全混流反应器模拟[1]
化工流程模拟实训AspenPlus教程第8章反应器单元模拟

8.3 化学计量反应器RStoic
1、模型设定(Specifications)
包括操作条件和有效相态。
8.3 化学计量反应器RStoic
2、化学反应(Reactions)
需要规定在反应器中发生的所有反应。
8.3 化学计量反应器RStoic
定义每个反应时,必须规定化学计量系数,并分别指定每 一个反应的转化率或产品流率。
在气-固相催化反应中,由于实验反应器与工业反应器 中催化剂的填充方式不同,一般按单位质量催化剂来计 算反应速率便于换算到工业反应器中的反应速率。
8.1 反应器基础知识——基本概念
其它定义
液空速:反应混合物以液体进入反应器,常以25℃下液体 示空速。 湿空速:如果气体混合物有水蒸气。 干空速:不计水蒸气时的空速。 空间速度:是单位反应体积所能处理的反应混合物的体积
流反应器
模拟间歇式或半间 带反应速率控制的单相、两相或三相间歇
歇式反应器
和半间歇的反应器
8.3 化学计量反应器RStoic
按照化学反应方程式中的计量关系进行反应,有 平行反应和串联反应两种方式。
用于模拟化学平衡数据和动力学数据未知或不重 要的反应器,还可以计算产品的选择性和反应热。
8.3 化学计量反应器RStoic
生成,选择性会大于1; 如果所选择的组分在其它反应中消耗,选择性
可能会小于0。
8.3 化学计量反应器RStoic
5、粒度分布和组分属性
当反应生成固体或固体改变时,可以分别在 Attr.页面和PSD页面规定组分属性和粒子的尺 寸分布。
8.3 化学计量反应器RStoic
例8.1 用化学计量反应器RStoic模拟1-丁烯的异构化 反应,涉及到的反应及转化率如下表所示。进料温度 为16℃,压力为196kPa,进料中正丁烷(NBUTANE)、1-丁烯(1-BUTENE)、顺-2-丁烯 (CIS-2BUT)、反-2-丁烯(TR-2BUT)、异丁烯 (ISOBUT)的流率分别为35000kg/hr、 10000kg/hr、4500kg/hr、6800kg/hr、1450kg/hr, 反应器的温度为400℃,压力为196kPa。物性方法选 用RK-SOAVE。
停留时间分布与反应器的流动模型

重点:停留时间分布的实验测定; 两种理想流动反应器的停留时间分布。
难点:流动系统物料停留时间分布的意义极其数学表达式 返混的概念
新乡学院
《反应工程》
停留时间分布与 反应器的流动模型
5.1 停留时间分布
一、 概述
活塞流和全混流反应器中流体流动可分别采用活塞流
与全混流模型描述,反应器内流动状况的不同对反应有十
2. 返混的概念; 3. 反应器偏离理想流动的原因; 4. 多釜串联、轴向扩散模型和离析流模型的物理意
义和建立数学模型的基本思路,能根据实验测定
的反应器停留时间分布数据来确定模型参数。
新乡学院
《反应工程》
停留时间分布与反 应器的流动模型
了解:流体的微观混合与宏观混合及流体的混合态时对流
动反应器转化率的影响。
说,一定的返混必然会造成确定的停留时间分布,但是
同样的停留时间分布可以是不同的返混所造成,所以停
留时间与返混之间不一定存在对应的关系。因此,不能
直接把测定的停留时间分布用于描述返混的程度,而要
借助于模型方法。
新乡学院
《反应工程》
停留时间分布与反 应器的流动模型
模型法:通过对复杂的实际过程的分析,进行合理的简化
《反应工程》
停留时间分布与反 应器的流动模型
dFtEtdt
Ft0tEtdt
停留时间分布函数F(t)— 停留时间小于t的流体粒子 所占的分率
无Ft0tdN N0tEtdt
量 纲
t=0时, F00
