圆的最值问题归纳
数学圆和(面积)的最值问题

数学圆和(面积)的最值问题数学圆的最值问题引言数学中,圆是一个重要的几何概念。
在研究圆的性质和应用时,我们经常会遇到关于圆的最值问题,即在一定的条件下,如何找到圆的面积或其他性质的最大值或最小值。
本文将探讨数学圆的最值问题,并介绍一些解决这类问题的方法和策略。
圆的面积最值问题在圆的最值问题中,我们常常涉及到最大面积和最小面积两种情况。
下面分别讨论这两种情况。
圆的最大面积当我们固定圆的半径时,要找到圆的最大面积,需要确定这个半径的取值范围。
根据数学知识,圆的面积公式为:A = πr²,其中π是一个常数,r代表半径。
当半径r取值为正数时,圆的面积是一个关于r的增函数。
因此,我们可以通过求导数的方法来找到最大面积。
具体步骤如下:1.对面积公式A = πr²求导,得到A' = 2πr。
2.令A' = 0,解方程得到r的临界点。
3.将临界点带入面积公式,找到最大面积。
圆的最小面积当我们固定圆的周长时,要找到圆的最小面积,也需要确定周长的取值范围。
根据数学知识,圆的周长公式为:C = 2πr。
由于周长是一个固定值,我们可以将周长公式改写为:r = C / (2π),然后将该式代入圆的面积公式A = πr²中,得到面积的表达式只包含C一个变量。
通过对这个新的面积表达式进行求导和求临界点,可以找到圆的最小面积。
结论数学圆的最值问题是一个有趣且实用的数学问题。
通过应用求导等数学方法,我们可以找到圆的最大面积和最小面积。
在实际应用中,我们可以将这些方法应用于设计圆形物体的最优尺寸、优化圆形线路的长度等问题中,为实际生活带来便利和效益。
参考文献:数学圆的性质与应用,XXX,XX出版社,20XX年。
数学分析教程,XXX,XX出版社,20XX年。
以上是本文对数学圆的最值问题的讨论和总结,希望对读者有所帮助。
与圆有关的最值范围问题(九种题型) Word版含解析【KS5U 高考】

与圆有关的最值范围问题一.基础知识回顾1、圆上的点到定点的距离最值问题一般都是转化为点到圆心的距离处理,加半径为最大值,减半径为最小值 已知圆及圆外一定点,设圆的半径为则圆上点到点距离的最小值为,最大值为 即连结并延长,为与圆的交点,为延长线与圆的交点.2、圆上的点到直线的距离最值问题已知圆和圆外的一条直线,则圆上点到直线距离的最小值为,距离的最大值为(过圆心作的垂线,垂足为,与圆交于,其反向延长线交圆于3、切线长度最值问题1、代数法:直接利用勾股定理求出切线长,把切线长中的变量统一成一个,转化成函数求最值;2、几何法:把切线长最值问题转化成圆心到直线的距离问题.已知圆和圆外的一条直线,则过直线上的点作圆的切线,切线长的最小值为.4、过圆内定点的弦长最值已知圆及圆内一定点,则过点的所有弦中最长的为直径,最短的为与该直径垂直的弦.C PC r P PM PC r =-PN PC r =+PC M PC N PC C lC l PM d r -=-C l PN d r -=+C l P CP C M C N C l l PM lCPMC P P MN5、利用代数法的几何意义求最值(1)形如ax by --=μ的最值问题,可转化为动直线斜率的最值问题. (2)形如by ax t +=的最值问题,可转化为动直线截距的最值问题.(3)形如22)()(b y a x m -+-=的最值问题,可转化为曲线上的点到点(a ,b )的距离平方的最值问题二.题型分类1.圆上动点到定点2.圆上两动点3.圆上动点到直线距离最值4.切线长最值5.圆内定点弦长最值6.面积最值7.代数式几何化最值—截距型 8.代数式几何化最值—斜率型 9.代数式几何化最值—距离型三.常用方法策略 1.数形结合 2.转化到圆心问题 3.三角换元 四.例题解析1.圆上动点到定点例1.若点M 在曲线2264120x y x y +--+=上,O 为坐标原点,则OM 的取值范围是______.曲线2264120x y x y +--+=,即()()22321x y -+-=,表示圆心()3,2C ,半径1r =的圆,则223213OC =+因为点M 在曲线2264120x y x y +--+=上,所以OC r OM OC r -≤≤+,131131OM ≤≤,即13131OM ⎡⎤∈⎣⎦; 故答案为:13131⎡⎤⎣⎦例2.在圆()()22232x y -++=上与点(0,5)-距离最大的点的坐标是______.