2022-2023学年八年级上册《全等三角形》培优练习题 含答案

合集下载

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

2019-2020学年八上数学《12.全等三角形》状元培优单元测试题(人教版版附答案)一、选择题1、如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).A.1组 B.2组 C.3组 D.4组2、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下哪个条件仍不能判定△ABE ≌△ACD( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3、如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.44、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是().A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形 B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形 D.所有的等边三角形都是全等三角形6、如图,已知,,与交于点,于点,于点,那么图中全等的三角形有()A.5对B.6对C.7对D.8对7、如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠BAD=∠ABC,∠ABD=∠BAC B.AD=BC,BD=ACC.BD=AC,∠BAD=∠ABC D.∠D=∠C,∠BAD=∠ABC8、小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确9、如图是两个全等三角形,则∠1=()A.62° B.72° C.76° D.66°10、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于( )A.65° B.95° C.45° D.100°11、数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线 B.一条高 C.一条角平分线D.不确定12、已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E二、填空题13、如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.14、如图,已知,,,则.15、如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.16、如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .17、如图所示,在平行四边形ABCD中,分别以AB.AD为边作等边△ABE和等边△ADF,分别连接CE.CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.三、简答题18、如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.19、如图,在平面直角坐标系中A.B坐标分别为(2,0),(-1,3),若△OAC与△OAB全等,(1)试尽可能多的写出点C的坐标;(2)在⑴的结果中请找出与(1,0)成中心对称的两个点。

2022-2023学年人教版八年级上册《全等三角形》单元复习

2022-2023学年人教版八年级上册《全等三角形》单元复习

2022年人教版八年级上册第12章《全等三角形》单元复习一.全等三角形的性质1.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DEB.∠BAD=∠CAEC.AB=AED.∠ABC=∠AED 2.若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30B.27C.35D.403.已知△ABC≌△A1B1C1,A和A1对应,B和B1对应,∠A=70°,∠B1=50°,则∠C的度数为()A.70°B.50°C.120°D.60°4.如图,△ABC≌△DCB,点A和点D是对应点,若AB=6cm,BC =8cm,AC=7cm,则DB的长为()A.6cmB.8cmC.7cmD.5cm5.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点AB.点BC.点CD.点D6.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=50°,AB=18cm,则∠C′=,A′B′=.7.如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=°.8.如图,△EFG≌△NMH,EH=2.4,HN=5.1,则GH的长度是.9.如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.10.如图所示,已知△ABE≌△ACD.(1)如果BE=6,DE=2,求BC的长;(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.二.全等三角形的判定11.下列说法不正确的是()A.两边和它们的夹角分别相等的两个三角形全等B.两角分别相等且其中一组等角的对边相等的两个三角形全等C.底边和顶角分别相等的两个等腰三角形全等D.两边和其中一边的对角分别相等的两个三角形全等12.下列选项所给条件能画出唯一△ABC的是()A.AC=3,AB=4,BC=8B.∠A=50°,∠B=30°,AB=2 C.∠C=90°,AB=90D.AC=4,AB=5,∠B=60°13.如图,已知AC=AD,再添加一个条件仍不能判定△ABC≌△ABD 的是()A.∠C=∠D=90°B.∠BAC=∠BADC.BC=BDD.∠ABC=∠ABD14.如图,若AC=DF,BC=EF,AD=BE,∠A=65°,∠C=85°,则∠E的度数是()A.30°B.40°C.65°D.85°15.如图,DE⊥AC,BF⊥AC,垂足分别是E,F,且DE=BF,若利用“HL”证明△DEC≌△BFA,则需添加的条件是()A.EC=FAB.DC=BAC.∠D=∠BD.∠DCE=∠BAF16.如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论△ADE≌△ABC成立,则这个条件是.17.如图,点A,B,D在同一条直线上,∠A=∠CBE=∠D=90o,请你只添加一个条件,使得△ABC≌△DEB.(1)你添加的条件是.(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定△ABC与△DEB全等的理是.18.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为厘米/秒.19.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.20.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=(填写图中现有的一条线段);(2)证明你的结论.三.全等三角形的应用21.利用全等三角形测量距离的依据是()A.全等三角形的对应角相等B.全等三角形的对应边相等C.大小和形状相同的两个三角形全等D.三边对应相等的两个三角形全等22.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSSB.ASAC.AASD.SAS23.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去24.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSSB.SASC.ASAD.AAS25.小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸到里边直接测,于是她拿来了两根长度相同的细木条,并且把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边26.如图,把两根钢条的中点连在一起,就可以做成一个测量工件内槽宽AB的卡钳.其测量的依据是.27.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是米.28.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD=a,EH=b,则四边形风筝的周长是.29.公路上,A,B两站相距25千米,C、D为两所学校,DA⊥AB 于点A,CB⊥AB于点B,如图,已知DA=15千米,现在要在公路AB上建一报亭H,使得C、D两所学校到H的距离相等,且∠DHC=90°,问:H应建在距离A站多远处?学校C到公路的距离是多少千米?30.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离:现在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE =CB;连接DE并测量出它的长度.(1)求证:DE=AB;(2)如果DE的长度是8m,则AB的长度是多少?四.角平分线的性质与判定31.已知EF是△EBC的角平分线,FD⊥EB于D,且FD=3cm,则点F到EC的距离是()A.2cmB.3cmC.4cmD.6cm32.已知如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM 上的一个动点,若∠MON=60°,OP=4,则PQ的最小值是()A.2B.3C.4D.不能确定33.如图,OP平分∠MON,PA⊥ON,PB⊥OM,垂足分别为A、B,若PA=3,则PB=()A.2B.3C.1.5D.2.534.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3B.4C.5D.635.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点36.如图,点P在∠AOB内,因为PM⊥OA,PN⊥OB,垂足分别是M、N,PM=PN,所以OP平分∠AOB,理由是.37.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是.38.如图,已知△ABC的周长是10cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=0.8cm,△ABC的面积为cm2.39.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.40.如图,点P是∠MON中一点,PA⊥OM于点A,PB⊥ON于点B,连接AB,∠PAB=∠PBA.求证:OP平分∠MON.41.如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)DM⊥AM.参考答案一.全等三角形的性质1.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.2.解:∵△ABC≌△DEF,∴BC=EF=30,故选:A.3.解:∵△ABC≌△A1B1C1,A和A1对应,B和B1对应,∠A=70°,∠B1=50°,∴∠B=∠B1=50°,则∠C的度数为:180°﹣50°﹣70°=60°.故选:D.4.解:∵△ABC≌△DCB,AC=7cm,∴AC=BD=7cm.故选:C.5.解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.6.解:∵△ABC≌△A′B′C′,∠C=50°,AB=18cm,∴∠C′=∠C=50°,A′B′=AB=18cm,故答案为:50°;18cm.7.解:∵△ABC≌△DEF,∴∠E=∠B=120°,∴∠D=180°﹣∠E﹣∠F=40°,故答案为:40.8.解:∵△EFG≌△NMH,∴EG=HN=5.1,∴GH=EG﹣EH=5.1﹣2.4=2.7,故答案为:2.7.9.解:∵△ACF≌△ADE,AD=12,AE=5,∴AC=AD=12,AE=AF=5,∴DF=12﹣5=7.10.解:(1)∵△ABE≌△ACD,∴BE=CD,∴BE=6,DE=2,∴CE=4,∴BC=BE+CE=6+4=10;(2)∵△ABE≌△ACD,∴∠BAE=∠CAD,∵∠BAC=75°,∠BAD=30°,∴∠BAE=∠CAD=45°,∴∠DAE=∠CAD﹣∠CAE=45°﹣30°=15°.二.全等三角形的判定11.解:A、两边和它们的夹角分别相等的两个三角形全等,所以A 选项的说法正确;B、两角分别相等且其中一组等角的对边相等的两个三角形全等,所以B选项的说法正确;C、底边和顶角分别相等的两个等腰三角形全等,所以C选项的说法正确;D、两边和其中一边的对角分别相等的两个三角形不一定全等,所以D选项的说法不正确.故选:D.12.解:A、3+4=7<8,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据∠A=50°,∠B=30°,AB=2能画出唯一△ABC,故此选项正确;C、根据∠C=90°,AB=90不能画出唯一三角形,故本选项错误;D、根据AC=4,AB=5,∠B=60°不能画出唯一三角形,故本选项错误;故选:B.13.解:A、根据HL可判定△ABC≌△ABD,故本选项不符合题意;B、根据SAS可判定△ABC≌△ABD,故本选项不符合题意;C、根据SSS可判定△ABC≌△ABD,故本选项不符合题意;D、根据SSA不能判定△ABC≌△ABD,故本选项符合题意;故选:D.14.解:∵AD=BE,∴AB=DE,且AC=DF,BC=EF,∴△ABC≌△DEF(SSS),∴∠A=∠FDE=65°,∠C=∠F=85°,∴∠E=180°﹣∠FDE﹣∠F=30°,故选:A.15.解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°,∵DE=BF,∴当添加条件DC=BA时,可利用“HL”证明△DEC≌△BFA.故选:B.16.解:增加的条件为DE=BC,理由:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,∵AD=AB,DE=BC,∴△ADE≌△ABC不一定成立,故答案为:DE=BC.17.解:(1)∵∠A=∠CBE=∠D=90o,∴∠C=∠DBE,当添加AB=DE或BC=BE,则可根据“AAS”判断△ABC≌△DEB;当添加AC=DB,则可根据“ASA”判断△ABC≌△DEB;(2)有(1)得判定△ABC与△DEB全等的理是“AAS”或“ASA”.故答案为AB=DE或BC=BE或AC=DB;AAS”或“ASA”.18.解:∵AB=16cm,BC=10cm,点D为AB的中点,∴BD=×16=8cm,设点P、Q的运动时间为t,则BP=2t,PC=(10﹣2t)cm①当BD=PC时,10﹣2t=8,解得:t=1,则BP=CQ=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=10cm,∴BP=PC=5cm,∴t=5÷2=2.5(秒).故点Q的运动速度为8÷2.5=3.2(厘米/秒).故答案为:2或3.2.19.证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).20.解:(1)BF=AE,故答案为:AE;(2)证明:∵CF⊥BE,∴∠A=∠BFC=90°,∵AD∥BC,∴∠AEB=∠FBC,在△AEB和△FBC中,,∴△AEB≌△FBC(AAS),∴BF=AE.三.全等三角形的应用21.解:利用全等三角形测量距离的依据是全等三角形的对应边相等,故选:B.22.解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.23.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故选:C.24.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.25.证明:在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD.故选:A.26.解:∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′.在△AOB和△A′OB′中,∵,∴△AOB≌△A′OB′(SAS),∴AB=A′B′.故答案为SAS.27.解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=20.故答案为:20.28.解:△DEH和△DFH中ED=FD,∠EDH=∠FDH,DH=DH∴△DEH≌△DFH∴EH=FH=b又∵ED=FD=a,EH=b∴该风筝的周长=2a+2b故填2a+2b29.解:∵∠DHC=90°,∴∠AHD+∠CHB=90°,∵DA⊥AB,∴∠D+∠AHD=90°,∴∠D=∠CHB,在△ADH和△BHC中,,∴△ADH≌△BHC(AAS),∴AD=BH=15千米,AH=BC,∵A,B两站相距25千米,∴AB=25千米,∴AH=AB﹣BH=25﹣15=10千米,∴学校C到公路的距离是10千米.答:H应建在距离A站10千米处,学校C到公路的距离是10千米.30.(1)证明:在△CDE和△CAB中,,∴△CDE≌△CAB(SAS),∴DE=AB;(2)解:∵DE=AB,DE=8m,∴AB=8m.答:AB的长度是8m.四.角平分线的性质与判定31.解:∵FD⊥EB于D,且FD=3cm,∴点F到EB的距离为3cm,∵EF是△EBC的角平分线,∴点F到EB和EC的距离相等,∴点F到EC的距离是3cm.故选:B.32.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:A.33.解:∵OP平分∠MON,PA⊥ON,PB⊥OM,∴PB=PA=3,故选:B.34.解:作DE⊥OB于E,如图,∵OC是∠AOB的角平分线,DP⊥OA,DE⊥OB,∴DE=DP=4,∴S△ODQ=×3×4=6.故选:D.35.解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.故选:C.36.解:∵PM⊥OA,PN⊥OB,PM=PN,∴OPOP平分∠AOB,(在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:在角的内部,到角的两边距离相等的点在这个角的平分线上.37.解:过P作PE⊥OA于点E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD,∵PD=2,∴PE=2,∴点P到边OA的距离是2.故答案为2.38.解:连接OA,作OE⊥AB于点E,用OF⊥AC于点F,∵BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=0.8cm,∴OD=OE=OF=0.8cm,∴S△ABC=S△OAB+S△OAC+S△OBC===故答案为4.39.解:如图,点P为所作.40.证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于点A,PB⊥ON于点B,∴OP平分∠MON.41.(1)AM平分∠DAB.证明:过点M作ME⊥AD,垂足为E,∵DM平分∠ADC,∴∠1=∠2,∵MC⊥CD,ME⊥AD,∴ME=MC(角平分线上的点到角两边的距离相等),又∵MC=MB,∴ME=MB,∵MB⊥AB,ME⊥AD,∴AM平分∠DAB(到角的两边距离相等的点在这个角的平分线上).天天向上独家原创(2)DM⊥AM.证明:∵∠B=∠C=90°,∴DC⊥CB,AB⊥CB,∴CD∥AB(垂直于同一条直线的两条直线平行),∴∠CDA+∠DAB=180°(两直线平行,同旁内角互补)又∵∠1=∠CDA,∠3=∠DAB(角平分线定义)∴2∠1+2∠3=180°,∴∠1+∠3=90°,∴∠AMD=90度.即DM⊥AM.31/ 31。

