平面向量中三点共线定理的扩展及其应用

合集下载

高中数学解题技巧:平面向量三点共线定理,关键点λμ=1

高中数学解题技巧:平面向量三点共线定理,关键点λμ=1

高中数学解题技巧:平面向量三点共线定理,关键点λμ=1
综述:先对平面向量之三点共线定理进行证明;此定理简称
λ+μ=1;若三点共线,则分解某向量,引进唯一参数λ,再用分解定理的唯一性求λ,此即待定系数法;亦可用平行向量求参数;
这点不难证明,只需证明由这三点A,B,C所组成的向量中有两个向量共线,而本结论可作定理直接使用。

平面向量题型要充分认识平面向量具有几何形式和代数形式的“双重身份”,重视向量的工具作用和应用意识,强化知识的联系,善于构造向量解决问题。

平面向量共线定理题型总结

平面向量共线定理题型总结

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=. 特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <例1已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100 B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A.例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y x x y x y +≥⨯=,取等号时4y x x y=224y x ∴=2y x∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9例3如图,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C例4如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5 如图所示:点是△的重心,、分别是边、上的动点,且、、三点共线.设,,证明:是定值;证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+又,,P G Q 三点共线,11133x y∴+= 113x y ∴+= 11x y ∴+为定值3G OAB P Q OA OB P G Q OA x OP =OB y OQ =yx 11+例6 如图所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A.2177a b + B. 2377a b + C. 3177a b + D. 4277a b + 解:,,E G C 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x 使得(1)AG x AE x AC ∴=+- ,1133AE AB a ==,AC a b =+ 12(1)()(1)(1)33xAG x a x a b a x b ∴=⨯+-+=-+-………①又,,F G B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数λ使得 (1)AG AB AF λλ∴=+-1144AF AD b ==,, 1(1)4AG a b λλ∴=+-…………………………… ②由①②两式可得:213114x x λλ⎧=-⎪⎪⎨-⎪=-⎪⎩6737x λ⎧=⎪⎪∴⎨⎪=⎪⎩3177AG a b ∴=+ 变式1:如图所示,在三角形ABC 中,AM ﹕AB=1﹕3,AN ﹕AC=1﹕4,BN 与CM 相交于点P ,且a AB =,b AC =,试用a 、b表示AP解:,,N P B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x,y 使得,1AP x AB y AN x y =++= ,PABCMNAN ﹕AC=1﹕4, bAC AN4141==1444y y xAP xAB AC xa b xa b -∴=+=+=+……①又,,C P M 三点共线,∴由平面内三点共线定理可得: 存在唯一的一对实数μ,λ使得,1AP AM AC μλμλ∴=++= ∵AM ﹕AB=1﹕3 ∴a AB AM3131==,, 133AP a b a b μλλλ-∴=+=+…………………………… ② 由①②两式可得:1314x x λλ-⎧=⎪⎪⎨-⎪=⎪⎩311211x λ⎧=⎪⎪∴⎨⎪=⎪⎩ 81,11x y y +=∴=321111AP a b ∴=+ 变式2:如图所示:直线l 过ABCD 的两条对角线AC 与BD 的交点O ,与AD 边交于点N,与AB 的延长线交于点M.又知AB = m AM ,AD =n AN ,则m +n=解:因为点O 两条对角线AC 与BD 的交点,所以点O 为AC 的中点1()2AO AB AD ∴=+AB = m AM ,AD =n AN 1()222m nAO mAM nAN AM AN ∴=+=+又,,M O N 三点共线,∴由平面内三点共线的向量式定理可得:122m n+= 2m n ∴+=定理的推广:推广1:已知平面内一条直线AB,两个不同的点O 与P.点O,P 位于直线AB 异侧的充要条件是:存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +>.图9推广2: 已知平面内一条直线AB,两个不同的点O 与P.点O,P 位于直线AB 同侧的充要条件是:存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +<. 例7 已知点P 为ABC 所在平面内一点,且13AP AB t AC =+(t R ∈),若点P 落在ABC 的内部,则实数t 的取值范围是( )A .3(0,)4 B. 13(,)24C. (0,1)D. 2(0,)3解:点P 落在ABC 的内部∴A,P 两点在直线BC 的同一侧,∴由推论2知:113t +< 23t ∴<,所以选D例8 如图:OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OB y OA x OP +=,则实数对(x ,y )可以是( ) A .)43,41( B. )32,32(- C. )43,41(- D. )57,51(-解:由题目的条件知:点O 与点P 在直线AB 的同侧,所以1x y +<,所以A,D 两选项不符合.对于选项B 、C,都有1x y +<,但当23x =-时,①如果点P 在直线AB 上,则由平面内三点共线的向量式定理可知:53y =②如果点P 在直线OM 上,OM ∥AB 可知:||OP AB ,由平面向理共线定理可知:存在唯一的实数t,使得()OP t AB t OB OA tOA tOB ==-=-+,OBy OA x OP +=,t x t y ∴-==ABOM图10又因为点P 在两平行直线AB 、OM 之间,所以2533y <<,故B 选不符合. 对选项C 同理可知:当14x =-时,1544y <<,故34y =符合,所以选C例9 如图13,OM ∥AB,点P 在由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界)运动,且OP xOA yOB =+,当12x =-时,y 的取值范围是 .解:当12x =-时,①如果点P 在直线AB 上,则由平面内三点共线的向量式定理可知:32y =②如果点P 在直线OM 上,OM ∥AB 可知:OP AB ,由平面向理共线定理可知:存在唯一的实数t,使得()OP t AB t OB OA tOA tOB ==-=-+,OB y OA x OP +=,t x t y ∴-==11,22t y ∴==,又因为点P 在两平行直线AB 、OM 之间,所以1322y <<,所以实数y 的取值范围是:13(,)22。

