石墨烯制作方法
纳米硅粉在石墨烯及锂离子电池领域的应用

纳米硅粉在石墨烯及锂离子电池领域的应用硅是自然界中含量仅次于氧的元素,当硅材料的尺度达到纳米级的程度,纳米硅粉将会产生许多不同于体硅的特性,因此研究纳米硅粉的奇特性能很有前景,也很有价值。
本文主要是讲述纳米硅粉在制作富勒烯和锂离子电池方面的一些应用。
首先,较传统的电弧法制备富勒烯不同的是,我们选择的是利用纳米Cu粉在高温环境下通入CH4和H2,但是由于纳米C u粉的高活性,使得其在高温下易结块,这样得不到完美的均匀分布的球状石墨烯,此时我们利用硅的惰性,将其和铜粉混合高温处理,得到的产物仍然是粉末状的包裹有石墨烯的Cu粉。
与此同时,我们注意到纳米硅粉具有较大比表面积和较高的理论比容量,因此纳米硅用来制作锂离子电池很合适。
但是现在普遍的做法是利用硅纳米线来制作锂离子电池,而我们选择继续使用纳米硅粉作为负极材料制作电池。
纳米硅粉在空气中易被氧化,在其表面会产生一层氧化硅,通过处理表面的氧化硅和内层未被氧化的硅,我们也可以得到一些硅溶胶的副产物。
总体而言,因为纳米硅粉的制作工艺不算复杂,其应用的领域很宽泛,结合上面的一些研究,纳米硅粉的应用前景很客观。
关键词:纳米硅粉;石墨烯;锂离子电池;负极材料;硅溶胶第一章绪论1.1 引言硅纳米粉的制备工艺不算复杂,纳米硅粉具有很多特性,开发潜力很大。
1.2 硅纳米粉的应用纳米硅是直径小于5nm的晶体硅颗粒。
纳米硅粉具有纯度高,粒径小,比表面积大,高表面活性,分布均匀等特点。
纳米硅粉用途很广泛,可与有机物反应,作为有机硅高分子材料的原料,可以替代纳米碳粉或者石墨,也可作为锂电池的负极材料,从而大幅度提高锂电池容量(理论上可达到4000mA/h),同时可以加大与电解液的亲和力,易于分散,提高循环性能。
纳米硅粉还可用在耐高温和耐火材料中,也能用作半导体微电子封装材料。
本文我们主要是利用硅粉和金属粉混合之后,其产生的惰性,能够使得金属粉在高温下不易发生反应。
1.3 石墨烯的简介1.3.1 石墨烯的结构和性质众所周知,碳有两种同素异形体,分别是金刚石和石墨,但是上实际80年代碳的另一同素异形体石墨烯的发现,使得石墨烯一下子成为世界研究领域的热点。
锂离子电池用石墨负极材料及其设备制作方法与制作流程

锂离子电池用石墨负极材料及其设备制作方法与制作流程锂离子电池是一种重要的储能装置,具有高能量密度、长循环寿命和低自放电等特点。
石墨作为锂离子电池的负极材料,具有良好的导电性、稳定的化学性质和较大的比表面积,被广泛应用于锂离子电池中。
下面将介绍石墨负极材料的制作方法及其制作流程。
石墨负极材料的制作方法主要包括石墨烯还原法、溶液浸渍法和化学气相沉积法等。
其中,石墨烯还原法是制备石墨负极材料的一种常用方法,具体制作流程如下:1.原料准备:准备氧化石墨、还原剂和溶剂。
其中,氧化石墨是石墨的初始形式,还原剂用于还原氧化石墨形成石墨烯,溶剂用于形成均匀的溶液。
2.溶液制备:将适量的氧化石墨加入溶剂中,搅拌使其均匀分散,并加入适量的还原剂。
控制溶液的浓度和温度,以达到最佳的反应条件。
3.石墨烯还原:将加入还原剂的溶液进行热处理,通常使用高温热处理或化学还原的方式。
在适当的温度和时间下,还原剂将还原氧化石墨形成石墨烯。
4.石墨烯清洗:将还原后的石墨烯进行过滤、洗涤和干燥等处理,以去除多余的溶剂和杂质。
此步骤可重复进行多次,以获得更纯净的石墨烯。
5.石墨烯负极材料制备:将石墨烯与适量的粘结剂和导电剂混合,通过压制、成型和烘干等工艺制备成石墨负极材料。
其中,粘结剂可提高石墨材料的粘结度和机械强度,导电剂可提高电子传导性。
6.石墨负极材料的包覆:将制备好的石墨负极材料进行包覆处理,以提高电池的循环寿命和稳定性。
包覆材料通常为氧化物或碳酸盐等。
上述制作流程是石墨负极材料的一种常用方法,实际生产中可以根据特定要求和条件进行调整和改进。
通过合理的制作方法和制作流程,可以获得具有较高性能的石墨负极材料,提高锂离子电池的性能和寿命。
农业生产农业石墨烯应用方案