部编数学八年级上册专题03等边三角形(解析版)含答案

部编数学八年级上册专题03等边三角形(解析版)含答案

2022-2023学年八年级数学上册章节同步实验班培优题型变式训练(人教版)专题03 等边三角形【题型1】等边三角形的性质1.(2022·全国·八年级课时练习)下列条件中,不能判断ABC V 是等边三角形的是( ).A .AB AC =,60B Ð=oB .AB AC =,B A Ð=ÐC .60A B Ð=Ð=oD .2A B CÐ+Ð=Ð【答案】D【分析】根据等边三角形的定义和判定定理判断即可.【详解】解:A 选项:∵AB =AC .∠B =60°.∴△ABC 是等边三角形,故A 选项不符合题意;B 选项:∵∠B =∠A ,∴AC =BC ,∵AB =AC ,∴AB =AC =BC ,∴△ABC 是等边三角形,故B 选项不符合题意;C 选项:∵∠A =∠B =60°,∠C =180°−∠A −∠B =60°,∴∠A =∠B =∠C ,∴AB =AC =BC ,∴△ABC 是等边三角形,故C 选项不符合题意;D 选项:∵∠A +∠B =2∠C ,∠A +∠B +∠C =180°,∴∠C =60°,不能判断△ABC 是等边三角形,故D 选项符合题意,故选:D .【点睛】本题考查了等边三角形的判定,解题的关键是熟悉等边三角形的定义及等边三角形的判定定理.注意:等边三角形的判定定理有:①三边都相等的三角形是等边三角形,②三角都相等的三角形是等边三角形,③有一个角等于60°的等腰三角形是等边三角形.【变式1-1】2.(2022·全国·八年级专题练习)如图,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为____°.【答案】60【分析】根据等边三角形的性质可得AB BC =,A ABC CB =Ð∠,证明△ABD ≌△BCE (SAS ),根据全等三角形的性质可得∠1=∠CBE ,根据三角形外角的性质可得∠2=∠1+∠ABE ,继而根据等量代换可得∠2=∠CBE +∠ABE =∠ABC ,即可求解.【详解】解:∵△ABC 是等边三角形,∴AB BC =,A ABC CB =Ð∠,在△ABD 和△BCE 中,AB BC ABC ACB BD CE =ìïÐ=Ðíï=î,∴△ABD ≌△BCE (SAS ),∴∠1=∠CBE ,∵∠2=∠1+∠ABE ,∴∠2=∠CBE +∠ABE =∠ABC =60°.故答案为:60.【点睛】本题考查了等边三角形的性质,三角形外角的性质,全等三角形的性质与判定,掌握等边三角形的性质是解题的关键.【题型2】等边三角形的判定1.(2021·辽宁·辽河油田实验中学八年级阶段练习)如图,已知P 、Q 是△ABC 的BC 边上的两点,BP =PQ =QC =AP =AQ ,则∠BAC 的大小为( )A .120°B .110°C .100°D .90°【答案】A 【分析】根据等边三角形的性质,得∠PAQ =∠APQ =∠AQP =60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP =∠CAQ =30°,从而求解.【详解】解:∵PQ =AP =AQ ,∴△APQ 是等边三角形,∴∠PAQ =∠APQ =∠AQP =60°,∵BP =AP , QC =AQ∴∠B =∠BAP ,∠C =∠CAQ .又∵∠BAP +∠ABP =∠APQ =60°,∠C +∠CAQ =∠AQP =60°,∴∠BAP =∠CAQ =30°.∴120BAC BAP PAQ CAQ Ð=Ð+Ð+Ð=°.故∠BAC 的度数是120°.故选:A .【点睛】此题主要考查了运用等边三角形的性质与判定、等腰三角形的性质以及三角形的外角的性质.【变式2-1】2.(2021·辽宁·辽河油田实验中学八年级阶段练习)如图,在等边△ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD上,且2ED=BC,则∠ACE=_______【题型3】等边三角形的判定和性质1.(2022·山东·济南市济阳区垛石街道办事处中学八年级阶段练习)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm.若AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN=_________.【答案】2cm【分析】作辅助线来沟通各角之间的关系,首先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【详解】连接AM,AN,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠MAB=∠B=∠CAN=∠C=30°∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,∵BC=6cm,∴MN=2cm.故答案为:2cm.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.【变式3-1】2.(2022·福建·莆田哲理中学八年级期末)如图,AB =AC ,AE =EC =CD ,∠A =60°,延长DE 交于AB 于F ,若EF =2,则DF =_________.【答案】6【分析】由AB AC =,60A Ð=°得到△ABC 是等边三角形,由等边三角形的性质和AE EC CD ==,推出BE =4,再由∠DBE =∠CDE =30°,推出ED =BE =4,从而求出DF 的长度.【详解】解:∵AB AC =,60A Ð=°,∴△ABC 是等边三角形,又∵AE EC =,∴∠AEB =90°,∠ABE =∠DBE =30°,∵∠ACB =60°,EC CD =,∴∠CED =∠CDE =30°,∴∠AEF=30°,∴∠FEB =60°,∴∠BFE =90°,∵2EF =,∴BE =4,∵∠DBE=∠CDE =30°,∴ED=BE =4,∴DF = ED+EF =6.故答案为6.【点睛】本题考查了等腰三角形的判定与性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,解题的关键是根据已知条件推出△BEF 是直角三角形.【题型4】含30度角的直角三角形1.(2020·湖北·公安县教学研究中心八年级期中)如图,∠B =∠D =90°,AB =AD ,∠2=60°,BC =5,则AC =( )A .5B .10C .15D .2.5【答案】B 【分析】利用HL 证明Rt △ACB ≌Rt △ACD ,推出∠1=30°,再利用含30度角的直角三角形的性质即可求解.【详解】解:∵∠B =∠D =90°,AB =AD ,AC =AC ,∴Rt △ACB ≌Rt △ACD (HL ),∴∠ACB =∠ACD =60°,∴∠1=30°,∵BC =5,∴AC =2BC =10,故选:B .【点睛】本题考查全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是证明Rt △ACB ≌Rt △ACD .【变式4-1】2.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC D 中,90C Ð=°,BE 平分ABC Ð,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.【答案】6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =Ð=Ð=Ð,再根据三角形的内角和定理可得30CBE Ð=°,设AE BE x ==,则9CE x =-,在Rt BCE V 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE Q 平分ABC Ð,ABE CBE \Ð=Ð,ED Q 垂直平分AB ,AE BE \=,ABE A \Ð=Ð,ABE CBE A \Ð=Ð=Ð,又90C Ð=°Q ,90ABE CBE A \Ð+Ð+Ð=°,解得30CBE Ð=°,设AE BE x ==,则9CE AC AE x =-=-,Q 在Rt BCE V 中,90C Ð=°,30CBE Ð=°,2BE CE \=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.一.选择题1.(2020·全国·九年级专题练习)如图,将一副三角尺如图所示叠放在一起,若12AB cm =,则阴影部分的面积是( )A .12B .18C .24D .362.(2022·广东清远·八年级期中)如图,在Rt ABC V 中,90ACB Ð=°,30A Ð=°,1BC =,则AB =( )A .2B C D .1.5【答案】A 【分析】根据含30°角的直角三角形的性质定理得出AB =2BC ,代入求出即可.【详解】解:Q 在Rt ABC D 中,90ACB Ð=°,30A Ð=°,2AB BC \=,1BC =Q ,2AB \=,故选:A .【点睛】本题考查了含30°角的直角三角形的性质定理,能根据含30°角的直角三角形的性质定理得出AB =2BC 是解此题的关键.3.(2022·江苏·八年级单元测试)如图,在等边△ABC 中,AB =4cm ,BD 平分∠ABC ,点E 在BC 的延长线上,且30E Ð=o ,则CE 的长是( )A .1cmB .2cmC .3cmD .4cm4.(2022·全国·八年级课时练习)如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC =6,则DE 的长为( )A .1B .2C .3D .45.(2021·贵州·铜仁市第十一中学八年级期中)如图,D 是等边ABC V 的边AC 上的一点,E 是等边ABC V外一点,若BD CE =,12Ð=Ð,则对ADE V 的形状最准确的是( ).A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形【答案】C 【分析】先根据已知利用SAS 判定△ABD ≌△ACE 得出AD =AE ,∠BAD =∠CAE =60°,从而推出△ADE 是等边三角形.【详解】解:∵三角形ABC 为等边三角形,∴AB =AC ,∵BD =CE ,∠1=∠2,在△ABD 和△ACE 中,12AB AC BD CE =ìïÐ=Ðíï=î,∴△ABD ≌△ACE (SAS ),∴AD =AE ,∠BAD =∠CAE =60°,∴△ADE 是等边三角形.故选:C .【点睛】本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用.6.(2021·江苏·九年级专题练习)如图,一块三角形空地上种草皮绿化,已知AB =20米,AC =30米,∠A =150°,草皮的售价为a 元/米2,则购买草皮至少需要( )A .450a 元B .225a 元C .150a 元D .300a 元【答案】C 【详解】如图,过点C 作CD ⊥BA 交BA 的延长线于点D ,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30m,∴CD=15m,∵AB=20m,∴S△ABC=AB×CD÷2=×20×15÷2=150m2,∵草皮的售价为a元/米2,∴购买这种草皮的价格:150a元.