向量中三点共线结论的运用

向量中三点共线结论的运用
而: OD OA OB =kOC 【结合两组共线条件】




1 OC = OA OB m n , 1 【联系所求表达式,转换条件】 k k k k k
点评:运用极限思维也可以解决这道题。当AB距离无限接近于0时(即:A、B 重合为一点时) :
1. 其实两道题描述的都是相同的情景,第一题等价于:已知:O 是钝角三角形的外心,且
OC xOA yOB x、y R ,求 x y 的取值范围。刚好是对偶的题目。
2. 第二题在第一题的基础上有所提高,需要自己构造 D 点。所谓外心其实是为了提供一个外接圆, 初做此题容易使人联想到外心的性质,误入歧途。但实际上两题基本思路一致,甚至利用极限情 况求解的方式也一致。 3. 利用极限情况求解往往可以达到很好的解题效果。
1 OC OA= OB ,m=n= ,m+n=-1;当 AB 距离无限接近于外接圆直径时(即:△趋近 2
于直角△) :m=n→(趋近于) ,m+n→ 。当然,以上两种极端情况都不可能取到,所以 用开区间 , 1 。
三、 总结归纳



.
2015.1.22 JZX
解答:令 OC 的反向延长线与 AB 交于点 D, OD kOC ,由于 D 在圆外,则 k 1,0 【C、 O、D 的三点共线的条件】


D、A、B 三点共线,可令: OD OA OB =1 【D、A、B 的三点共线的条件】
点评:运用极限思维也可以解决这道题。当 OA 无限接近于 OD 时(即:D 在圆上时) :m=-1, n=0;当 AB 平行于 OC 时(即:CO、BA 交于无穷远处时) :m=-n,m+n=0。当然,以上两种 极端情况都不可能取到,所以用开区间 1, 0 。 2. (2015·绵阳一诊 10 改编) 已知: O 是锐角三角形的外心, 且 OC xOA yOB x、y R , 求 x y 的取值范围 答案: , 1

向量证明三线共点与三点共线问题

向量证明三线共点与三点共线问题

用向量证明三线共点与三点共线问题山东 徐鹏三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则简捷得多. 证明A 、B 、C 三点共线,只要证明AB 与AC 共线即可,即证明AC AB λ=.证明三线共点一般须证两线交点在第三条直线上.例1. 证明:若向量OA 、OB 、OC 的终点A 、B 、C 共线,则存在实数λ、μ,且1=+μλ,使得OB OA OC μλ+=;反之,也成立.证明:如图1,若OA 、OB 、OC 的终点A 、B 、C 共线,则AB //BC ,故存在实数m,使得AB m BC =,又OB OC BC -=,OA OB AB -=,故)(OA OB m OB OC -=-,OB m OA m OC )1(++-=.令,1,m m +=-=μλ则存在,1,,=+μλμλ且使得OB OA OC μλ+=. 若OB OA OC μλ+=,其中,1=+μλ则λμ-=1,OB OA OC )1(λλ-+=.从而有OC -OB =λ(OA -OB ),即BA BC λ=.又因为BA BC 和有公共点B,所以A 、B 、C 三点共线,即向量OA 、OB 、OC 的终点A 、B 、C 共线.例2. 证明:三角形的三条中线交于一点.证明:如图2,D 、E 、F 分别是ABC ∆三边上的中AOBC图1点.设BE BG AD AG G BE AD b CB a CA μ===⋂==,,,.设.则=-+-=++-=+-=+=)21()21()()(b a a b CA BC a b BE a b BG AB AG μμμ b a )1(1(21μμ-+-),又b a b a CD AC AD AG λλλλλ21)21()(+-=+-=+== ⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-=-3232121121μλμλμλ解得所以 则b a b a a AD a AG CA CG 3131)21(3232+=+-+=+=+= b a CF 2121+=,所以CF CG 32=,所以G 在中线CF 上,所以三角形三条中线交于一点.A BCEDF图2 G。