农业生产农业石墨烯应用方案第1章引言 (2)1.1 背景与意义 (2)1.2 石墨烯在农业领域的应用前景 (3)第2章石墨烯材料概述 (3)2.1 石墨烯的基本性质 (3)2.2 石墨烯的制备方法 (3)2.3 石墨烯的分类与改性 (4)第3章石墨烯在土壤改良中的应用 (4)3.1 土壤污染治理 (4)3.1.1 重金属污染治理 (4)3.1.2 有机污染物治理 (5)3.2 土壤保水保湿 (5)3.2.1 改善土壤结构 (5)3.2.2 增强土壤保水功能 (5)3.3 提高土壤肥力 (5)3.3.1 促进养分吸收 (5)3.3.2 调节土壤微生物群落 (5)3.3.3 提高土壤有机质含量 (5)第4章石墨烯在植物生长调控中的应用 (6)4.1 促进种子发芽 (6)4.2 提高植物光合作用效率 (6)4.3 增强植物抗逆性 (6)第5章石墨烯在农业生物技术中的应用 (6)5.1 转基因植物 (6)5.2 植物组织培养 (6)5.3 农业生物传感器 (7)第6章石墨烯在农业机械中的应用 (7)6.1 农业机械耐磨材料 (7)6.1.1 概述 (7)6.1.2 石墨烯耐磨材料在农业机械中的应用 (7)6.2 农业传感器 (7)6.2.1 概述 (7)6.2.2 石墨烯在农业传感器中的应用 (7)6.3 农业 (8)6.3.1 概述 (8)6.3.2 石墨烯在农业中的应用 (8)第7章石墨烯在农产品质量检测中的应用 (8)7.1 农药残留检测 (8)7.1.1 基于石墨烯的传感器的制备 (8)7.1.2 农药残留检测原理 (8)7.1.3 应用实例 (8)7.2 重金属检测 (9)7.2.1 石墨烯基重金属传感器制备 (9)7.2.2 重金属检测原理 (9)7.2.3 应用实例 (9)7.3 食品安全监测 (9)7.3.1 微生物检测 (9)7.3.2 营养成分分析 (9)7.3.3 应用实例 (9)第8章石墨烯在农业节水中的应用 (9)8.1 智能灌溉系统 (10)8.1.1 概述 (10)8.1.2 石墨烯传感器在智能灌溉中的应用 (10)8.1.3 石墨烯导电膜在智能灌溉中的应用 (10)8.2 土壤水分监测 (10)8.2.1 概述 (10)8.2.2 石墨烯土壤水分传感器 (10)8.2.3 石墨烯土壤水分监测网络 (10)8.3 农业水肥一体化 (10)8.3.1 概述 (10)8.3.2 石墨烯水肥一体化设备 (10)8.3.3 石墨烯传感器在农业水肥一体化中的应用 (11)8.3.4 石墨烯导电膜在农业水肥一体化中的应用 (11)第9章石墨烯在农业废弃物处理中的应用 (11)9.1 农业废弃物资源化利用 (11)9.1.1 石墨烯在农业废弃物资源化利用中的作用 (11)9.1.2 石墨烯在农业废弃物资源化利用中的应用实例 (11)9.2 生物炭制备 (11)9.2.1 石墨烯在生物炭制备中的作用 (11)9.2.2 石墨烯生物炭的制备方法 (12)9.3 污染物吸附与降解 (12)9.3.1 石墨烯生物炭对污染物的吸附功能 (12)9.3.2 石墨烯生物炭在污染物降解中的应用 (12)9.3.3 石墨烯生物炭在农业废弃物处理中的应用前景 (12)第10章石墨烯在农业可持续发展中的应用前景与挑战 (12)10.1 农业可持续发展的重要性 (12)10.2 石墨烯在农业可持续发展中的应用前景 (12)10.3 面临的挑战与解决方案 (13)第1章引言1.1 背景与意义全球经济的快速发展和人口增长的不断加剧,农业生产面临着巨大的压力。
石墨烯简介

石墨烯Graphene一.石墨烯是什么?1.关于2010诺贝尔物理学奖海姆和诺沃肖洛夫他们曾是师生,现在是同事,他们都出生于俄罗斯,都曾在那里学习,也曾一同在荷兰学习和研究,最后他们又一起在英国于2004年第一次用微机械剥离法( Micromechanical cleavage) 获得石墨烯薄片层制备出了石墨烯。
这种神奇材料的诞生使安德烈·海姆和康斯坦丁·诺沃肖洛夫获得2010年诺贝尔物理学奖。
至此,三维的金刚石、“二维”的石墨、一维的碳纳米管和零维的富勒球(足球烯)就组成了完整的碳家族体系。
2.石墨烯的结构所谓石墨烯,它和石墨有着紧密的联系。
我们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。
当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