故选C.二、填空题7.(2022·广东·平洲一中八年级期中)如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=_____cm.8.(2022·上海·七年级专题练习)如图,已知O是等边△ABC内一点,D是线段BO延长线上一点,且Ð=_____.Ð=120°,那么BDC=,AOBOD OA【答案】60°【分析】由AOB Ð的度数利用邻补角互补可得出60AOD Ð=°,结合OD OA =可得出AOD D 为等边三角形,而根据旋转全等模型由SAS 易证出BAO CAD D @D ,根据全等三角形的性质可得出120ADC AOB Ð=Ð=°,再根据BDC ADC ADO Ð=Ð-Ð即可求出BDC ∠的度数.【详解】解:ABC D Q 为等边三角形,AB AC \=,60BAC Ð=°.120AOB Ð=°Q ,180AOD AOB Ð+Ð=°,60AOD \=°∠.又OD OA =Q ,AOD \D 为等边三角形,AO AD \=,60OAD Ð=°,60ADO Ð=°.60BAO OAC OAC CAD Ð+Ð=Ð+Ð=°Q ,BAO CAD \Ð=Ð.在BAO D 和CAD D 中,AB AC BAO CAD AO AD =ìïÐ=Ðíï=î,()BAO CAD SAS \D @D ,120ADC AOB \Ð=Ð=°,60BDC ADC ADO \Ð=Ð-Ð=°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质以及角的计算,通过证明BAO CAD D @D ,找出120ADC AOB Ð=Ð=°是解题的关键.9.(2022·山东临沂·八年级期末)已知等腰ABC V 的一底角∠B =15°,且斜边AB =6cm ,则ABC V 的面积为__10.(2020·辽宁阜新·中考真题)如图,直线a,b过等边三角形ABC顶点A和C,且//a b,142Ð=°,则2Ð的度数为________.【答案】102°【分析】根据题意可求出BACÐ的度数,再根据两直线平行内错角相等即可得出答案.【详解】Q三角形ABC为等边三角形\Ð=°BAC60//Qa b\Ð=Ð+Ð=°+°=°BAC214260102故答案为:102°.【点睛】本题考查了平行线的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.11.(2022·内蒙古·呼和浩特市回民区秋实学校八年级阶段练习)如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE = ,则BC =________.12.(2022·全国·八年级专题练习)如图,在△ABC 中,AB AC =,点D 在BC 上,AD DE =,如果20BAD Ð=o ,∠AED =60o ,那么∠EDC 的度数为___度.【答案】10【分析】先证明△ADE 是等边三角形,从而得到∠ADE =∠AED =60°,再根据等腰三角形的性质与三角形外角的性质得到∠EDC =∠AED -∠C =60°-∠C ,∠EDC =∠ADC -∠ADE =∠B +∠BAD -∠ADE =∠B -40°,据此求解即可.【详解】解:∵AD =DE ,∠AED =60°,∴△ADE 是等边三角形,∴∠ADE =∠AED =60°,∵AB =AC ,∴∠B =∠C ,∵∠ADC =∠B +∠BAD ,∠AED =∠C +∠EDC ,∴∠EDC =∠AED -∠C =60°-∠C ,∠EDC =∠ADC -∠ADE =∠B +∠BAD -∠ADE =∠B -40°,∴2∠EDC =60°-∠C +∠B -40°,∴∠EDC =10°,故答案为:10.【点睛】本题主要考查了等边三角形的性质与判定,等腰三角形的性质,三角形外角的性质,证明△ADE 是等边三角形是解题的关键.三、解答题13.(2021·辽宁营口·九年级期中)ABC V 与CDE △都是等边三角形,连接AD 、BE .(1)如图①,当点B 、C 、D 在同一条直线上时,则BCE Ð=______度;(2)将图①中的CDE △绕着点C 逆时针旋转到如图②的位置,求证:AD BE =.【答案】(1)120;(2)证明见解析.【分析】(1)根据CDE △是等边三角形及点B 、C 、D 在同一条直线上即可求解;(2)证明BCE ACD D D ≌即可求解.【详解】解:(1)∵CDE △是等边三角形,∴60DCE Ð=°,∵点B 、C 、D 在同一条直线上,∴180BCE DCE ÐÐ+=°,∴180120BCE DCE ÐÐ=°-=°(2)∵ABC V 与CDE △都是等边三角形,∴BC =AC ,CE =CD ,∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,∴∠BCE =∠ACD ,在BCE V 与ACD △中,BC AC BCE ACD CE CD =ìïÐ=Ðíï=î,∴()BCE ACD SAS D D ≌,∴BE =AD .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质;解题的关键是熟练掌握全等三角形的判定方法.14.(2021·江苏·南通田家炳中学一模)如图,已知点D 、E 在ABC V 的边BC 上,AB AC =,AD AE =.(1)求证:BD CE =;(2)若AD BD DE CE ===,求BAE Ð的度数.【答案】(1)证明见解析;(2)90o.【分析】(1)作AF BC ^于点F ,利用等腰三角形三线合一的性质得到BF CF =,DF EF =,相减后即可得到正确的结论;(2)根据等边三角形的判定得到ADE V 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF BC ^于F .Q AB AC =,AD AE =,\BF CF =,DF EF =,15.(2021·江西·信丰县第七中学八年级阶段练习)如图,△ABC中,∠A=90°,∠B=60°,BC的垂直平分线交BC与点D,交AC于点E.求证:(1)AE=DE;(2)若AE=6,求CE的长.【答案】(1)证明见解析;(2)12.【分析】(1)由垂直平分线可得EB=EC,则得∠EBC=∠C=30°=∠ABE,由角平分线性质可得AE=DE;(2)根据直角三角形中,30°所对直角边为斜边的一半.即可得到答案.【详解】(1)证明:连接BE,∵∠A=90°,∠B=60°,∴∠C=30°.∵DE垂直平分BC,16.(2022·江苏·八年级专题练习)如图,点C 为线段AB 上一点,ACM V ,CBN V 是等边三角形,直线AN MC 、交于点E ,直线BM CN 、交于点F .(1)求证:AN BM =;(2)求证:EC FC =;(3)求证://AB EF .【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)只需要证明△CAN ≌△CMB 即可得到答案;(2)根据△CAN ≌△CMB 得到∠EAC =∠FNC ,再由AC =MC ,∠ACE =∠MCF =60°,即可证明△AEC ≌△MFC ,得到CE =CF ;(3)根据CE =CF ,∠ECF =60°,推出△ECF 是等边三角形,则∠CEF =∠ACE =60°,即可得证.【详解】解:(1)∵△ACM 和△CBN 都是等边三角形,∴AC =MC ,CN =CB ,∠ACM =∠BCN =60°,∴∠MCN =180°-∠ACM -∠BCN =60°,∴∠CAN =∠ACM +∠MCN =∠MCN +∠BCN =∠BCM =120°,∴△CAN ≌△CMB (SAS ),∴AN =BM ;(2)∵△CAN≌△CMB,∴∠EAC=∠FNC,∵AC=MC,∠ACE=∠MCF=60°,∴△AEC≌△MFC(ASA),∴CE=CF;(3)∵CE=CF,∠ECF=60°,∴△ECF是等边三角形,∴∠CEF=∠ACE=60°,∴EF∥AB.【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,平行线的判定,解题的关键在于能够熟练掌握相关知识进行求解.17.(2022·全国·八年级课时练习)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E.(1)如图1,连接AD,AE,DE,当BC=2BD时,根据边的关系,可判定△ADE的形状是_____三角形;(2)如图2,当点D在BC延长线上时,连接AD,AE,CE,BE,延长AB到点G,使BG=CD,连接CG,交BE于点F,F为BE的中点,若AE=12,则CF的长为_____.【答案】等边 6【分析】(1)由等边三角形的性质得出AD=AE,∠DAC=∠EAC=30°,证出∠DAE=60°,由等边三角形的判定可得出结论;(2)证明△ACE≌△CBG(S A S),由全等三角形的性质得出AE=CG,证△CEF≌△GBF(AA S),由全等三角形的性质得出CF=GF,则可得出答案.【详解】解:(1)∵BC=2BD,∴BD=CD,∵△ABC是等边三角形,∴∠BAD=∠DAC=30°,∵点D关于直线AC的对称点为点E,∴AD=AE,∠DAC=∠EAC=30°,∴∠DAE=60°,∴△ADE是等边三角形.故答案为:等边;(2)∵点D关于直线AC的对称点为点E.∴△ACD≌△ACE,∴CE=CD,∠ACD=∠ACE,∵BG=CD,∴CE=BG,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AC=CB,∴∠ACD=∠GBC=120°,∴∠ACE=∠GBC=120°,∴△ACE≌△CBG(S A S),∴AE=CG,∵∠BCE=∠ACE﹣∠ACB=60°,∴∠BCE+∠BGC=180°,∴BG∥CE,∴∠G=∠FCE,∵F为BE的中点,∴BF=EF,∵∠BFG=∠CFE,∴△CEF≌△GBF(AA S),∴CF=GF,18.(2021·河北唐山·八年级期末)在三角形纸片ABC 中,90ABC Ð=°,30A Ð=°,4AC =,点E 在AC 上,3AE =.将三角形纸片ABC 按图中方式折叠,使点A 的对应点A ¢落在AB 的延长线上,折痕为ED ,A E ¢交BC 于点F .(1)求CFE Ð的度数;(2)求BF 的长度.【答案】(1)60°;(2)1.【分析】(1)先根据折叠的性质可得30A A ¢Ð=Ð=°,再根据邻补角的定义可得90A BF =¢Ð°,然后根据直角三角形的性质可得60A FB ¢Ð=°,最后根据对顶角相等即可得;(2)先根据线段的和差可得1CE =,再根据等边三角形的判定与性质可得1EF CE ==,然后根据折叠的性质可得3A E AE ¢==,从而可得2A F ¢=,最后利用直角三角形的性质即可得.【详解】(1)由折叠的性质得:30A A ¢Ð=Ð=°,90ABC Ð=°Q ,点A ¢落在AB 的延长线上,18090ABC A BF ¢Ð=°Ð=-\°,9060A FB A ¢¢\Ð=°-Ð=°,由对顶角相等得:60CFE A FB ¢Ð=Ð=°;(2)4,3C E A A ==Q ,1CE AC AE \=-=,Q 在ABC V 中,90ABC Ð=°,30A Ð=°,9060C A \Ð=°-Ð=°,由(1)知,60CFE Ð=°,。