()()22025382-+-+=>,∴点(0,5)-在圆外∴圆上与点(0,5)-距离最远的点,在圆心与点(0,5)-连线上,且与点(0,5)-分别在圆心两侧, 令直线解析式:y kx b =+,由于直线通过点(2,3)-和(0,5)-,可得直线解析式:5y x =-, 与圆的方程联立,可得()()22222x x -+-=,3x ∴=或1x =∴交点坐标为(3,2)-和(1,4)-,其中距离点(0,5)-较大的一个点为(3,2)-.2.圆上两动点例1.已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A .32B .52C .522+D .322+【答案】C【解析】由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=),所以A 在以(1,1)C 2又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --222(12))(13)5CD =+++=,∴AB 的最大值为22522CD =+ C.例2.设圆221:104250C x y x y +-++=与圆222:142250C x y x y +-++=,点A ,B 分别是1C ,2C 上的动点,M 为直线y x =上的动点,则||||MA MB +的最小值为( ) A .3157- B .3137- C .524- D .534- 【答案】B【解析】根据题意,圆221:104250C x y x y +-++=,即22(5)(2)4x y -++=,其圆1C 的圆心(5,2)-,2r =,圆222:142250C x y x y +-++=,即22(7)(1)25x y -++=, 其圆2C 的圆心(7,1)-,5R =,如图所示:对于直线y x =上的任一点M ,有1212||||||||||||7MA MB MC MC R r MC MC ++--=+-, 求||||MA MB +的最小值即求12||||7MC MC +-的最小值,即可看作直线y x =上一点到两定点1C 、2C 距离之和的最小值减去7, 由平面几何的知识易知当1C 关于直线y x =对称的点为(2,5)C -, 与M 、2C 共线时,12||||MC MC +的最小值,其最小值为2||313CC =, 故||||MA MB +的最小值为3137-;故选:B .3.圆上动点到直线距离最值例1.点P 为圆22(1)2x y -+=上一动点,点P 到直线3yx的最短距离为( )A 2B .1C 2D .2【答案】C【解析】圆22(1)2x y -+=的圆心为(1,0),半径2r =则圆心(2,0)到直线30x y -+=的距离为22103221(1)d -++-所以直线与圆相离, 则点P 到直线3yx的最短距离为圆心到直线的距离再减去半径.所以点P 到直线20l x y -+=:的最短距离为2222=C . 例2.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围为( )A .[]2,6B .[]4,8C .[]28,D .[]4,6 【答案】A【解析】圆心()2,0到直线20x y ++=距离202222d ++==所以点P 到AB 距离即高h 的范围2,32⎡⎣,又可求得22AB = 所以ABP △面积12S AB h =⋅的取值范围为[]2,6.故选:A.4.切线长最值例1.直线1y x =-上一点向圆()2231x y -+=引切线长的最小值为( )A .22B .1C 7D .3 【答案】B【解析】圆()2231x y -+=的圆心为()3,0,半径为1,圆心到直线10x y --=212=>. ()22211-=,故选:B例2.已知圆O :223x y +=,l 为过2M 的圆的切线,A 为l 上任一点,过A 作圆N :()2224x y ++=的切线,则切线长的最小值是__________.39【解析】由题,直线OM 2l 的斜率为2 故l 的方程为)221y x -,即230x y -=. 又N 到l 的距离22203312d -+-==+,251339433⎛⎫-== ⎪⎝⎭5. 圆内定点弦长最值例1.已知圆O :2210x y +=,已知直线l :()2,ax by a b a b +=-∈R 与圆O 的交点分别M ,N ,当直线l 被圆O 截得的弦长最小时,MN =( ) A 35B 55C .25D .35 【答案】C【解析】直线l :()2,ax by a b a b +=-∈R ,即()()210a x b y -++=,所以直线过定点()2,1A -,()22||215OA =+-=O 半径10r =点A 在圆O 内,所以当直线与OA 垂直的时候,||MN 最短, 此时22||2||25MN r OA =-=C .