2024年高考数学复习培优讲义专题31--- 平面向量共线定理与等和线(含解析)

2024年高考数学复习培优讲义专题31--- 平面向量共线定理与等和线(含解析)

专题5-2 平面向量共线定理与等和线一、平面向量共线定理:已知PC PA PB λμ=+,1λμ+=是A B C 、、三点共线的充要条件 证明若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且PC xPA yPB =+,证明:A ,B ,C 三点共线是1x y +=的充要条件.证明:(1)由1x y +=⇒A ,B ,C 三点共线.由1x y +=得(1)()PC xPA yPB xPA x PB PC PB x PA PB BC xBA =+=+−⇒−=−⇒=.即BC ,BA 共线,故A ,B ,C 三点共线. (2)由A ,B ,C 三点共线1x y ⇒+=.由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BC BA λ=.故()(1)BP PC BP PA PC PA PB λλλ+=+⇒=+−.令,1x y λλ==−,则有1x y +=.AC二、等和线相关性质平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

1.当等和线恰为直线AB 时,k 等于1. 2.定值k 的变化与等和线到O 点的距离成正比.平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

1.当等和线恰为直线AB 时,k 等于1. 2.定值k 的变化与等和线到O 点的距离成正比.2017全国3卷(理)T12 1.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .22 C .5D .22020年江苏省高考2.在中,,,,在边上(不与端点重合).延长到,使得.当为中点时,的长度为 ;若为常数且,则的长度是 .ABC ∆3BC =4AC =90ACB ∠=︒D AB CD P 9CP =D AB PD 3()(2PC mPA m PB m =+−0m ≠3)2m ≠BD题型一 向量共线定理:构造方程组求系数2023·深圳二模1.已知OAB 中,OC CA =,2OD DB =,AD 与BC 相交于点M ,OM xOA yOB =+,则有序数对(,)x y =( )A .11,23⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .11,24⎛⎫ ⎪⎝⎭D .11,42⎛⎫ ⎪⎝⎭江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一)2.在ABC 中,已知2BD DC =,CE EA =,BE 与AD 交于点O .若CO xCB yCA =+(),R x y ∈,则x y += .3.在ABC 中,3BC BD =,2CF FA =,E 是AB 的中点,EF 与AD 交于点P ,若AP mAB nAC =+,则m n +=( ) A .37 B .47 C .67D .1题型二 向量共线定理:结合不等式求最值2024届·湖南师大附中月考(二)4.ABC 中,D 为AC 上一点且满足13AD DC =,若P 为BD 上一点,且满足,,AP AB AC λμλμ=+为正实数,则下列结论正确的是( )A .λμ的最小值为116B .λμ的最大值为1C .114λμ+的最小值为4D .114λμ+的最大值为165.如图,在ABC 中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N .若AM AB λ=,(0,0)AN AC μλμ=>>,则1λμ−的最小值是 .重点题型·归类精讲2024届·重庆市西南大学附中、重庆育才中学十月联考6.(多选)在三角形ABC 中,点D 足AB 边上的四等分点且3AD DB =,AC 边上存在点E 满足()0EA CE λλ=>,直线CD 和直线BE 交于点F ,若()0FC DF μμ=>,则( )A .1344CD CA CB =+B .4λμ=C .2164λμ+的最小值为17D .49CF EA CD CA ⋅≤⋅的延长线交于点F,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A. 3144EB EF EA =+ B. 14λμ=C. 11λμ+的最大值为1 D. 49EC AD EB EA⋅≥−⋅题型三 等和线:求系数和最值,范围8.如图正六边形ABCDEF 中,P 点三角形CDE 内(包括边界)的动点,设AF AB AP y x +=,则y x +的取值范围是________.FEDCB AFED9.如图,在直角梯形ABCD 中,AD AB ⊥,//AB DC ,1AD DC ==,2AB =,动点P 在以点C 为圆心,且与直线BD 相切的圆上或圆内移动,设(,R)AP AD AB λμλμ=+∈,则λμ+取值范围是 .10.给定两个长度为3的平面向量OA 和OB ,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若=OC xOA yOB +,其中,x y R ∈,则x y +的最大值是_____;2x y +的最大值是______.11.如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y R =+∈,则2x+y 的最小值为( )A .-1B .1C .2D .312.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )OACE BDCPA .4B .3C .2D .213.直角梯形中ABCD ,ABD BC AD CD CB ∆⊥,,//是边长为2的正三角形,P 是平面上的动点,1||=CP ,),(R AB AD AP ∈+=μλμλ设,则μλ+的值可以为( ) A. 0 B.1 C.2 D.3专题5-2 平面向量共线定理与等和线一、平面向量共线定理:已知PC PA PB λμ=+,1λμ+=是A B C 、、三点共线的充要条件 证明若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且PC xPA yPB =+,证明:A ,B ,C 三点共线是1x y +=的充要条件.证明:(1)由1x y +=⇒A ,B ,C 三点共线.由1x y +=得(1)()PC xPA yPB xPA x PB PC PB x PA PB BC xBA =+=+−⇒−=−⇒=.即BC ,BA 共线,故A ,B ,C 三点共线. (2)由A ,B ,C 三点共线1x y ⇒+=.由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BC BA λ=.故()(1)BP PC BP PA PC PA PB λλλ+=+⇒=+−.令,1x y λλ==−,则有1x y +=.AC二、等和线相关性质平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

