包括端点)上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.。

空间向量立体几何(绝对经典)

例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。

(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。

n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知,,,点Q在直线OP上运动,则当
取得最小值
时,点Q的坐标为( )

A. B. C. D.
2.如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=1,则平面PCD与平面
ABCD所成二面角的大小
为__________。

3.ABCD是边长为1的正方形,M、N分别为DA、BC边上的点,且MN∥AB交AC
于O点,沿MN折成直二面角,
当MN平行移动时(AB∥MN),∠AOC的大小为__________;

4.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC,AP=PC=AC=2,点O是AC的中
点,OP⊥底面ABC.求直线PA与平面PBC所成角的正弦值;

5.如图四棱锥,菱形中,,,平面面
,正三角形,、分别为、的中点。
(1)求证:平面;
(2)求二面角的大小;

能力提升:
6.如图,在底面为直角梯形的四棱锥中,,,

,,,,BC=6.
(Ⅰ)求证:
(Ⅱ)求二面角的正弦值.

7.如图,在棱长为1的正方体中,是侧棱上的一动点,在
线段上是否存在一个定点Q,使得,并证明你的结论。

8.如图所示,、分别世、的直径,与两圆所在的平面均垂直,
.是的直径,,.
(I)求二面角的大小;
(II)求直线与所成的余弦值.

9.如图,正方形ABCD,ABEF的边长都是1,且平面ABCD、ABEF相互垂直,点M
在AC上移动,点N在BF上移动,若()
(1) 求证:MN∥面BCE;
(2) 求MN的长;
(3) 当a为何值时,MN的长最小.

综合探究:
10.如图,在四棱锥P—ABCD中,则面PAD⊥底面ABCD,侧棱,
底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点。
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的余弦;

(Ⅲ)线段AD上是否存在点Q,使得它的平面PCD的距离为?若存在,求出
的值;若不存在,请说明理由。
答案基础达标:
1.C;

设Q点坐标为,则
化简得:,

当时,取到最小值,此时点坐标为。
2.45°;
PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,
故∠PDA是平面PCD与平面ABCD所成二面角的平面角,
在Rt△PAD中,PA⊥AD,DA=AD,∴∠PDA=45°
故平面PCD与平面ABCD所成二面角的大小为45°.

3.;
如图,以点为原点,建立空间直角坐标系
设(),则,,
,,,,
∴,,

∴,∴
故当MN平行移动时(AB∥MN),∠AOC的大小为.
4.;
解:∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP,0B=1,
如图,以O为原点,建立空间坐标系O-xyz

则,,,,
∴,,
设平面PBC的法向量,则,,

∴即,
令,则,∴,

∴.
设PA与平面PBC所成角为θ,则


∴PA与平面PBC所成的角的正弦值为.
5.解: (1)连结,则中,,,
∴为等边三角形,
∵为的中点,∴,
∵平面面,∴平面
(2)正三角形中,,
∵平面面,∴平面,
∴是二面角的平面角,
在中,,,,
∴,∴
故二面角的大小.
能力提升:
6.解: (Ⅰ)如图,建立坐标系,

则,,,,,
,,,
,.,,
又,平面.
(Ⅱ)由(1)知平面的法向量为,
,,
设平面的法向量为,则

,即,
令,则,,,
,.
二面角的正弦值为.
7.解:建立如图所示的空间直角坐标系,(),则
,,,
若在上存在这样的点,设此点的横坐标为,则
,。

依题意,
即为的中点时,满足题设的要求.
8.解:
(Ⅰ)∵AD与两圆所在的平面均垂直,
∴AD⊥AB, AD⊥AF,故∠BAD是二面角B—AD—F的平面角,
依题意可知,ABCD是正方形,所以∠BAD=450.
即二面角B—AD—F的大小为450;
(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),

则O(0,0,0),A(0,,0),B(,0,0),
D(0,,8),E(0,0,8),F(0,,0)
所以,

设异面直线BD与EF所成角为,

直线BD与EF所成的余弦值为。
9.证明:
(1)如图以点为原点,建立空间直角坐标系,
则,,,,
,

∵平面的法向量,∴,
∵平面,∴平面,

(2)
()
(3)由(2)知:,所以时MN的长最小,且最小值为
.综合探究:10.解:(Ⅰ)证明:在△PAD中PA=PD,O为AD中点,所以PO⊥
AD,
又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,
所以PO⊥平面ABCD。

(Ⅱ)以O为坐标原点,、、的方向分别为x轴、y轴、z轴的正方向,
建立空间直角坐标系O—xyz,
则A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,

1), 所以,。

所以异面直角PB与CD所成的角的余弦是,
(Ⅲ)假设存在点Q,使它到平面PCD的距离为,
由(Ⅱ)知,。
设平面PCD的法向量为
则所以,
即,取,得.

由,得
解得或(舍去),
此时,,,所以存在点Q满足题意,此时.

相关文档
最新文档