例2.当圆22:4630C x y x y +-+-=的圆心到直线:10l mx y m ++-=的距离最大时,m =( )A .34B .43C .34-D .43- 【答案】C【解析】因为圆22:4630C x y x y +-+-=的圆心为(2,3)C -,半径4R =,又因为直线:10l mx y m ++-=过定点A(-1,1), 故当CA 与直线l 垂直时,圆心到直线的距离最大, 此时有1AC l k k =-,即4()13m ,解得34m =-.故选:C.6. 面积最值例1.点P 是直线2100++=x y 上的动点,P A ,PB 与圆224+=x y 分别相切于A ,B 两点,则四边形P AOB 面积的最小值为________. 【答案】8【解析】如图所示,因为S 四边形P AOB =2S △POA .又OA ⊥AP , 所以222122242=⨯=-=-四边形PAOB S OA PA OP OA OP 为使四边形P AOB 面积最小,当且仅当|OP |达到最小,即为点O 到直线2100++=x y 的距离:min 22521==+OP 故所求最小值为()222548-=.7. 代数式几何化最值—截距型例1.(2022·全国·高三专题练习)已知点(,)P x y 是圆2264120x y x y +--+=上的动点,则x y +的最大值为( ) A .52B .52C .6D .5【答案】A【解析】由22(3)(2)1x y -+-=,令3cos 2sin x y θθ=+⎧⎨=+⎩,则52)4x y πθ+=+,所以当sin()14πθ+=时,x y +的最大值为52.故选:A例2.(2022·全国·高三开学考试(文))已知点(),P x y 是圆C :()()2230x a y a -+=>上的一动点,若圆C 经过点(2A ,则y x -的最大值与最小值之和为( ) A .4 B .26C .4- D .26-【答案】C【解析】因为圆C :()()2230x a y a -+=>经过点(2A , 2(1)23a -+=.又0a >,所以2a =,y x -可看成是直线y x b =+在y 轴上的截距.如图所示,当直线y x b =+与圆相切时,纵截距b 2032b-+=26b =-±所以y x -的最大值为26-26-y x -的最大值与最小值之和为4-. 故选:C .8.代数式几何化最值—斜率型例1.(多选题)(2022·山东泰安·三模)已知实数x ,y 满足方程224240x y x y +--+=,则下列说法正确的是( ) A .yx 的最大值为43B .yx的最小值为0 C .22x y +51 D .x y +的最大值为32【答案】ABD【解析】由实数x ,y 满足方程224240x y x y +--+=可得点(,)x y 在圆()()22211x y -+-=上,作其图象如下,因为yx表示点(,)x y 与坐标原点连线的斜率, 设过坐标原点的圆的切线方程为y kx =22111k k -=+,解得:0k =或43k =,40,3y x ⎡⎤∴∈⎢⎥⎣⎦,max 43y x ⎛⎫∴= ⎪⎝⎭,min0y x ⎛⎫= ⎪⎝⎭,A ,B 正确; 22x y +表示圆上的点(,)x y 到坐标原点的距离的平方,圆上的点(,)x y 到坐标原点的距离的最大值为+1OC , 所以22x y +最大值为()21OC +,又2221OC + 所以22xy +的最大值为625+C 错,因为224240x y x y +--+=可化为()()22211x y -+-=, 故可设2cos x θ=+,1sin y θ=+,所以2cos 1sin 324x y πθθθ⎛⎫=+++=+ ⎪⎝⎭+,所以当=4πθ时,即2221x y ==x y +取最大值,最大值为32,D 对, 故选:ABD .9.代数式几何化最值—距离型例1.设(,)P x y 是圆22(2)1C x y -+=上任意一点,则22(5)(4)x y -++的最大值为()A .6B .25C .26D .36 【答案】【解析】22(5)(4)x y -++表示圆C 上的点到点(5,4)-的距离的平方,圆22(2)1C x y -+=的圆心(2,0)C ,半径为1, 圆心C 到点(5,4)-的距离为22(25)45-+=,22(5)(4)x y ∴-++的最大值是2(51)36+=.