专题:利用三点共线结论解平面向量问题——高三数学二轮专题复习

专题:利用三点共线结论解平面向量问题——高三数学二轮专题复习

专题:利用三点共线结论解平面向量知识梳理:三点共线定理 OC →= (1-t )OA →+tOB →的证明: 若OA →=a ,OB →=b 是平面内两不共线向量,对于平面内任一向量OC →=c ,存在一对实数λ,μ使c =λa +μb .证明A 、B 、C 三点共线的充要条件是λ+μ=1.证明:(必要性)若A ,B ,C 三点共线,则存在实数t ,使得AC →=tAB →, 即OC →-OA →=t (OB →-OA →)所以OC →= (1-t )OA →+tOB → 令λ=1-t ,μ=t ,则有c =λa +t b ,即λ+μ=1.(充分性)若λ+μ=1,则c =λa +(1-λ)b 即c -b =λ(a -b ) 即OC →-OB →=λ(OA →-OB →)即BC →=λBA →.所以A 、B 、C 三点共线.(思考:当t=21时,会发现A,B,C 是什么情况?)典型例题:例1:(全国高考)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=-43AB →-13AC →例2:已知平面内的三点A ,B ,O 不共线,且AP →=λOA →+μOB →,则A ,P ,B 三点共线的一个必要不充分条件是( )A .λ=μB .|λ|=|μ|C .λ=-μD .λ=1-μ例3:如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.例4:如图,在△ABC 中,点O 是BC 边的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M,N ,若N nA C A M mA B A==,,则m+n 的值为_______.练习:1、已知等差数列{a n }的前n 项和为S n ,若3OA →=a 5OB →+a 9OC →,且A ,B ,C 三点共线,则S 13=________.2、[2021•江苏卷,10]设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.3、(2021华美)在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 上一点,若AP →=mAB →+29AC →,则实数m 的值为4、(2021·郑州质检)如图,在△ABC 中,N 为线段AC 上靠近A 的三等分点,点P 在BN 上且A P →=⎪⎭⎫ ⎝⎛+112m AB →+211B C →,则实数m 的值为________.5、(2021华美)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是__________.专题:利用三点共线结论解平面向量例1:[解析] 由BC →=3CD →知,B 、C 、D 三点共线,从四个选项知系数和为1的仅有A ,故选A.例2:解析 A ,P ,B 三点共线,即存在一个实数m ,使得AP →=mAB →,∵AP →=λOA →+μOB →,∴mAB →=λOA →+μOB →,即m (OB →-OA →)=λOA →+μOB →,∴(m -μ)OB →=(m +λ)OA →,∵A ,B ,O 三点不共线,∴m -μ=0,m +λ=0,即λ=-μ=-m ,∴A ,B ,P 三点共线的充要条件为λ=-μ,结合各选项知A ,B ,P 三点共线的一个必要不充分条件为|λ|=|μ|.故选B. 例3:解析 由于B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →,又M 是AH 的中点, 所以AM →=12AH →=12xAB →+12(1-x )AC →.又AM →=λAB →+μAC →,所以λ+μ=12x +12(1-x )=12.例4:解析 解法一:AO →=12(AB →+AC →)=m 2AM →+n 2AN →.∵M ,O ,N 三点共线,∴m 2+n2=1.∴m +n =2.解法二:MN 绕O 旋转,当N 与C 重合时,M 与B 重合,此时m =n =1,∴m +n =2.练习:1、[解析] 由3OA →=a 5OB →+a 9OC →,得OA →=a 53OB →+a 93OC →因为A ,B ,C 三点共线,所以a 53+a 93=1,即a 5+a 9=3,所以S 13=13(a 1+a 13)2=13(a 5+a 9)2=392.所以S 13=3922、解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,故λ1+λ2=12.(提示,过A 作DE 平行线交BC 延长线于点F,利用B,C,F 共线)3、 答案1/34、 解析 设BP →=λBN →=λ(AN →-AB →)=λ⎝⎛⎭⎫13 AC →-AB →=-λAB →+λ3 AC →(0≤λ≤1), ∴A P →=AB →+B P →=(1-λ) AB →+λ3AC →. 又A P →=⎝⎛⎭⎫m +211AB →+211 BC →=⎝⎛⎭⎫m +211AB →+211(AC →-AB →)=mAB →+211AC →,∴⎩⎪⎨⎪⎧λ3=211,m =1-λ,解得⎩⎨⎧λ=611,m =511,∴m =511.5、【答案】(1,+∞) [设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μm OB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1。