——此即微机械剥离法单层石墨烯就是指只有一个 C 原子层厚度的石墨,C—C 间依靠共价键相连接而形成蜂窝状结构。
完美的石墨烯是理想的六边形晶格组成二维晶体结构,利用透射电镜(TEM),原子力显微镜(AFM)研究表明,这些悬浮的石墨烯片层并不是完全平整,他们表现出物质微观状态下固有的粗糙,表面会出现几度的起伏,可能正是这些三维的褶皱巧妙的促使二维晶体结构稳定存在。
石墨烯厚度只有0.335nm,如果我们把20 万片薄膜叠加到一起也只有一根头发丝那么厚。
3.石墨烯的特点及相应的应用它是已知材料中最薄的一种,并且比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。
eg.如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。
换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。
————应用:这种物质不仅可以用来开发制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。
石墨烯简单介绍

,是室温
构造与性能
热学性能
① 单层石墨烯旳
,
比碳纳米管旳而传
导率3000-3500Wm·k还要高,相比之下,工业界中被广泛使用旳散
热 材料金属铜旳热传导率只有400Wm·k
② 伴随石墨烯层数旳增长,其热传导率逐渐下降;当石墨烯从2层增 至4层时,其热导率从2800Wmk降低至1300Wmk;当层数到达5-8 层,减小到石墨旳热导率
2004英国曼彻斯特大学Andre Geim和他旳徒弟 Konstantin Novoselov在试验室用一种非常简朴旳措 施得到越来越薄旳石墨薄片。他们从石墨中剥离 出石墨片,然后将薄片旳两面粘在一种特殊旳胶 带上,撕开胶带,就能把石墨片一分为二。不断 地这么操作,于是薄片越来越薄,最终,他们得 到了仅由一层碳原子构成旳薄片,这就是石墨烯 。所以两人共同取得2023年诺贝尔物理学奖。
石墨烯应用
替代硅生产超级计算机
石墨烯是目前已知
旳材料。石墨烯旳
这种特征尤其适合于高频电路。高频电路是当代电子工业旳领头羊,
某些电子设备,例如手机,因为工程师们正在设法将越来越多旳信息
填充在信号中,它们被要求使用越来越高旳频率,然而手机旳工作频
率越高,热量也越高,于是,高频旳提升便受到很大旳限制。因为石 墨烯旳出现,高频提升旳发展前景似乎变得无限广阔了。 这使它在
研究人员发觉,在石墨烯样品微粒开始碎裂前,它们每100纳米距 离上可承受旳最大压力居然到达了大约2.9微牛。据科学家们测算,这 一成果相当于要施加55牛顿旳压力才干使1微米长旳石墨烯断裂。假如 物理学家们能制取出厚度相当于一般食品塑料包装袋旳(厚度约100纳
米)石墨烯,那么需要施加差不多两万牛旳压力才干将其扯断。换句 话说,假如用石墨烯制成包装袋,那么它将能承受大约两吨重旳物品。
关于石墨烯材料的调研报告

1关于石墨烯材料的调研报告目录调研提纲 (1)报告正文 (3)一、石墨烯简介 (3)二、石墨烯的性质 (3)三、石墨烯的制备方法 (4)四、石墨烯的应用 (5)五、石墨烯在锂电池中的应用 (7)六、石墨烯产业的国际现状 (8)七、我国石墨烯发展所存在的问题 (8)八、推进我国石墨烯产业健康发展的对策建议 (10)调研材料 (11)1调研提纲从2010年10月初两位英国科学家因为发现石墨烯而获得诺贝尔物理学奖后,石墨烯在我国成为热点词汇,各地科研院所争相研究,企业争相投资,连地方政府也考虑将其产业化。
石墨烯成为争取国家资金支持最热的项目,似乎石墨烯时代已经到来,世界将由石墨烯应用而发生重大改变。
本文在全面分析石墨烯全球技术和产业进展的同时,对到底如何正确认识石墨烯,石墨烯行业的整体轮廓如何,石墨烯产业化的道路到底还有多远,并提出了发展我国石墨烯技术和产业的切实建议。
2004年,英国曼彻斯特大学的两位科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃消洛夫(Konstantin Novoselov)发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。