第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册

第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册

人教版2021-2022年八年级上册数学全等三角形、等腰三角形(培优卷1)1.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.2.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.3.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.4.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?5.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D,F为BC边上的两点,CF =DB,连接AD,过点C作CE⊥AD于点G,交AB于点E,连接EF.(1)若∠DAB=15°,AD=6,求线段GD的长度;(2)求证:∠EFB=∠CDA;(3)若∠FEB=75°,试找出AG,CE,EF之间的数量关系,直接写出结论.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).(1)如图1,DE与AC交于点P,观察并猜想BD与DP的数量关系:.(2)如图2,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明,如果不成立,请说明理由;(3)若DE与AC延长线交于点P,BD与DP是否相等?请画出图形并写出你的结论,无需证明.7.【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.9.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.10.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF =AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.11.如图,已知BC>AB,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°.12.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:(1)图(1)中线段BE、EF、FD之间的数量关系是;(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF =45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.13.如图,在四边形ABCD中,AB=BC=AD,∠ADC=90°,AD∥BC.(1)求证:四边形ABCD是正方形;(2)如图,点E在BC上,连接AE,以AE为斜边作等腰Rt△AEF,点F在正方形ABCD 的内部,连接DF,求证:DF平分∠ADC;(3)在(2)的条件下,延长EF交CD的延长线于点H,延长DF交AE于点M,连接CM交EF于点N,过点E作EG∥AF交DC的延长线于点G,若∠BGE+2∠FEC=135°,DH=1,求线段MN的长.14.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.15.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.16.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC =90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.。