高中数学教学论文 向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =)得三点共线.证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+∴()OB OA μOC OA -=-∴AB μAC =∴A 、B 、C 三点共线.思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+,且1λμ+=.揭示了三点贡献的又一个性质;3. 特别地,12λμ==时,1()2OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛.应用举例例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13BN BD =. 利用向量法证明:M 、N 、C 三点共线.思路分析:选择点B ,只须证明BN λBM μBC =+,且1λμ+=.证明:由已知BD BA BC =+,又点N 在BD 上,且13BN BD =,得 1111()3333BN BD BA BC BA BC ==+=+ 又点M 是AB 的中点,12BM BA ∴=,即2BA BM =D A B C M N2133BN BM BC ∴=+ 而21133+= ∴M 、N 、C 三点共线.点评:证明过程比证明MN mMC =简洁.例2如图,平行四边形OACB 中,13BD BC =,OD 与AB 相交于E ,求证:. 14BE BA =. 思路分析:可以借助向量知识,只须证明:14BE BA =,而BA BO BC =+,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且1λμ+=,使BE λBO μBD =+,从而得到BE 与BA 的关系. 证明:由已知条件,BA BO BC =+,又B 、E 、A 三点共线,可设BE k BA =,则 BE k BO k BC =+①又O 、E 、D 三点共线,则存在唯一实数对λ、μ,使BE λBO μBD =+,且1λμ+=. 又13BD BC = 13BE λBO μBC ∴=+②根据①、②得 131k λk μλμ=⎧⎪⎪=⎨⎪+=⎪⎩,解得141434k λμ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 14BE BA ∴= 14BE BA ∴= 点评:借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁. D O A C E B。