Et dFt
dt
t=∞时,F 0Etdt1
新乡学院
《反应工程》
停留时间分布与反 应器的流动模型
平均停留时间:t V r Q
第3讲 ASPEN PLUS 反应器的模拟与优化(2)

RStoic —— 选择性(2)
RStoic —— 化学反应(3)
RStoic —— 反应热
设定反应热的计算类型(Calculation type) 和参照条件(Reference condition) : 1、不计算反应热 (Do not calculate heat of reaction) 2、计算反应热 (Calculate heat of reaction) 3、用户指定反应热 (Specify heat of reaction)
进料流股的温度为16℃,压力为1.9 atm,进料组成如下表所示:
Mass Flow(kg/hr) Component n-丁烷(n-Butane) 1-丁烯(1-Butene) Cis-2-丁烯(Cis-2-Butene) Trans-2-丁烯(Trans-2-Butane) 异丁烯(Isobutene) 35000 10000 4500 6800 1450
Gibbs反应器的评价
1)
优点:
可避免写出化学计量方程的必要性(只 需要规定可能的产物) 容易构造多相和同时存在相平衡的计算 问题
2)
缺点:
可能产生不正确的结果,因为它们隐含 动力学上不可能的反应。
RStoic —— 选择性
如果要计算对于选定组分的选择性,其 定义为:
[ Δ P / Δ A ]real S P,A = [ΔP / ΔA]ideal
△P代表选定组分 (selected) P的生成摩尔数; △A代表参照组分 (reference) A的消耗摩尔数; r eal 代表反应器内的实际情况; real ideal 代表只有 A→P 一个反应发生时的情况。
有两种选择:
1、 设定整个系统的平衡温差 、设定整个系统的平衡温差
反应器内流体流动与混合非理想流动

F ( ) 1 e
1 e
上述两表达式中已不包含 τ,故与全混流容
器的大小及流量无关,其分布曲线见图 。
E(t) 1/τ
F(t) 1.0
0
t
0
t
全混流的E(t)、F(t) 函数曲线
全混流的平均停留时间
t tE (t )dt t e dt
应器的管径较小、较长,物料在其中的流
速较快时,返混程度很小,此时可近似按
平推流进行分析与设计。
平推流反应器中所有物料质点的停留时间
都相同,且等于整个物料的平均停留时间。
采用脉冲示踪法测定平推流的停留时间分
布密度函数 E(t)
C(t)
C0 E(t)
t=0
t=0 t=0
t t tt
激励曲线
t
停留时间分布积累函数(阶跃示踪时)
C (t ) t / F (t ) 1 e C0
停留时间分布密度函数
dF (t ) 1 t / E (t ) e dt
无因次时间表示的停留时间分布函数
E ( ) E (t )
t
1
e
t
e
同样的停留时间分布可以是不同的返混造 成的。 不能直接用测定的停留时间分布来描述返 混的程度,必须借助于模型方法。
数学模型方法
分析器内复杂的实际流动状况,进行
合理的简化,通过数学方法来表述或关联 返混与停留时间分布的定量关系,然后再 进行求解。
建立流动模型的基本思想: 根据实测的停留时间分布,假设一种流动 状态,令这种流动状态下的停留时间分布 与实测结果一致,并根据假设的流动状态 的模型参数,结合在其中进行反应的特征
第二章 理想流动与非理想流动1

理想流动与非理想 流动反应器