故选:D .例2.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB 312(|P A |2+|PB |2)的最大值为( ) A .33B .7+3C .8+3D .16+3【答案】C【解析】以线段AB的中点为原点,AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系.不妨令A(-1,0),则B(1,0),设P(x,y).由||||PAPB32222(1)3(1)x yx y++=-+(x-2)2+y2=3为P的轨迹方程.∴22222222||||(1)(1)1 22PA PB x y x yx y ++++-+==++,其中x2+y2可以看作圆(x-2)2+y2=3上的点(x,y)到点(0,0)的距离的平方,∴x2+y2的最大值为(232=7+3∴x2+y2+1的最大值为8+322||||2PA PB+的最大值为8+3。
有关圆的最值问题几种类型及方法

圆的最值问题一圆心到定直线的距离的最值问题例1 设P 是直线043:=-y x l 上的动点,PA,PB 是圆012222=+--+y x y x 的两条切线,C 是圆心,那么四边形PACB 的最小值是_____________.变式:已知)(y x P ,是直线)0(04>=++k y kx 上一动点,PA,PB 是圆:0222=-+y y x 的两条切线,A,B 是切点,若四边形PACB 最小面积是2,则k=_____________。
二圆上动点到定直线的距离的最值问题例2 圆012222=+--+y x y x上的点到直线2=-y x 距离的最大值是_______________。
变式:已知P 是圆122=+y x上的一点,Q 是直线052:=-+y x l 上的一点,求PQ 最小值。
三圆的切线长最值问题例3 从点P(m,3)向圆C:()()12222=+++y x 引切线,则切线长的最小值为_____________。
变式:由直线2+=x y 上的点向圆()()12y 422=++-x 引切线,怎切线的最小值为____________。
四与圆的弦长有关的最值问题例4 在圆06222=--+y x y x 内,过点E(0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为_______________。
变式:已知圆O 的方程是01028y 22=+--+y x x,过点M(3,0)的最短弦所在的直线方程是_____。
五圆中“斜率”最值问题例3 在平面直角坐标系xOy 中,圆C 的方程为0158y 22=+-+x x 。
若直线2y -=kx 上至少存在一点,使得以改点为圆心,1为半径的圆与圆有公共点,则k 的最大值是_________________。
变式:如果实数x,y 满足等式(),1222=+-y x 那么13y -+x 的取值范围________________。
初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。
求MP+NP的最小值。
例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。
求PC+CD的最小值。
例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。
求PE+PF的最小值。
类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。
例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。
问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。
方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。
与圆有关的最值问题

O B
2
P
r 2 po r (1 2sin ) po 1 1 2( ) po 2 2 2 设po t (t 1) 则PAPB (t 1)(1 t ) t t 3 2 2 3
C O x
3 5. 易得 PM 的最小值为 10
二、利用所求式的几何意义转化为线 性规划问题求最值
例2:若实数x、y满足 x y 2x 4 y 0 求(1)x-2y的最大值.