向量中有关三点共线的一个结论的简单应用

2021年第07期总第500期数理化解题研究向量中有关三点共线的一个结论的简单应用孙红(浙江省青田中学;2;900)摘 要:向量具有几何和代数的双重属性,它是沟通几何与代数的桥梁,注重运用向量解决数学问题,体现了几何与代数的融合,有利于培养学生的数学思维能力,有利于提升数学学科核心素养.本文结合具体的实例,探讨了向量中三点共线的一个结论的简单应用•关键词:向量;三点共线;应用中图分类号:G632 文献标识码:A 文章编号:;008 -0333(202;)07 -0049 -03向量是近代数学中重要和基本的数学概念之一,是 解决解析几何的有力工具,有着丰富的实际背景和深刻 的几何背景.向量来源于物理,并且兼有”数”和”形”的特点,坐标表示使平面内的向量和坐标建立了一一对应的 关系,将“数”与“形”紧密结合起来’从而将图形的基本性 质转化为向量的运算体系•在平面向量的解题中涉及到三点共线时经常用到下面的结论,我们一起来探讨一下•结论 已知0,A ,B ,C 四点共面,若0C 二入°4 + “ OB(入,“ e R ),则A ,B ,C 三点在同一条直线上的充要条件是 入 + “ - 1.证明 (先证必要性) 若A ,B , C 三点在同一条直 线上,则存在t e R ,使得A C - t AB.所以O B - 04 -t ( O B - B ).即 B - (1 - t )04 + t 0B -入 B + /zO B .则r -;-t ,此时入+“-1.z 二t ,(再证充分性)若入+ z - 1,则0C -入04 + z 0B - (1 -z )0B + z 0B .所以0B - 0B -z (0B - 0B ).即A C -/zA B .所以A ,B ,C 三点在同一条直线上.综上所述,A ,B , C 三点在同一条直线上的充要条件 是入+ z — ; •点评平面向量三点共线结论中三个向量04,0B , 0B 必须是同起点,其中蕴含了一个几何特征,即三点共线 和一个代数结论入+ z -1 •上述结论中包含了两个方面:(;)若A ,B ,C 三点在同一条直线上,则入+ z -1; (2)若入+ z -;,则A , B , C 三点在同一条直线上•在向量解题中 要注意灵活应用,即结论的正用和逆用,下面一起来看一 下结论的简单应用.题1在A ABC 中,D ,E 分别是线段BC 上(除端点外)的两个动点,B + B -% A b + yA c ,求丄+ 4的最小值.%y分析因为B ,D ,C 三点共线,所以存在m E R ,使得A 力-mA B + (1 - m )A C . ①同理,由B , E , C 三点共线,则存在n e R ,使得A B -nA B + (1 - n )AC.②所以AD + AE - (m + n )A B + (2 - m - n )AC - % A B +% - m + n , “ …y AC ,即{解得 % + y -2•y - 2 - m - n ,又分别是线段BC 上的两个动点,所以0 < m <1,0 < n < 1.2% - 3、时等号成立.4y -;所以 0 <%,y <2.所以丄+ -y -I I 1 +%y 2 V %/5+2 弹・4% ]-9,V %y 丿2,'% + y -2,当且仅当y 4%即V %y ,:0( %+y )-2 f 5 + % +4;所以丄+ ~~的最小值为刍.% y 2点评 本题条件不多,解题时要充分利用已知条件找到%,y 满足的关系式•上述解题过程中利用了平面向量 三点共线的一个结论’根据B ,D ,C 三点共线和B ,E ,C 三点共线可得到等式①和②,结合已知条件可得% + y -2,因此 本题就转化为在% + y -2和0<%,y <2的条件下,求丄+ 土%y收稿日期:2020 -12 -05作者简介:孙红(1979 -),女,安徽省宿县人,中学高级教师,从事高中数学教学研究.— 49—数理化解题研究2021年第07期总第500期的最小值问题,利用1的代换容易求出最小值题2 已知0为△ 4BC 所在平面内的一点,0》—4 0》,0力—1 0》,4D 与BC 交于点M ,设0》—a , 0》—b .用a ,b 表示0》.分析这是学生作业本上的一道习题,学生拿到这道题可能会感觉无从下手,题目中涉及的向量比较多,事 实上,根据题目条件4,M ,D 三点共线,存在m e R ,使得而—m 0》+ (1 - m )0》—m a +辽%①同理B ,M ,C 三点共线,存在n e R ,使得》—n0》+ (1 - n )0》—a + (1 - n )b .②一n m 二才,由等式①和②可得,解得<1 - m v4n — .1 ;所以0M — 7 a + 7 b .当然本题也可以利用平面图形的几何性质来解决. 过点》作04交BC 于点N ,根据题意容易得到,DN—1 0C — 1 C4.所以》M — 1 M4,—1》》—2 6 6 77 (0》-0》)—7 卜-1 bj— ; a -[[b .所以0》—0》+—;a + 7 b .题3 已知0为△ 4BC 外接圆的圆心,4B —6,4C —15,40 — % 4》+ y 4》,2% +3y — 1,求 cosZ B4C 的值.分析 40 — % 4》+ y 4C — 2% x 2 4》 + 3 y x ; 4》,令4》丁 — 1 4》,4C ; — 1 4》,贝V 40 —2% 4》;+ 3y 4C ;.因为 2%+ 3y — 1,所以0,B',C '三点共线•又0为厶4BC 外接圆的圆心,B ;是线段4B 的中点,所以B'C ;是线段4B 的中垂 线•在 RtA 4B'C ;中,有 4B ; — 1 4B —3,4C ; — ; 4C — 5,4B ;cos/B'4C ‘ — 4》3—5 •即 cosZ B4C35点评 上述解题过程利用了平面向量中三点共线的 结论,因为题目条件中给出等式2% +3y — 1,有时我们会 想能否利用三点共线的结论,而要利用结论必须要出现 系数2%和3y ,因此需要对已知等式进行恒等变形,即40—%4》+ y4》—2% x 2 4》+ 3y x ; 4》,这时只需令4》—1 4》,4》—;4》,贝V 4》—2% 4》+3y4》.又 2% +3y — 1, 容易得到0,B ;,C ;三点共线,这是三点共线结论的逆用, 通过对已知等式进行恒等变形,结合已知条件构造三点共线进行解题,这种解题思路在向量解题中经常运用.