流体在反应器中的流动情况影响着反应速率、反应选择率, 直接影响反应结果,研究反应器的流动模型是反应器选型、设计 和优化的基础。 流动模型可以抽象出两种极限的情况:一种是完全没有返混 的活塞流反应器;另一种是返混达到极大值的全混流反应器。 实际生产中的多数管式反应器及固定床催化反应器等可作活 塞流反应器处理,多数槽式反应器可作全混流反应器处理。
对活塞流反应器,物料质点是平推着向前流动的,物料质点在反 应器中的逗留时间相同不产生返混。而在全混流反应器中,不同 年龄的质点达到完全混合,有的逗留时间很短,有的却很长,返 混程度最大。 活塞流与全混流是两种理想流型:前者理想置换,没有返混;后 者理想混合,返混最大。而介于两者之间的流型,是非理想流型, 存在着不同程度的返混现象。
2 全混流模型 亦称理想混合模型或连续搅拌槽式反应器模型,如图2-1(c)所 示,是一种返混程度为无穷大的理想化流动模型。
全混流假定反应物料以稳定流率流入反应器,在反应器中,刚进 入反应器的新鲜物料与存留在器内的物料在瞬间达到完全混合。 反应器中所有空间位置的物料参数都是均匀的,等于反应器出口 处的物料性质,即反应器内物料温度、浓度均匀,与出口处物料 温度、浓度相等。而物料质点在反应器中的逗留时间参差不齐, 有的很短,有的很长,形成一个逗留时间分布。 搅拌十分强烈的连续搅拌槽式反应器中的流体流动可视为全混流。
(2)热量衡算 热量衡算以能量守恒与转化定律为基础,在计算反应速率时必须 考虑反应物系的温度,通过热量衡算可以计算反应器中温度的变 化。与物料衡算相仿,对反应器或其一微元体积进行反应物料的 热量衡算,基本式为 (带入的热焓)=(流出的热焓)十(反应热)十(热量的 累积)十(传向环境的热量) (2-2) 式中反应热项,放热反应时为负值,吸热反应时为正值。
平推流模型

降低; 降低; 低;
大,φ 减增大,大; 大,φ 大,ξ
n 1,,φ与x无 关,φ 变。
F(t)流过反应器的物料中停留时间小于 t 的质点的分率
Q Q
R
C
反应器的多态 根据不同的操作参数,QR 与 QC 的交点可能有三个、两个、或一个,这 种有多个交点的现象。 平推流模型 亦称活塞流模型或理想置换模型。是一种返混量为零的理想流动模型,它 假设反应物料以稳定流量流入反应器,在反应器中平行地像气缸活塞一样向前移动。 特点: A、沿着物料的流动方向,物料的温度、浓度不断变化。 B、垂直于物料流动方向的任一截面上物料的所有参数,如浓度、温度、压力、流速相同。 C、所有物料质点在反应器中具有相同的停留时间,反应器中不存在返混。 全混流模型 亦称理想混合模型或连续搅拌釜(槽)式反应器模型。是一种返混程度为无 穷大的理想化流动模型。它假定反应物料以稳定流量流入反应器,在反应器中,刚进入反 应器的新鲜物料与存留在反应器中的物料瞬间达到完全混合。 特点: A、反应器中所有空间位置的物料参数都是均匀相等; B、反应器内所有物料参数与反应器出口处的物料参数相同; C、物料质点在反应器中的停留时间不相等,有的很长, 有的很短,形成一个停留时间分 布。返混极大。 气-固相催化反应步骤 ①反应物从气流主体扩散到催化剂的外表面(外扩散过程) ②反应物进一步向催化剂的微孔内扩散进去(内扩散过程) ③反应物在催化剂的表面上被吸附(吸附过程) ④吸附的反应物转化成反应的生成物(表面反应过程) ⑤反应生成物从催化剂表面上脱附下来(脱附过程) ⑥脱附下来的生成物分子从微孔内向外扩散到催化剂外表面处(内扩散过程) ⑦生成物分子从催化剂外表面扩散到主流气流中被带走(外扩散过程) 流-固相催化反应步骤 ①流体反应物由扩散通过流体膜到达颗粒外表面(外扩散过程) ②流体反应物由颗粒外表面通过固体产物层扩散到收缩未反应芯表面(内扩散过程) ③流体反应物和固相反应物在收缩未反应芯表面上进行反应(表面化学反应过程) ④流体产物通过固体产物层扩散到达颗粒外表面(内扩散过程) ⑤流体产物由颗粒外表面扩散到流体主体(外扩散过程) 多重反应的选择率 ①温度效应