2 2
y 1 ( 2) x 2
的取值范围。 2 2 ( x 2) ( y 1) 的取值范围。 ( 3) (4) x y 1 的取值范围。
2 2 ( x 2) ( y 1) (3)
表示为圆上任意一点P到点A(2,1)距离的平方
P
因为 所以
PA [CA 5, CA 5]
. C
A(2,1)
PA2 ( x 2)2 ( y 1)2 [50 10 2,50 10 2]
(4) 因为圆上任一点P(x,y)到直线 x y 1 0 的距离
E M A N G C F H O x
解(1)令圆心C到弦EF的距离为 EF+GH 2( 4 d12 4 d 2 2 )
d1,到弦GH的距离为 d2,则
又 d12 d22 CA2 1
4 d12 4 d22 4 d12 4 d22 2 2
(当且仅当 d1 d 2
2 取等号) 2 故EF+GH 2 8 1 14 2
与圆有关的最值问题

与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。
圆中最值问题10种求法
圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中 cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2。
解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2 C.3 D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C。
专题09 圆中的范围与最值问题(知识梳理+专题过关)(解析版)
专题09圆中的范围与最值问题【知识梳理】涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地:(1)形如ax by --=μ的最值问题,可转化为动直线斜率的最值问题.(2)形如by ax t +=的最值问题,可转化为动直线截距的最值问题.(3)形如22)()(b y a x m -+-=的最值问题,可转化为曲线上的点到点(a ,b )的距离平方的最值问题解决圆中的范围与最值问题常用的策略:(1)数形结合(2)多与圆心联系(3)参数方程(4)代数角度转化成函数值域问题【专题过关】【考点目录】考点1:斜率型考点2:直线型考点3:距离型考点4:周长面积型考点5:长度型【典型例题】考点1:斜率型1.(2021·江西·高二期中(理))已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =()A .2B .12C .2-或12D .2或12-【答案】C【解析】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC =所以圆心C 到直线l :(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --==,=22320k k +-=,解得12k =或2k =-.故选:C2.(2021·山东泰安·高二期中)设点(),P x y 是曲线y =上的任意一点,则24y x --的取值范围是()A .1205⎡⎤⎢⎥⎣⎦,B .21255⎡⎤⎢⎥⎣⎦,C .[]0,2D .2,25⎡⎤⎢⎥⎣⎦【答案】B【解析】曲线y =表示以()1,0为圆心,2为半径的下半圆,如图所示:24y x --可表示点(),P x y 与点()4,2Q 连线斜率k 当直线PQ 与圆相切时:设直线方程为()24y k x -=-,即420kx y k --+=圆心到直线距离2d ==,解得125k =或0k =,又0y ≤,所以125k =,当直线经过点()1,0A -时,2245y x -=-,综上21255k ⎡⎤∈⎢⎥⎣⎦,故选:B.3.(2021·上海市控江中学高二期中)若直线:3(1)l y k x -=-与曲线:C y =不同公共点,则实数k 的取值范围是()A .4,3⎛⎫+∞ ⎪⎝⎭B .43,32⎛⎤⎥⎝⎦C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭【答案】B【解析】直线:3(1)l y k x -=-过定点(1,3),曲线:C y =(0,0)为圆心,1为半径,且位于y 轴上半部分的半圆,如图所示当直线l 过点(1,0)-时,直线l 与曲线有两个不同的交点,此时03k k =-+-,解得32k =.当直线l 和曲线C 相切时,直线和半圆有一个交点,圆心(0,0)到直线:3(1)l y k x -=-的距离1d ==,解得43k =结合图像可知,当4332k <≤时,直线l 和曲线C 恰有两个交点故选:B4.(多选题)(2021·湖北宜昌·高二期中)实数,x y ,满足22++20x y x =,则下列关于1yx -的判断正确的是()A .1yx -B .1yx -的最小值为C .1y x -的最大值为3D .1y x -的最小值为33-【答案】CD【解析】由题意可得方程22++20x y x =为圆心是()10C -,,半径为1的圆,则1yx -为圆上的点与定点()10P ,的斜率的值,设过()10P ,点的直线为()+1y k x =,即+0kx y k -=,则圆心到到直线+0kx y k -=的距离d r =1=,整理可得231k =,解得33k =±,所以1y x ⎡∈⎢-⎣⎦,即1y x -33-.故选:CD.5.(2021·广东·兴宁市叶塘中学高二期中)已知实数x ,y 满足方程22410x y x +-+=,求:(1)yx的最大值;(2)22x y +的最小值.【解析】(1)()222241023x y x x y +-+=⇒-+=,圆心()2,0,半径r =。