题4给定两个长度为1的平面向量0》和0》,它们的夹角为120°,点C 在以0为圆心的圆弧4B 上变动,若0C — % 0》+ y 0》(% ,y e R ),求% + y 的最大值•分析 连接4B 交0C 于点》,因为4,B ,》三点共线,则存在 m , n e R ,使得0》—m 0》+ n 0》,m + n — 1(m ,n e R ).又0,》,C 三点共线,所以存在t e R ,使得0》 -t0》 — tm 0》 + tn 0》—% 0》+ y 0》.即{,解得 % + y — t ( m + n ) — t.y — tn.又t俑—嵩,当0》丄4B 时」轨占此时t唤—2,即% + y 的最大值为2 •点评 上述解题过程中利用了 4,B ,》三点共线,存 在m ,n e R ,使得0》—m 0》+ n 0》,m + n — 1,以及0, D , C 三点共线,存在t e R ,使得0》—t 0》,从而得到等式% +y — t.又t — 0》— J ,因此要求% + y 的最大值,即求|0》 |0》0》的最小值,结合图形容易求得答案•事实上,假若%+ y — 1,则4,B ,C 三点共线,但是因为点C 在圆弧4B 上运动,因此只需将直线4B 平移至4'B ‘,使得直线4'B ;与圆 弧4B 有交点,即为点C.根据等和线定理容易得到,% + y —-p0》l — 10》|•又'0》e [t ,1 ],所以%+ y 的最大值为2 ,此时直线4'B ‘与圆弧4B 相切,切点为点C.思路1根据平面向量分解定理,按照向量加法的几何意义及平行四边形法则,等式0》—%0》+ y 0》表明了 将0》向0》和0》方向上进行分解,在0》和0》方向上的投影分别是%,y ,因此我们可以利用余弦定理得到等式%2 + y 2- %y — 1,然后再结合基本不等式知识或△法求解% + y 的最大值.思路2引入变量Z C0B — a ,利用正弦定理将% + y的最大值问题转化为关于a 的三角函数的最值问题.思路3建立平面直角坐标系,将本题转化为向量的代数运算.比如以0》所在直线为%轴,以点0为坐标原点建立平面直角坐标系,容易得到4 (1,0),B设C (cos 0,sin 0)〔0三0三;n )根据0C — % 0》+ y 0》.将 % + y 的最大值问题转化为关于0的三角函数的最值问题.变式 若本题的其他条件不变,求2% + y 的最大值. 上述几种方法同样适用,若用到等和线定理,则需将—50—2021年第07期总第500期数理化解题研究已知等式进行恒等变形•事实上’OC-%04+y O B-2%X ;04+y O B,令O M-;04,即M为线段OA的中点,则OC-2%O M+y O B.连接MB交OC于点N,假设2%+y -1,则C,M,B三点共线,但是因为点C在圆弧AB上运动,根据等和线定理,只需将直线MB平移至M'B,,使得直线M‘B,与圆弧相切’切点为点C,此时(2%+y)喰-临-侖,根据图形可得OC丄M'B',MB〃MW.所以OC丄MB,即ON丄MB,在△ABM中利用面积法可求得O/V•题5(2019年浙江高考卷)已知点F(1,0)为抛物线y2-2p%(p>0)的焦点,过点F的直线交抛物线于A,B 两点,点C在抛物线上,使得A ABC的重心G在%轴上,直线AC交%轴于点Q,且点Q在点F的右侧,记A AFG,△CQG的面积分别是S;,S2•(1)求卩的值及抛物线的准线方程;S(2)求S;的最小值及此时点G的坐标.S2分析解析几何是高考重点考查的内容之一,本题考查的是抛物线的标准方程以及直线与抛物线的位置关系,同时考查了学生的转化与化归能力、数形结合能力、运算求解能力,以及运用所学知识分析问题和解决问题的能力,考查逻辑推理、直观想象、数学运算等核心素养•(;)抛物线的标准方程为y2-4%;(2)思路1设点法•设点A(t2,21),写出直线AF的方程,联立抛物线方程可求得点B的坐标(用t表示),结S合已知条件从而求得点C,G,Q的坐标,进而得到S;的表S2达式,可写成关于变量t的函数,最后利用换元法以及基本不等式等知识求得函数的最小值.思路2设出直线AB的方程,如Z AB:%-my+ 1,将直线AB的方程与抛物线方程联立,设A(%;,y;),B(%2,y2),利用韦达定理,结合题目条件容易求得点C,G,Q的坐标, S从而得到S;的表达式,因此问题就转化为求函数的最小S2值问题•这两种方法都比较好,但解题中计算量非常大,很难将解题进行到底,解决此题需要一定的综合解题的能力.思路3有些同学是利用向量知识进行求解,相比较而言计算量较小,在解题过程中利用了平面向量中三点共线的一个结论,及三角形中的重心的性质等知识,最终S将S;最大值问题转化为求函数的最大值问题•下面是利S2用向量法求解本题的部分解析•因为点G是A ABC的重心,则S△agb-S△agc.令A F-入A V,AQ-/zAC(0<入,“<1),贝卩S;-S“G-^S△ABG,S2-S△CQG-(1-z)S△AGC.所以-;—延长AG 交BC于点M,则A M-;(A F+A C),AG-;A M-;(A B+A C).又F,G,Q三点共线,所以存在t e R,使A F -tAF+(1-t)AQ-入tAB+z(;-t)A C-;(AB+AC).即{入t-V,解得入二2"[•门、13"-;z(;-1)二亍又0<入,z<;,所以2<z<;•A A所以S;二入__S21-z(3z-;)(;-仏)-3^z2+4z-;■3--1+孚——;、三3z+^丿+4-23+4当且仅当{”-丄,z;;;C T+7-3,即{\3+3入二6时等号成立.73“-;所以的最小值为;+£•(点G的坐标求解略)解析几何中有关面积最值或范围问题是高考的热点和难点之一,一般来讲有两种常见的解题思路:(1)构造关于所求量的函数,将有关面积的最值或范围问题转化为函数的最值或范围问题;(2)构造关于所求量的不等式来求解最值或范围.解题过程中经常将直线方程与圆锥曲线方程联立,利用韦达定理、弦长公式、点到直线的距离、基本不等式等知识•解析几何作为高考解答题之一,常作为压轴题,解答题重视数学思想、数学方法的理解、掌握与灵活运用,综合性强,难度较大,体现了对学生数学素养的考查.对于本题相比较前面涉及到的三种解题方法中,利用向量法求解本题计算量较少,容易求解.参考文献:[1]何振华.例谈高中数学一题多解的“套路”[J].福建中学数学,2018(12):38-40.[责任编辑:李璟]—51—。