他们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。
不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。
这以后,制备石墨烯的新方法层出不穷。
2009年,安德烈·盖姆和康斯坦丁·诺沃肖洛夫在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,他们也因此获得2010年度诺贝尔物理学奖。
在发现石墨烯以前,大多数物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。
所以,它的发现立即震撼了凝聚体物理学学术界。
虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯能够在实验中被制备出来。
石墨烯综述
石墨烯(Graphene)作为一种平面无机纳米材料,在物理、化学、科技、数码方面的发展都是极具前景的。
它的出现为科学界带来极大的奉献,机械强度高,导热和导电功能极具优势,原材料来源即石墨也相当丰富,是制造聚合复合物的最正确无机纳米技术。
由于石墨烯的运用很广泛,导致在工业界的发展存在很严重的一个问题就是其制作过程规模浩大,所以应该将其合理地分散到相应的聚合物内部,到达均匀分布的效果,同时平衡聚合物之间的作用力。
石墨烯的内部结构是以碳原子以sp2 杂化而成的,是一种单原子结构的平面晶体,其以碳原子为核心的蜂窝状结构。
一个碳原子相应的只与非σ键以外的三个碳原子按照相应的顺序连接,而其他的π则相应的与其他的的碳原子的π电子有机地组成构成离域大π键,在这个离域范围内,电子的移动不受限制,因为此特性使得石墨烯导电性能优异。
另一方面,这样的蜂窝状结构也是其他碳材料的基础构成元素。
如图1-1 所示,单原子层的最外层石墨烯覆盖组成零维的富勒烯,任何形状的石墨烯均可以变化形成壁垒状的管状[1]。
因为在力学规律上,受限于二维晶体的波动性,所以任何状态的石墨烯都不是平整存在的,而是稍有褶皱,不管是沉积在最底层的还是不收区域限制的。
,如图1-2 所示,蒙特卡洛模拟〔KMC〕做出了相应的验证[3]。
上面所提的褶皱范围在横向和纵向上都存在差异,这种微观褶皱的存在会在一定程度上引起静电,所以单层的会很容易聚集起来。
同时,褶皱的程度也会相应的影响其光电性能[3-6]图1-1. 石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维碳纳米管,也可堆叠形成三维的石墨[7]。
Figure 1-1. Graphene: the building material for other graphitic carbon materials. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite[7].图1-2. 单层石墨烯的典型构象[1]。
石墨烯介绍
大家下午好:今天我们小组将为大家介绍一种新物质,石墨烯。
石墨烯——近来新兴的热门材料。
首先,让我们初步认识一下石墨烯。
石墨烯是一种二维晶体,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。
人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。
当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
大家是否知道石墨与石墨烯的差别呢?石墨在我们生活中是非常常见的,就像我们平常生活中用的铅笔中就有。
但是石墨烯绝对不是简单的石墨,它具有很有优良的,截然不同的性质。
首先,石墨烯的发现具有跨时代的意义。
石墨烯出现在实验室中是在2004年,当时,英国的两位科学家安德烈·杰姆和克斯特亚·诺沃塞洛夫发现他们能用一种非常简单的方法即胶带剥离法,得到越来越薄的石墨薄片。
他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。