保定市八年级数学上册第十二章《全等三角形》测试题(培优专题)

保定市八年级数学上册第十二章《全等三角形》测试题(培优专题)

一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .1B解析:B【分析】 先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm ,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm B解析:B【分析】 过点O 作MN ,MN ⊥AB 于M ,证明MN ⊥CD ,则MN 的长度是AB 和CD 之间的距离;然后根据角平分线的性质,分别求出OM 、ON 的长度,再把它们求和即可.【详解】如图,过点O 作MN ,MN ⊥AB 于M ,交CD 于N ,∵AB ∥CD ,∴MN ⊥CD ,∵AO 是∠BAC 的平分线,OM ⊥AB ,OE ⊥AC ,OE =3cm ,∴OM =OE =3cm ,∵CO 是∠ACD 的平分线,OE ⊥AC ,ON ⊥CD ,∴ON =OE =3cm ,∴MN =OM +ON =6cm ,即AB 与CD 之间的距离是6cm ,故选B【点睛】此题主要考查角平分线的性质和平行线之间的距离,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.3.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA C解析:C【分析】 根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.4.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm C解析:C【分析】 延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C .【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S. 5.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D 10B解析:B【分析】 根据已知条件可以得出∠E=∠ADC=90︒,进而得出∆CEB ≅∆ADC ,就可以得出BE=DC ,进而求出DE 的值.【详解】∵BE ⊥CE ,AD ⊥CE ,∴∠E=∠ADC=90︒,∴∠EBC+∠BCE=90︒,∵∠BCE+∠ACD=90︒,∴∠EBC=∠DCA ,在∆CEB 和∆ADC 中,∠E=∠ADC ,∠EBC=∠DCA ,BC=AC ,∴∆CEB ≅∆ADC(AAS),∴BE=DC=1,CE=AD=3,∴DE=EC-CD=3-1=2,故选:B .【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.6.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,E 是边AB 上一点,若6CD =,则DE 的长可以是( )A .1B .3C .5D .7D解析:D【分析】 过点D 作DF AB ⊥于点F ,根据角平分线的性质定理得6CD DF ==,而DE 的长一定是大于等于点D 到AB 的距离也就是DF 的长,即可得出结果.【详解】解:如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DF AB ⊥,90C ∠=︒,∴6CD DF ==,∵DE DF ≥,∴6DE ≥,则只有D 选项符合.故选:D .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质定理.7.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.8.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.9.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A .①②③B .①③④C .①②④D .①②③④D解析:D【分析】 易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG=⎧⎨=⎩ ∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键; 10.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°B解析:B【分析】 根据角平分线的性质和平行线的性质计算即可;【详解】∵AE 平分∠BAC ,∠BAE =34°,∴34EAC ∠=︒,∵ED ∥AC ,∴18034146AED ∠=︒-︒=︒,∵BE ⊥AE ,∴90AEB =︒∠,∴36090146124BED ∠=︒-︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键 。