[化学反应工程原理]第十章__停留时间分布-数学期望及方差
即
F(t) 0 E(t)dt
显然,t=0时,F(t)=0;
t=∞, F(t)=1。
F(t)与E(t)的关系为:
dF (t) E(t) dt
右图为F(t)与E(t)的曲线。
三、停留时间分布的测定方法
➢采用刺激应答技术,又称示踪法,即在反应器的进 口加入某种示踪物,同时在出口测定示踪物浓度等 的变化,确定流经反应器中物料的停留时间分布。
tE(ti )ti E(ti )ti
➢若读取实验数据时时间间隔∆t相等,则上式可简化为:
tm
tE(t) E(t)
2. 方差
➢方差描述物料质点各停留时间与平均停留时间的偏离程度,
即停留时间分布的离散程度。
➢定义为:各个物料质点停留时间t与平均停留时间 t差m 的
平方的加权平均值。
方差越小,越接近平推流;
➢测定时利用示踪物的光、电、化学或放射等特性。 示踪物除具有上述特性外,还需要具有不挥发、不吸 收、易溶于主流体,在很小的浓度下也能检测出的特 性。 ➢示踪物的输入方式主要有脉冲法和阶跃法。
示踪剂的选取原则
➢示踪剂不应与主流体发生反应; ➢除了显著区别于主流体的某一可检测性质外,
示踪剂应和主流体应尽可能具有相同的物理性 质,且两者易于溶为一体; ➢示踪剂浓度很低时也能够检测到信号; ➢用于多相系统检测的示踪剂不发生相间的转移; ➢示踪剂本身应具有或易于转变为电信号或光信 号的特点。
C(t)dt
0
C(t)dt
0
dF(t) dC(t)
E(t)
dt C0dt
可直接测得
四、停留时间分布的数字特征
研究不同流型的停留时间分布,通常是比较它们的统计特征
值。常用的特征值有两个:
精解全混流反应器热衡算
第 l 卷 第 1 期 9 1
20 年 1 月 02 1
精 细 化 工
FI NE CHEM I CALS
Vo . 9. o 1 11 N . 1 N V O .2 0 0 2
其他
精解全 混流 反应器热衡算
孙 竹 范’孙 碧 瑶 白皓 然 , ,
成、 度) 温 一定 , C 可 准 确 计 算 , 际 上 由 于 比 热 故 实
收 稿 日期 :0 2— 4—1 20 0 1
维普资讯
第 1 期 1
孙 竹范 , : 等 精解 全混流反 应器热衡算
・7 6 3・
热 力学 方 法 计算 。
( 】 AH 0A o
围内 的 平 均 值 。 因 为 混 合 物 的 状 态 ( 出 口 的组 即
见 乃 至误 解 。
定 带来 2个 结 果 : (i) 假 定 本 身 有 时 就 靠 不 住 , 此
理 论 上反 应 物与 生 成 物 热 容 是 不 同 的 , 随 温 度 而 且 变 。 ( i 这 一 假 定 使 得 公 式 成 为 近 似 关 系式 。难 i) 道假 定 及 由此 引起 的近似 是 必须 的吗 ? 为解 答 上述 2个 问题 , 必要 追 根溯 源 , 有 进行 热
反应 物 系在 流 动 中进 行 化 学 反 应 , 物 系温 度 其 及组 成 是 变 化 的 , 应 地 反 应 焓 变 △ 以及 等 压 比 相 热 容 C 也 将 随之 变 化 。物 系参 数 随 反应 而 多变 , 决 定 了有 反 应 的热 过 程 比没 有反 应 的热 过 程要 复 杂得 多 , 算起 来 也 困 难 得 多 。 以至 于 对 热 衡 算 屡 有 歧 计
第三章化学反应器中的混合现象全解