中考数学专题复习 圆的最值问题模型汇总
圆的最值问题知识储备最值问题的必要条件是至少有一个动点,因为是动态问题,所以才会有最值.在将军饮马问题中,折点P就是那个必须存在的动点.并且它的运动轨迹是一条直线,解题策略就是作端点关于折点所在直线的对称即可.当然,动点的运动轨迹是可以变的,比如P点轨迹也可以是一个圆,就有了第二类最值问题——辅助圆.在这类题目中,题目很少直接告诉我们动点轨迹是个圆,也很少把这个圆画出来,因此,结合题目给的条件,分析出动点的轨迹图形,将是我们面临的最大的问题.若已经确定了动点的轨迹圆,接下来求最值的问题就会变得简单了,比如:如右图,A为圆外一点,在圆上找一点P使得PA最小.类型一已知圆轨迹类典例分析【例1.1】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线L上有两点A、B,且OA=OB,∠APB=90°,直线L不经过点C,则AB的最小值为.【例1.2】如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A. B. C.3 D.2【练习】1.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ). A .194B .245C .5 D .2.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .3. 如图,AB 是⊙O 的弦,AB =5,点C 是⊙O 上的一个动点,且∠ACB =45°,点M ,N 分别是AB ,AC 的中点,则线段MN 长的最大值为( )A. 5B. 25C. 25D.225类型二 由定义构造辅助圆圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是以定点为圆心、定值为半径的圆或圆弧. 常见题型:折叠问题 【确定圆心半径的方法】 ①圆心:折痕中的定点;②半径:与定点(圆心)相连的(定)等长线段.典例分析【例2.1】如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 .【例2.2】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是。
圆中最值问题10种求法(供参考)
圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为.[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2C.3D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C.四、利用直径是圆中最长的弦求最值4.如图:半径为2.5的⊙O中,直径AB的两侧有定点C和动点P,已知BC:CA=4:3,点P在劣弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,(1)求∠P的正切值;(2)当CP⊥AB时,求CD和CQ的长;当点P运动到什么位置时,CQ取得最大值,并求出此时CQ的长.[分析]:易证明△ACB∽△PCQ,所以,即CQ=PC. 当PC最大时,CQ最大,而PC是⊙O 的动弦,当PC是⊙O的直径时最大.五、利用弧的中点到弦的距离最大求最值5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.[分析]:设BC边上的高为h因为S△ABC=BC h=×2h=h当h最大时S△ABC最大,当点A在优弧的中点时h最大.解:当点A为优弧的中点时,作AD⊥BC于D连接BO 即BD=CD=在Rt△BDO中,OD2=OB2-BD2=22-()2=1所以OD=1 所以AD=2+1=3所以S△ABC=×BC·AD=×2×3=3即△ABC面积的最大值为3六、利用周长一定时,圆的面积最大求最值6.用48米长的篱笆材料,在空地上围成一个绿化场地,现有两种方案:一种是围成正方形的场地,另一种是围成圆形场地,试问选用哪一种方案,围成的场地面积较大?并说明理由.[分析]:周长一定的几何图形,圆的面积最大.解:围成圆形场地的面积较大设S1、S2分别表示围成的正方形场地、圆形场地的面积则S1=()2=144 S2=π·()2=因为π<4 所以>所以>=144 所以S2>S1 所以应选用围成圆形场地的方案面积较大七、利用判别式求最值7.如图:在半径为1的⊙O中,AB是弦,OM⊥AB,垂足为M,求OM+AB的最大值.[分析]:可设AM=x,把OM用x的代数式表示出来,构造关于x的一元二次方程,然后利用判别式来求最值.