人教版八年级上册第12章 《全等三角形》单元培优卷

人教版八年级上册第12章 《全等三角形》单元培优卷

第12章《全等三角形》单元培优卷一.选择题1.下列说法中错误的是()A.有两个角及它们的夹边对应相等的两个三角形全等B.有两个角及其中一个角的对边对应相等的两个三角形全等C.有两条边及它们的夹角对应相等的两个三角形全等D.有两条边及其中一条边的对角对应相等的两个三角形全等2.如图,已知∠1=∠4,添加以下条件,不能判定△ABC≌△CDA的是()A.∠2=∠3 B.∠B=∠D C.BC=DA D.AB=DC3.如图,已知△ABD≌△ACE,下列说法错误的是()A.∠B=∠C B.EB=DC C.AD=DC D.△EFB≌△DFC 4.如图,△ABC≌△A'B'C,∠BCB'=30°,则∠ACA'的度数为()A.30°B.45°C.60°D.15°5.如图,点C在∠DAB的内部,CD⊥AD于点D,CB⊥AB于点B,CD=CB,那么Rt△ADC≌Rt △ABC的理由是()A .SASB .ASAC .HLD .SSS6.如图,测量河两岸相对的两点A ,B 的距离时,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明△EDC ≌△ABC ,从而得到ED =AB ,则测得ED 的长就是两点A ,B 的距离.判定△EDC ≌△ABC 的依据是( )A .“边边边”B .“角边角”C .“全等三角形定义”D .“边角边”7.如图,在△ABC 和△DEC 中,已知AB =DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC =EC ,∠B =∠EB .BC =EC ,AC =DC C .∠B =∠E ,∠A =∠D D .BC =DC ,∠A =∠D8.如图,已知AC 平分∠DAB ,CE ⊥AB 于E ,AB =AD +2BE ,则下列结论:①AB +AD =2AE ;②∠DAB +∠DCB =180°;③CD =CB ;④S △ACE ﹣2S △BCE =S △ADC ;其中正确结论的个数是( )A .1个B .2个C .3个D .4个9.如图,在四边形ABCD 中,AD ∥BC ,AD =BC ,连接AC ,E 为AC 上一点,连接DE ,过点B 作BF ∥DE ,交AC 于点F ,则图中的全等三角形共有( )A .1对B .1对C .3对D .4对10.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤S△BDE :S△ACD=BD:AC,其中正确的个数为()A.5个B.4个C.3个D.2个二.填空题11.如图,∠A=∠D,∠1=∠2,要得到△ABC≌△DEF,添加一个条件可以是.12.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.13.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6cm,则线段OP=cm.14.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,直线l经过点C且与边AB相交.动点P从点A出发沿A→C→B路径向终点B运动;动点Q从点B出发沿B→C→A路径向终点A运动.点P和点Q的速度分别为2cm/s和3cm/s,两点同时出发并开始计时,当点P 到达终点B时计时结束.在某时刻分别过点P和点Q作PE⊥l于点E,QF⊥l于点F,设运动时间为t秒,则当t=秒时,△PEC与△QFC全等.15.如图,已知等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO=∠ACO;②∠APO+∠PCB=90°;③PC=PO;④AO+AP=AC;其中正确的有.(填上所有正确结论的序号)三.解答题16.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE =AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.17.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE =AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.18.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.19.如图,点O为线段AB上的任意一点(不于A、B重合),分别以AO,BO为一腰在AB 的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC交于点P,AD交CO于点M,BC交DO于点N.(1)试说明:CB=AD;(2)若∠COD=70°,求∠APB的度数.20.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.参考答案一.选择题1.解:A、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA”,说法正确;B、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS”,说法正确;C、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS”,说法正确;D、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D.2.解:A、∵在△ABC和△CDA中,∴△ABC≌△CDA(ASA),故本选项不符合题意;B、∵在△ABC和△CDA中,∴△ABC≌△CDA(AAS),故本选项不符合题意;C、∵在△ABC和△CDA中,∴△ABC≌△CDA(SAS),故本选项不符合题意;D、根据AB=DC,AC=AC和∠1=∠4不能推出△ABC≌△CDA,故本选项符合题意;故选:D.3.解:∵△ABD≌△ACE,∴∠B=∠C,AB=AC,AE=AD,∴AB﹣AE=AC﹣AD,∴BE=CD,在△EFB和△DFC中∴△EFB≌△DFC(AAS),无法证得AD=DC,∴正确的说法是A、B、D,错误的说法是C.故选:C.4.解:∵△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠ACB′=∠A′CB′﹣∠ACB′,∴∠ACA′=∠BCB′=30°,故选:A.5.解:∵CD⊥AD,CB⊥AB,∴∠B=∠D=90°,∴在Rt△ADC和Rt△ABC中,∴Rt△ADC≌Rt△ABC(HL),故选:C.6.解:∵∠ACB=∠DCE,CD=BC,∠ABC=∠EDC,∴△EDC≌△ABC(ASA),故选:B.7.解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;D、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;故选:D.8.解:①在AE取点F,使EF=BE,∵AB =AD +2BE =AF +EF +BE ,EF =BE ,∴AB =AD +2BE =AF +2BE ,∴AD =AF ,∴AB +AD =AF +EF +BE +AD =2AF +2EF =2(AF +EF )=2AE ,∴AE =(AB +AD ),故①正确;②在AB 上取点F ,使BE =EF ,连接CF .在△ACD 与△ACF 中,∵AD =AF ,∠DAC =∠FAC ,AC =AC ,∴△ACD ≌△ACF ,∴∠ADC =∠AFC .∵CE 垂直平分BF ,∴CF =CB ,∴∠CFB =∠B .又∵∠AFC +∠CFB =180°,∴∠ADC +∠B =180°,∴∠DAB +∠DCB =360﹣(∠ADC +∠B )=180°,故②正确;③由②知,△ACD ≌△ACF ,∴CD =CF ,又∵CF =CB ,∴CD =CB ,故③正确;④易证△CEF ≌△CEB ,所以S △ACE ﹣S △BCE =S △ACE ﹣S △FCE =S △ACF ,又∵△ACD ≌△ACF ,∴S △ACF =S △ADC ,∴S△ACE ﹣2S△BCE=S△ADC,故④正确;即正确的有4个,故选:D.9.解:图中全等三角形有△ADC≌△CBA,△ADE≌△CBF,△CDE≌△ABF,共3对.故选:C.10.解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE :S△ACD=BE:AC.故选:C.二.填空题(共5小题)11.解:∵∠1=∠2,∠D=∠A,∴要得到△ABC≌△DEF,必须添加条件DF=AC或CD=AF.故答案为:DF=AC或CD=AF.12.解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.13.解:在Rt△OMP和Rt△ONP中,OM=ON,OP=OP,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∵∠AOB=60°,∴∠MOP=∠NOP=30°,∵∠OMP=90°,∴OP=2MP,OM=MP=6cm,∴MP=2cm,∴OP=4cm,故答案为:4.14.解:由题意得,AP=2t,BQ=3t,∵AC=6cm,BC=8cm,∴CP=6﹣2t,CQ=8﹣3t,①如图1,当△PEC≌△CFQ时,则PC=CQ,即6﹣2t=8﹣3t,解得:t=2,②如图2,∵点P与点Q重合,∴△PEC与△QFC全等,则PC=CQ,∴6﹣2t=3t﹣8.解得:t=,③如图2,当点Q与A重合时,△PEC≌△CFQ,则PC=CQ,即2t﹣6=6,解得:t=6,综上所述:当t=2秒或秒或6秒时,△PEC与△QFC全等,故答案为:2或或6.15.解:连接BO,如图1所示:∵AB=AC,AD⊥BC,∴BO=CO,∴∠OBC=∠OCB,又∵OP=OC,∴OP=OB,∴∠OBP=∠OPB,又∵在等腰△ABC中∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠OBC+∠OBP=∠OCB+∠ACO,∴∠OBP=∠ACO,∴∠APO=∠ACO,故①正确;又∵∠ABC=∠PBO+∠CBO=30°,∴∠APO+∠DCO=30°,∵∠PBC+∠BPC+∠BCP=180°,∠PBC=30°,∴∠BPC+∠BCP=150°,又∵∠BPC=∠APO+∠CPO,∠BCP=∠BCO+∠PCO,∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,又∵∠POC+∠OPC+∠OCP=180°,∴∠POC=60°,又∵OP=OC,∴△OPC是等边三角形,∴PC=PO,∠PCO=60°,故③正确;∴∠APO+∠DCO+∠PCO=30°+60°,即:∠APO+∠PCB=90°,故②正确;在线段AC上截取AE=AP,连接PE,如图2所示:∵∠BAC+∠CAP=180°,∠BAC=120°,∴∠CAP=60°,∴△APE是等边三角形,∴AP=EP,又∵△OPC是等边三角形,∴OP=CP,又∵∠APE=∠APO+∠OPE=60°,∠CPO=∠CPE+∠OPE=60°,∴∠APO=∠EPC,在△APO和△EPC中,,∴△APO≌△EPC(SAS),∴AO=EC,又∵AC=AE+EC,AE=AP,∴AO+AP=AC,故④正确;故答案为:①②③④.三.解答题(共5小题)16.证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).17.(1)证明:∵∠BAC=∠DAE=100°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∠BAC=100°,∴∠B=∠ACB=40°,∵△BAD≌△CAE,∴∠B=∠ACE=40°,∴∠DCE=∠BCA+∠ACE=80°,∵DE=DC,∴∠DEC=∠DCE=80°,∴∠EDC=180°﹣80°﹣80°=20°.18.解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,∵∴△BDE≌△CDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.19.证明:(1)∵∠AOC=∠BOD,∴∠AOD=∠BOC,又∵OA=OC,OB=OD,∴△AOD≌△COB(SAS),∴CB=AD;(2)∵∠COD=70°,∴∠AOC=∠BOD=55°,∴∠AOD=∠COD+∠BOD=125°=∠BOC,∵△AOD≌△COB,∴∠BCO=∠DAO,∴∠DAO+∠CBO=∠BCO+∠CBO,∴180°﹣∠APB=180°﹣∠BOC,∴∠APB=125°20.(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC=BD﹣BE.证明:∵∠BAC=∠DAE,∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE.。

2022年人教版八年级上册数学同步培优小专题(六) 全等三角形中的“一线三等角”模型

-7-
小专题(六) 全等三角形中的“一线三等角”模型
变式3 钝角型(△APC≌△BDP)
● 模型展示
-8-
小专题(六) 全等三角形中的“一线三等角”模型
3.如图,已知B,C,D三点共线,∠ABC=∠ACE=∠CDE,AC= CE. 求证:BD=AB+DE.
-9-
小专题(六) 全等三角形中的“一线三等角”模型
-5-
小专题(六) 全等三角形中的“一线三等角”模型
变式2 直角型(△ABC≌△CDE)
● 模型展示
-6-
小专题(六) 全等三角形中的“一线三等角”模型
2.如图,∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CE于点D. 若AE=5 cm,BD=2 cm,则DE的长是( C ) A.8 cm B.5 cm C.3 cm D.2 cm
-4-
小专题(六) 全等三角形中的“一线三等角”模型
解:由题可知∠1=∠2=∠BAC=50°, ∴∠BAD+∠CAE=50°,∠BAD+∠ABD=50°, ∴∠CAE=∠ABD.又 ∵∠ADB=∠AEC,AB=AC, ∴△ACE≌△BAD(AAS),∴S△ACE=S△BAD, ∴S△ACE+S△BDF=S△BAD+S△BDF=S△ABF. ∵CF=2BF,∴S△ABF=13S△ABC=5, ∴S△ACE+S△BDF=5.
证明:∵∠BCE是△CDE的外角, ∴∠BCE=∠CDE+∠CED, 即∠ACB+∠ACE=∠CDE+∠CED. 又∵∠ACE=∠CDE,∴∠ACB=∠CED. ∵AC=CE,∴△ABC≌△CDE(AAS), ∴AB=CD,BC=DE, ∴BD=BC+CD=AB+DE.
-10-
变式1 锐角型(△APC≌△BDP)
● 模型线三等角”模型