不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。
这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了那么,这种物质如何制备呢?石墨烯的合成方法主要有两种:机械方法和化学方法。
机械方法包括微机械分离法、取向附生法和加热SiC的方法;化学方法是化学还原法与化学解理法。
1.取向附生法—晶膜生长取向附生法是利用生长基质原子结构“种”出石墨烯,首先让碳原子在 1 1 50 ℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“ 孤岛” 布满了整个基质表面,最终它们可长成完整的一层石墨烯。
石墨烯:神奇的“新材料之王”
石墨烯:神奇的“新材料之王”作者:佘惠来源:《科学导报》2020年第76期有没有这样一款坚韧的薄膜,它能以一支铅笔尖的承受面,撑住一头大象的重量,而不会被戳破?石墨烯可以做到。
这种神奇的材料究竟是如何“炼成”的——笔者近日走进“首都科学讲堂”,为您一探究竟。
近日,在北京市科协主办、九三学社北京市委特别支持的第667期“首都科学讲堂”上,中国科学院院士、北京石墨烯研究院院长刘忠范与北京石墨烯研究院副院长、石墨烯器件技术研究部部长魏迪,向公众介绍了石墨烯——这款曾获得2010年诺贝尔奖的明星材料。
1、透明胶带撕出来的诺贝尔奖石墨烯原本就存在于自然界,只是难以剥离出单层结构。
1毫米厚的石墨大约包含300万层石墨烯。
铅笔在纸上轻轻划过,留下的痕迹可能就是几层石墨烯——它是由一层碳原子以六角形蜂巢结构周期性紧密堆积构成的二维碳材料。
人们很早就发现了石墨,但直到2004年才发现石墨烯。
这是因为,早在70多年前的理论研究表明,完美的二维结构晶体无法在非绝对零度的环境中稳定存在。
2004年,两位英国科学家用一种非常简单的实验方法突破了原有理论认知。
他们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊胶带上,撕开胶带,就能把石墨片一分为二。
不断这样操作,薄片越来越薄,最后得到了仅由一层碳原子构成的薄片——这就是石墨烯。
理论上虽不可能成功,实验中却偏偏被制备出来了。
这个发现立即震撼了科学界,两位发现者共同获得了2010年诺贝尔物理学奖。
“大家经常讲,石墨烯这个诺贝尔奖是用透明胶带撕出来的。
实际上,我们不能小瞧这么一个简单但重要的发现。
”刘忠范说,对于科学研究来说,像这两位科学家那样勇于探索、大胆尝试极其重要。
石墨烯具有很多神奇性能,因此号称“新材料之王”:它是最薄的材料,因为它仅有一个原子层;它是强度最大的材料,理论上强度比钢强韧200倍;它是导电性最好的材料,电导率是银的1.6倍;它是导热性最好的材料,热导率是铜的13倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯制作方法
石墨烯制备方法可分为化学气相沉积(Chemical Vapour Deposition,简称 CVD)法和物理气相沉积(Physical Vapour Deposition,PVD)法两大类。
1、化学气相沉积(CVD)法
CVD法是用一定量的有机原料,在适当温度和压力条件下,反应生成气相化合物,再将其均匀地均密地沉积到在石墨片基材表面形成膜的一种技术,是全球最受欢迎的石墨烯制备方法。
CVD法的主要优点在于其原材料具有较低成本,并可以提供高质量石墨烯,范围广泛,形状和尺寸可调,耗时和成本低,以石墨烯为基础制备电化学传感器、催化剂和能源存储相关材料性能可有效提高等特点和优势。
不过CVD法制备的石墨烯的片尺寸一般较小,最适用于小尺度的应用。
PVD法主要是以室温下通过层层积累石墨原料(如石墨粉或石墨板),而利用离子束或共振电感等物理方法将其转换成薄膜的一种制备技术。
由于PVD法沉积过程不需要使用有机重要成分,因此其物性稳定性也很高。
PVD法是一种更早期被研究,并且广泛用于工业应用的技术,它可生成较大的石墨烯片,可以应用于制备太阳能电池、遗传材料和传感器等设备,且制备所需时间较短,特别适用于大尺度的应用,但该方法需要在容易氧化的条件下进行,会给很多工业应用带来麻烦,所以目前更多地被用于研究领域。