解:设AM=x,在Rt△OAM中OM=所以OM+AB=+2x=a整理得:5x2-4ax+(a2-1)=0因为△=(-4a)2-4×5×(a2-1)≥0即a2≤5 所以a≤所以OM+AB的最大值为八、利用一条弧所对的圆周角大于圆外角求最值8.如图:海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为避免触礁,轮船P与A、B的张角∠APB的最大值为.[分析]:连接AC,易知∠ACB=∠AOB=40°,又因为∠ACB≥∠P,所以∠P的最大值为40°.解:如图:连接AC,根据圆周角定理可知∠ACB=∠AOB=×80°=40°又因为∠ACB≥∠P 即∠APB≤40°所以∠APB的最大值为40°九、利用经过⊙O内一定点P的所有弦中,与OP垂直的弦最短来求最值9.如图:⊙O的半径为5cm,点P为⊙O内一点,且OP=3cm,则过点P的弦AB长度的最小值为cm.[分析]:过P作AB⊥OP,交⊙O于A、B,则AB的长最小.解:在Rt△OAP中,AP=所以AB=2AP=2×4=8所以AB的最小值为8十、利用经过圆外一点与圆心的直线与⊙O的两个交点与点P的距离最大或最小求最值10.如图:点P为⊙O外一点,PQ切⊙O于点Q,⊙O的半径为3cm,切线PQ的长为4cm,则点P与⊙O上各点的连线长度的最大值为,最小值为.[分析]:过P、O两点作直线交⊙O于A、B,则PA的长度最大,PB的长度最小.解:连接OQ 因为PQ切⊙O于Q所以OQ⊥PQ在Rt△PQO中PQ2+OQ2=OP2即42+32=OP2 所以OP=5所以PB=5-3=2 PA=6+2=8所以点P与⊙O上各点连线长度的最大为8cm,最小值为2cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的问题探究类型一、“圆上一点到直线距离的最值”问题分析:求圆上一点到直线距离的最值问题,总是转化成求圆心到定直线的距离问题来解决。
1、求圆C: (x-2)2+(y+3)2=4上的点到直线l :x-y+2=0的最大、最小距离. 解析:作CH l ⊥交于H ,与圆C 交于A ,反向延长与圆交于点B 。
所以max min 2; 2.CH BH AH d d d d d =====-2、求圆C: (x-1)2+(y+1)2=2上的点与直线l : x-y+4=0距离的最大值和最小值. 解析:方法同第一题, max min BH d d d ===== 3、圆222=+y x 上的点到直线l :02543=++y x 的距离的最小值为________________.解析:方法同第一题, min 5d =类型二、“圆上一点到定点距离的最值”问题分析:本质是两点间距离。
涉及与圆相关的两点的距离,总是转化为圆心与定点距离问题来解决。
1.已知点P (x,y )是圆C : x 2+y 2-2x-4y+4=0上一点,求P 到原点的最大最小距离.解析:连接OC 与圆交于A ,延长OC 交于B.max min 1;1.OC OC d d r d d r =+==-=2.已知圆C :04514422=+--+y x y x 及点()3,2-Q ,若M 是圆C 上任一点,求MQ 最大值和最小值. 解析:方法同第一题,max Q min Q C C d d r d d r =+===-==3 .已知x,y 满足条件 x 2+y 2-2x-4y+4=0,求22y x +范围.解析:方程看作是圆C ,表达式几何意义是圆C 上点(,)x y 与(0,0)距离的范围,求max min ,d d 即可,与第一题答案相同.4.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求22)2()2(+++y x 范围. 解析: 表达式几何意义是圆C 上点(,)x y 与P (-2,-2)距离的最值的平方.max min 22max min 5,6, 4.36,16.[16,36].CP d d d d =====所以范围是5.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求z=x 2+y 2+2x+2y 范围.解析: 22(1)(1)2z x y =+++-表达式几何意义是圆C 上点(,)x y 与P (-1,-1)距离的最值的平方减去2.max min 22max min 2121)212[12CP d d z z ====-=+=-=--+所以范围是 6.已知圆()()143:22=-+-y x C ,点A (-1,0),B (1,0),点P 为圆上一动点,求22PB PA d +=的最大值和最小值及对应的P 点坐标. 解析:222222max min 2()2,.2(51)274;2(51)234.[34,74].d PA PB x y d d =+=++=++==-+=几何意义是点P 与原点O 距离的平方2倍加2|OC|=5,所以答案类型三、“过定点的弦长”问题1:已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=;(1)m R ∈时,证明l 与C 总相交。
(2)m 取何值时,l 被C 截得弦长最短,求此弦长。