三角形全等的判定(HL)同步练习2022-2023学年人教版八年级上册数学

人教版八年级上册数学12.2三角形全等的判定(HL)同步练习一、单选题1.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°2.如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB ≌△COD,理由是()A.HL B.SAS C.ASA D.SSS3.如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD=,AC AD=∠=∠B.BC BDC.BAC BAD∠=∠=,BAC BAD∠=∠,ABC ABD∠=∠D.BD BC4.如图,CD⊥AD于点D,CB⊥AB于点B,CD=CB,那么可以直接判定△ADC≌△ABC的定理是()A.AAS B.SAS C.SSS D.HL5.如图,已知点A、D、C、F在同一条直线上,∠B=∠E =90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是()A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF6.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF相等,那么判定ABC与DEF全等的依据是()A.HL B.ASA C.AAS D.SSS7.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若AC=6cm,则AE+DE等于()A.4cm B.5cm C.6cm D.7cm8.如图,DE AC⊥,BF AC⊥,垂足分别是E,F,且DE BF∆≅∆,则需=,若利用“HL”证明DEC BFA添加的条件是()A.EC FA==B.DC BAC.D B∠=∠∠=∠D.DCE BAF二、填空题9.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是________△≌△的依据是______.10.如图,BE,CD是ABC的高,且BD EC=,判定BDO CEO11.如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______.12.如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.13.如图所示,ABC和DCB有公共边BC,且AB DC⊥,垂足分别为E、F,=,作AE BC⊥,DF BC=时,需要证明三角形全等的三角形是________.=,那么求证AC BDAE DF14.如图,在△ABC和△BAD中,已知∠C=∠D=90°,再添加一个条件,就可以用“HL”判定Rt△ABC≌Rt△BAD,你添加的条件是_____.15.如图,ABC∠的平分线与AC的中垂线交于点E,连接DE,过点E分∆中,点D为AC的中点,ABC别作AB BC 、所在直线的垂线,垂足分别为M N 、,若2AM cm =, 3.2AB cm =,则BC 的长为_______cm .16.如图,AB =AC ,AD =AE ,AF ⊥BC 于F ,则图中全等的直角三角形有________对.三、解答题17.如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F ,且AB =CD .(1)△ABF 与△CDE 全等吗?为什么?(2)求证:EG =FG .18.如图,AB =AD ,CB ⊥AB 于点B ,CD ⊥AD 于点D ,求证△ABC ≌△ADC .19.如图,AD是△ABC的高,AD=BD=4,E是AD上一点,BE=AC=5,S△ABC=14,BE的延长线交AC于点F.(1)求证:△BDE≌△ADC;(2)求证:BE⊥AC;(3)求EF与AE的长.20.已知如图,AB=AD,AD⊥DE,AB⊥BC,AC=AE,BC与DE相交于点F,连接CD、EB.(1)求证:△ABC≌△ADE;(2)图中还有哪几对全等三角形,请你一一列举(无需证明);(3)求证:CF=EF.参考答案:1.C2.A3.D4.D5.D6.A7.C8.B9.AD=CF或AC=DF10.HL11.225°12.△DFE HL13.Rt ABE Rt DCF≅,AEC DFB≅.14.AC=BD(或者AD=BC).15.7.216.217.(1)△ABF与△CDE全等19.(3)EF=35,AE=1.20.(2)△ADC≌△ABE,△DFC≌△BFE;。

2022年人教版八年级上册数学同步培优第十二章全等三角形 本章中考演练


安徽真题精练
全国真题拓展
-3-
本章中考演练
1.[2021盐城中考]工人师傅常常利用角尺构造全等三角形的方 法来平分一个角.如图,在∠AOB的两边OA,OB上分别截取OC =OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这 时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全 等三角形的依据是( D )
安徽真题精练
全国真题拓展
-12-
本章中考演练
解:(1)∵CF∥AB, ∴∠ADF=∠F,∠A=∠ECF. 又∵DE=EF, ∴△ADE≌△CFE(AAS). (2)∵△ADE≌△CFE, ∴AD=CF=4, ∴BD=AB-AD=5-4=1.
安徽真题精练
全国真题拓展
-13-
安徽真题精练
全国真题拓展
-10-
本章中考Байду номын сангаас练
证明:∵DE∥AB,∴∠DEC=∠CBA.
∠A=∠ECD, 在△ABC 和△CED 中, ∠CBA=∠DEC,
CA=CD,
∴△ABC≌△CED(AAS), ∴AB=EC.
安徽真题精练
全国真题拓展
-11-
本章中考演练
8.[2021黄石中考]如图,D是△ABC的边AB上一点,CF∥AB,DF 交AC于点E,DE=EF. (1)求证:△ADE≌△CFE; (2)若AB=5,CF=4,求BD的长.
A.SAS C.AAS
B.ASA D.SSS
安徽真题精练
全国真题拓展
-4-
本章中考演练
2.[2021哈尔滨中考]如图,△ABC≌△DEC,A,D是对应顶点,B,E
是对应顶点,过点A作AF⊥CD,垂足为F.若∠BCE=65°,则
∠CAF的度数为( B)

2022-2023学年人教版 八年级上册《全等三角形》综合测试卷

人教版八年级上册《全等三角形》综合测试卷满分:100分姓名:___________班级:___________考号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列各组图形中不是全等形的是()A.B.C.D.2.如图,一块三角形玻璃裂成①、②、③三块,现需要划一块同样大小的三角形玻璃,为了方便只需带上一块,号码和依据是()A.①SAS B.②ASA C.③AAS D.③ASA 3.如图,△ABC≌△ADE,若∠E=70°,∠D=30°,∠CAD=35°,则∠BAD=()A.40°B.45°C.50°D.55°4.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°5.如图,若△ABC≌△DEF,BC=7,CF=5,则CE的长为()A.1 B.2 C.2.5 D.36.如图,点B,E,C,F在同一条直线上,已知AB=DE,AC=DF,添加下列条件还不能判定△ABC≌△DEF的是()A.∠ABC=∠DEF B.∠A=∠D C.BE=CFD.BC=EF7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=5,AB=12,则△ABD的面积是()A.15 B.30 C.45 D.608.如图,在△ABC中,∠C=90°∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB 的距离是()A.6cm B.8cm C.10cm D.14cm 9.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.①②③④B.①②④C.①②③D.②③④二.填空题(共6小题,满分24分,每小题4分)11.如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD平分∠ABC,则点D到AB的距离等于.12.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是.13.如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.14.如图,AC⊥BC,AD⊥BD,垂足分别是C,D,(若要用“HL”得到Rt△ABC≌Rt△BAD,则应添加的条件是.(写一种即可)15.在正方形网格中,∠AOB的位置如图所示,点P,Q,M,N是四个格点,则这四个格点中到∠AOB两边距离相等的点是点.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=34°,则∠3=.三.解答题(共7小题,满分46分)17.(5分)已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.18.(5分)如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.19.(6分)问题:已知线段AB、CD相交于点O,AB=CD.连接AD、BC,请添加一个条件,使得△AOD≌△COB小明的做法及思路小明添加了条件:∠DAB=∠BCD.他的思路是分两种情况画图①、图②,在两幅图中,都作直线DA、BC,两直线交于点E由∠DAB=∠BCD,可得∠EAB=∠ECD∵AB=CD,∠E=∠E∴△EAB≌△ECD,∴EB=ED,EA=EC图①中ED﹣EA=EB﹣EC,即AD=CB图②中EA﹣ED=EC﹣EB,即AD=CB又∵∠DAB=∠BCD,∠AOD=∠COB∴△AOD≌△COB(1)数学老师说:小明的做法不正确,请你给出解释;(2)请你重新添加一个满足问题要求的条件,并说明理由.20.(7分)如图,已知点E,D,A,B在一条直线上,BC∥EF,∠C=∠F,AD=1,AE=2.5,AB=1.5.(1)试说明:△ABC≌△DEF.(2)判断DF与AC的位置关系,并说明理由.21.(7分)已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC 的面积.22.(7分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.23.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF ⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中圆与椭圆不可能完全重合,∴不是全等形.故选:B.2.解:只需带上碎片③即可.理由:碎片③中,可以测量出三角形的两角以及夹边的大小,三角形的形状即可确定.故选:D.3.解:∵∠B=70°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵△ABC≌△ADE,∴∠EAD=∠BAC=80°,∴∠EAC=∠EAD﹣∠DAC=80°﹣35°=45°,故选:B.4.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.5.解:∵BC=7,CF=5,∴BF=7﹣5=2,∵△ABC≌△DEF,∴EF=CB,∴EF﹣CF=CB﹣CF,∴EC=BF=2,故选:B.6.解:已知AB=DE,AC=DF,添加的一个条件是∠ABC=∠DEF,根据条件不可以证明△ABC≌△DEF,故选项A符合题意;已知AB=DE,AC=DF,添加的一个条件是∠A=∠D,根据SAS 可以证明△ABC≌△DEF,故选项B不符合题意;已知AB=DE,AC=DF,添加的一个条件是EB=CF,可得得到BC=EF,根据SSS可以证明△ABC≌△DEF,故选项C不符合题意;已知AB=DE,AC=DF,添加的一个条件是BC=EF,根据SSS 可以证明△ABC≌△DEF,故选项D不符合题意;故选:A.7.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.8.解:过D作DE⊥AB,交AB于点E,∵BD平分∠ABC,DC⊥CB,DE⊥BA,∴DE=DC=6厘米,则点D到直线AB的距离是6厘米,故选:A.9.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.10.解:∵BC恰好平分∠ABF,∴∠FBC=∠ABC∵BF∥AC,∴∠FBC=∠ACB,∴∠ACB=∠ABC=∠CBF,在△ABC中,AD是△ABC的角平分线,∠ACB=∠ABC,∴△ABC为等腰三角形,∴CD=BD,(故②正确),CA=AB,AD⊥BC(故③正确),∵∠ACB=∠CBF,CD=BD,∴Rt△CDE≌Rt△BDF(AAS),∴DE=DF,(故①正确),BF=CE,CA=AB=AE+CE=2BF+BF =3BF,(故④正确),故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:如图,过点D作DH⊥AB,垂足为H,∵AC=8,DC=AD,∴DC=2,∵BD平分∠ABC,∠C=90°,DH⊥AB,∴CD=DH=2,∴点D到AB的距离等于2,故答案为2.12.解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS).∴∠DAC=∠BAC,即∠QAE=∠PAE.故答案为:SSS.13.解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.14.解:若添加AC=BD,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);若添加BC=AD,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL).故答案为:AC=BD或BC=AD.15.解:由图形可知,点M在∠AOB的角平分线上,∴点M到∠AOB两边距离相等,故答案为:M.16.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠2=34°,∵∠3=∠1+∠ABD,∠1=22°,∴∠3=56°,故答案为:56°.三.解答题(共7小题,满分46分)17.证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).18.证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL).19.解:(1)可画出下面的反例:图中,AB=CD,DA∥BC,小明的证明方法就错误了,理由直线AD与BC没有交点.(2)答案不唯一,如OA=OC.理由如下:∵AB=CD,OA=OC,∴AB﹣OA=CD﹣OC,即OB=OD.在△AOD和△COB中,∴△AOD≌△COB(SAS).20.(1)证明:∵BC∥EF,∴∠B=∠E,∵AD=1,AE=2.5,∴DE=AE﹣AD=2.5﹣1=1.5,∵AB=1.5,∴AB=DE,∵∠C=∠F,∴△ABC≌△DEF(AAS);(2)DF∥AC.∵△ABC≌△DEF,∴∠BAC=∠EDF,∵∠BAC+∠DAC=∠EDF+∠ADF=180°,∴∠DAC=∠ADF,∴DF∥AC.21.解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;(2)作DF⊥AC于F,DH⊥BC于H,如图2,∵BD平分∠ABC,DE⊥AB,DH⊥BC,∴DH=DE=2,∵CD平分∠ACB,DF⊥AC,DH⊥BC,∴DF=DH=2,∴△ADC的面积=DF•AC=×2×4=4.22.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q 的运动速为cm/s或cm/s.23.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