• 混合是化学反应器中普遍存在的一种传递过 程,混合的作用是使反应器中物料的组成和 温度趋于均匀,不同的混合机理和混合程度 对反应结果(转化率和选择性)往往具有重 要的影响。
• 反应器中发生的混合现象是十分复杂的。对 反应器中的混合现象进行如实的描述和分析 非常困难。对实际过程进行简化,借助各种 理想化的模型去分析混合对反应过程的影响 依然是必要的。
Chemical Reaction Engineering
聚集状态
反应物系的聚集状态指进入反应器的不同物料微团间进行的物 质交换所能达到的程度以及在反应器微元尺度上所能达到的物 料组成的均匀程度。 反应物系的聚集状态有两种极限: ● 微观流体 :一种是不同物料微团间 能进行充分的物质交换 , 从而在反应器微元尺度上能达到分子尺度的均匀 , 这类物系称
• 返混指不同时间进入反应器的物料之间 发生的混合, 是连续流动反应器才具有
的一种传递现象, 可通过PFR和CSTR
这两种理想流动反应器的性能比较来考 察返混的利弊。
Plug Flow Reactor PFR Continuous Stirred Tank Reactor CSTR
Chemical Reaction Engineering
返混对复杂反应选择性的影响
分析
1
对简单反应, 返混仅仅影响反应速率。而对复杂反应, 返混对产 物选择性也有影响。
●平行反应
反应的瞬时选择性为:
R 主反应
A
2
S
副反应
☆当主反应级数n1高于>副反应的n2时,CA↑,S↑ →PFR的选择性高于CSTR (CA小) 。 ☆当n2 >n1时,则相反。
反应过程与设备例题与习题(第三章)
第三章非理想流动一、主要基本理论、基本概念1.停留时间:物料质点从进入反应器开始,到离开为止,在反应器中总共停留的时间。
2.平均停留时间:整个物料在反应器内平均停留的时间。
3.停留时间分布密度函数E(t)同时进入反应器的N 个流体质点中,停留时间介于t 与t+dt 之间的质点所占的分率dN/N 为E(t)dt 。
1)(0=⎰∞dt t E4.停留时间分布函数F(t)流过反应器的物料中停留时间小于t 的质点(或停留时间介于0~t 之间的质点)分率。
⎰=tdt t E t F 0)()(5.停留时间分布的数字特征 ① 数 学期 望 t =⎰⎰∞∞0)()(dtt E dt t tE② 方 差2t σ=⎰⎰∞∞-02)()()(dtt E dtt E t t③ 无因次方差22//t tt t θσσθ==6.停留时间分布的实验方法及对应曲线 ① 脉冲示踪 E(t) 曲线 ② 阶跃示踪 F(t) 曲线 ③ 无因次化 /()()()()t tE tE tF F t θθθ===7.理想流动模型的停留时间分布① 平推流 001()()1t t E t E t t θθθ≠≠⎧⎧==⎨⎨∞=∞=⎩⎩ 001()()111t t F t F t tθθθ〈〈⎧⎧==⎨⎨≥≥⎩⎩2210t t θτθσσ====② 全混流 ()1/exp(/)()E t t t t E e θθ-=-=()1exp(/)()1F t t t F e θθ-=--=-2/1t t tθτθσ===8.非理想流动模型的停留时间分布①扩散模型:是在平推流模型的基础上再迭加一个轴向扩散的校正,模型参数是轴向扩散系数Dl (或P e 数),停留时间分布可表示为Dl 的函数。
适用于返混不大的系统。
Pe >100时: θ=1 22/2/t t Pe θσσ==闭 式: θ=1222/2/(1)Pe Pe Pe e θσ-=--②多级串联全混流模型:是用m 个等体积的全混流模型串联来模拟实际反应器。