解析:22(28)30,280,4, 3.,.,.1k =3,=-.:350.10.3||222510215.x m y x x y P k x y AB r d ---=-===-++==-=-=直径所求直线整理得到所以进而易判断在圆内所以直线总是与圆相交是直径时弦长最长垂直直径时弦长最短此时直线为圆心到直线的距离是弦长2、已知C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R).(1)求证:不论m 取什么实数时,直线l 与圆恒交于两点;(2)求直线l 被圆C 截得的线段的最短长度以及这时直线l 的方程. 解析:方法同第一题.(1)恒过点(3,1)P (2)垂直直径的直线是250,||4 5.x y AB --==弦长类型四、“切线长”问题分析:切线长问题总是转化为圆心到直线距离问题1、在直线2x +y +3=0上求一点P ,使由P 向圆C :x 2+y 2-4x =0引得的切线长长度为最小.解析:直线与圆相离,假设切点为Q ,组成直角三角形PQC ,切线长22||||r CP PQ -=,那么当||CP 最小时||PQ 最小。
进而计算圆心C 到直线的距离.51454549||,57min =-==PQ d2.一束光线从点A (-1,1)出发经x 轴反射到圆C :(x -2)2+(y -3)2=1的最短路程是________________. 解析:根据光学的对称原理,A 点关于x 轴的对称点是),(1-1-'A ,求.415||,5||'min '=-=-==r CA d CA 所以3.已知P 是直线0843=++y x 上的动点,PA ,PB 是圆0122:22=+--+y x y x C 的两条切线,A ,B 是切点,求四边形PACB 的面积的最小值解析:四边形APBC 中连接CP ,两个三角形,PAC PBC 全等,2min 22min min 12(||)||||12||||3||||1312 2.APBC APBC S r PA PA CP CP CP S PA CP =⋅⋅⋅==-===-=-=最小值为O 到直线距离所以4. 如图,已知圆1:22=+y x O 和定点A (2,1),由圆OA外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,且满足PA PQ =,(1)求实数a ,b 间满足的等量关系。
(2)求线段PQ 长的最小值。
(3)若以P 为圆心所做的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程。
解析:(1)做出切线,222222222|PQ |=|P ||P |,1(2)(1),230.A r A a b a b a b -=+-=-+-+-=进而得到|OP|得到化简得到(2)22222222min |PQ |=|P ||PQ |=|P |(2)(1)64|PQ |=(2)(3-2a 1)5(),556|PQ |5A A a b a a a -+--+-=-+=因为,所以=,由(1)知道b=3-2a 代入以上表达式,当时, (3) 相切时半径最小,假设半径为r,222min r 116631 1.()(1).55555r y =====-+-=-所以所以,当a=时,此时圆P 方程为(x-)类型五、利用“数形结合方法”解决直线与圆的问题(1)利用表达式的几何意义“斜率”解决问题1.若实数x ,y 满足()3222=+-y x ,则xy 的最大值是解析:max 0:(,)(0,0)0y x y x k --==表达式的几何意义是k=即圆上的点和原点的斜率,在第一象限相切时,斜率最大。
设直线斜率为k ,直线方程是y=kx,所以圆心到直线距离所以2.已知实数x 、y 满足,求的最大值与最小值。
解析:1)1()2(22=-+-y x xy z 1+=-:(,)(0,-1)+1,yx yxk--==(1)表达式的几何意义是k=即圆上的点和原点的斜率,设直线斜率为k,直线方程是y1=kx,所以圆心到直线距离解之得到3..圆C:04514422=+--+yxyx若点()b aN,在圆上,求33+-=abμ的最大值.解析:max3:(,)(3,3)(3)ba bak----==表达式的几何意义是k=即圆上的点和原点的斜率,设直线斜率为k,直线方程是kx-y+3k+3=0,所以圆心到直线距离解之得到(2)利用直线的“斜率,截距”几何意义解决问题1.若直线bxy+-=与曲线21yx--=恰有一个公共点,则b的取值范围是__________.解析:111 1.b b bb-<≤==-<≤答案:或.数形结合即可。
相切时相交时2.设集合}0,16),{(2≠-==yxyyxM,}),{(axyyxN+==,若φ=⋂NM,求实数a的取值范围.解析:22-4b b-≤>答案:或x+y=16上半部分,不含端点.数形结合即可.变式1、若φ≠⋂NM,则实数a的取值范围是__________.4b-<≤答案:变式2、若集合NM⋂中只有一个元素,则实数a的取值范围是__________.=4b b=答案:或变式3、若集合NM⋂中有两个元素,则实数a的取值范围是__________.4b<<答案:。