独家原创《全等三角形》培优练习题一.选择题1.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F 2.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.53.平面内,到三角形三边距离相等的点有()个.A.4 B.3 C.2 D.14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠DAC交CD于点F,点E为AB上一点,AE=AC,连接EF,若∠B=56°,则∠AEF=()A.34°B.46°C.56°D.60°5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处6.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°7.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.48.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609.如图,已知点E、F在线段BC上,BE=CF,DE=DF,AD⊥BC,垂足为点D,则图中共有全等三角形()对.A.2 B.3 C.4 D.510.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②DE=DF;③AD⊥EF;④S△ABD:S△ACD=AB:AC,其中正确结论的个数是()A.1个B.2个C.3 个D.4个二.填空题11.如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC≌△DEC.12.如图,OP平分∠MON,PA⊥ON,垂足为A,Q是射线OM 上的一个动点,若P、Q两点距离最小为8,则PA=.13.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=.14.如图,AB=AC,AD=AE,点B、D、E在一条直线上,∠BAC =∠DAE,∠1=35°,∠2=30°,则∠3=度.15.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和26,求△EDF的面积.16.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM ⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ 运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三.解答题17.已知:如图,∠BAC=∠DAC.请添加一个条件,使得△ABC≌△ADC,然后再加以证明.18.小明家门前有一条小河,村里准备在河面上架上一座桥,但河宽AB无法直接测量,爱动脑的小明想到了如下方法:在与AB垂直的岸边BF上取两点C、D使CD=,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段的长度就是AB的长.(1)按小明的想法填写题目中的空格;(2)请完成推理过程.19.在△ABC中,D是AB的中点,E是CD的中点.过点C作CF ∥AB交AE的延长线于点F,连接BF.求证:DB=CF.20.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD ⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.21.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.22.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.23.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC =16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)直接写出:①BD=厘米;②BP=厘米;③CP=厘米;④CQ=厘米;(可用含t、a的代数式表示)(2)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动.设运动的时间为t秒;直接写出t=秒时点P与点Q第一次相遇.24.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).参考答案一.选择题1.解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.2.解:在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.3.解:如图,△ABC外角平分线的交点共有3个,内角平分线的交点有1个,所以,到三边距离相等的点共有3+1=4个.故选A.4.解:∵AF平分∠DAC,∴∠CAF=∠EAF,又∵AC=AE,AF=AF,∴△ACF≌△AEF,∴∠AEF=∠ACF,又∵CD⊥AB,∠ACB=90°,∴∠B+∠BAC=90°=∠ACD+∠DAC,∴∠B=∠ACD,∴∠AEF=∠B=56°,故选:C.5.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.6.解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.7.解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选:D.8.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故选:B.9.解:∵BE=CF,DE=DF,AD⊥BC,∴AD垂直平分BC,AD垂直平分EF,∴AB=AC,AE=AF,又∵AD=AD,∴△ABD≌△ACD(SSS),△AED≌△AFD(SSS),∵BE=CF,DE=DF,∴BF=CE,又∵AB=AC,AE=AF,∴△ABF≌△ACE(SSS),∵AB=AC,AE=AF,BE=CF,∴△ABE≌△ACF(SSS),∴图形中共有全等三角形4对,故选:C.10.解:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,DE=DF,故②正确;在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,故③正确;∵在△AFD中,AF+DF>AD,又∵AE=AF,∴AE+DF>AD,故①正确;∵S△ABD=,S△ACD=,DE=DF,∴S△ABD:S△ACD=AB:AC,故④正确;即正确的个数是4个,故选:D.二.填空题11.解:可以添加∠A=∠D,理由是:∵∠1=∠2,∴∠ACB=∠DCE,∴在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).故答案是:∠A=∠D.12.解:过点P作PQ⊥OM,垂足为Q,则PQ长为P、Q两点最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=8,故答案为:8.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.14.解:如图所示:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠4,∴∠1=∠4,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ADB=∠AEC,又∵∠2+∠4+∠AEC=180°,∴∠AEC=115°,∴∠ADB=115°,又∠ADB+∠3=180°,∴∠3=65°,故答案为65.15.解:如图,作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△FDE和Rt△HDG中,,∴Rt△FDE≌Rt△HDG(HL),同理,Rt△FDA≌Rt△HDA(HL),设△EDF的面积为x,由题意得,48﹣x=26+x,解得x=11,即△EDF的面积为11,故答案为:11.16.解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.三.解答题17.解:若添加的条件为:AB=AD,则在△ABC与△ADC中,,∴△ABC≌△ADC(SAS).若添加的条件为:∠B=∠D,则在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).若添加的条件为:∠ACB=∠ACD,则,∴△ABC≌△ADC(ASA).故答案为:AB=AD(或∠B=∠D或∠ACB=∠ACD)(答案不唯一).18.解:(1)在与AB垂直的岸边BF上取两点C、D使CD=CB,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段DE的长度就是AB的长.故答案为:CB,DE;(2)由题意得DG⊥BF,∴∠CDE=∠CBA=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴DE=AB(全等三角形的对应边相等).19.证明:∵E为CD的中点,∴CE=DE,∵∠AED和∠CEF是对顶角,∴∠AED=∠CEF.∵CF∥AB,∴∠EDA=∠ECF.在△EDA和△ECF中,,∴△ADE≌△FCE(ASA),∴AD=FC,∵D为AB的中点,∴AD=BD.∴DB=CF.20.解:如图所示:(1)∵AD⊥BC,BE⊥AC,∴∠FDB=∠FEA=∠ADC=90°,又∵∠FDB+∠1+∠BFD=180°,∠FEA+∠2+AFE=180°,∠BFD=∠AFE,∴∠1=∠2,又∠ABC=45°,∴BD=AD,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA)∴BF=AC;(2)∵BF=3,∴AC=3,又∵BE⊥AC,∴CE=AE==.21.证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.22.证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC,∴∠DAF=∠DAG,在△ADF和△ADG中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED23.解(1)由题意得:①BD=12,②BP=4t;③CP=16﹣4t,④CQ=at,故答案为:①12,②4t,③(16﹣4t),④at;(2)∵BP=4t,BD=12,CP=16﹣4t,CQ=at,∵∠B=∠C,∴分两种情况:①若△DBP≌△QCP,则,∴,∴,②若△DBP≌△PCQ,则,∴,∴;(3)①若a=4 时,P,Q不能相遇,②若a=6 时,由题意得:6t﹣4t=48,t=24,答:t=24秒时点P与点Q第一次相遇.故答案为:24.24.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.。

相关文档
最新文档