在平面向量中,三点共线的应用

在平面向量中,三点共线的应用赣州中学 龚海院高中数学北师大版必修4课本第二章平面向量,第82页有例题3.题目为:A,B,C 是平面内三个点,且A 与B 不重合,P 是平面内任意一点,若点C 在直线AB 上,则存在实数λ,使得(1)PC PA PB λλ=+-证明:如图所示,因为向量BA BC 与共线,根据向量共线定理可知:证完.注意到: PA PB 与的系数之和为1-+=1λλ()。

此命题的逆命题也是成立的。

特别说明,。

此命题在解决一些几何问题(诸如“三点共线”或类似的题)时有着广泛的应用。

以下通过例题来加以说明。

下面仅举几例,以飨读者。

例1 如图,在平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上。

BN=13BD ,求证:M 、N 、C 三点共线。

证:设1AB e =,2AD e =,(1e 与2e 不共线),则21BD e e =-.∵N 为BD 的三等分点,∴2111()33BN BD e e ==-,而11122BM BA e ==-, ∴21212111211212()333323333BN e e e e e BM BC BM =-=+⨯-=+=+,∵12,33m n ==,且m+n=1,且B 、M 、C 三点不共线,则点M 、N 、C 三点共线。

例2 (06年江西高考题)已知等差数列{a n }的前n 项和为S n ,若120O B aO A a O C =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=A .100B .101C .200D .201()()(1)BC BAPC PB PA PB PC PB PA PB PC PB PAλλλλλ=-=-=+-=-+,,,,1,,,A B C P PC xPB yPA x y A B C =++=命题:已知平面上四点:,若有且则三点共线。

,1,1-y)(),,PC xPB yPA x y PC PB yPA PB y PA PB PC PB yBA PC PB yBA BC yBA BC BA =++==+=+-=+-==证明:因为且则(即是,所以,故与共线,从而A,B,C三点共线,证完。

证明三点共线的向量定理

证明三点共线的向量定理证明三点共线的向量定理1. 引言在几何学中,共线是指多个点在同一条直线上。

证明三点共线的向量定理是一种常用的方法,它利用向量的性质来判断三个点是否在同一条直线上。

本文将深入探讨这个定理,通过提供详细的解释和举例,帮助您全面了解这一概念。

2. 向量的基本概念在开始证明之前,我们先了解一些基本的向量概念。

向量是有大小和方向的量,通常用箭头来表示。

向量可以表示为有序数对 (a, b),其中a 和 b 分别表示向量在水平和垂直方向上的分量。

在这里,我们使用巴斯克定理,这是一个三角学中的基本定理,通过它我们可以找到一个向量的模长和方向。

3. 证明三点共线的向量定理现在我们来证明三个点是否共线的向量定理。

假设有三个点A(x1, y1)、B(x2, y2) 和 C(x3, y3)。

根据向量的定义,我们可以将向量 AB 表示为向量 a = (x2 - x1, y2 - y1),向量 BC 表示为向量 b = (x3 - x2, y3 -y2)。

如果这两个向量是平行的,那么向量 a 和向量 b 的比例关系为 a= k * b,其中 k 是一个常数。

这意味着点 A、B 和 C 共线。

为了证明这一点,我们可以计算向量 a 和向量 b 的比值,如果比值等于常数 k,那么三个点就共线。

具体计算如下:a = (x2 - x1, y2 - y1)b = (x3 - x2, y3 - y2)k = a / b = (x2 - x1) / (x3 - x2) = (y2 - y1) / (y3 - y2)如果比值 k 等于常数,那么三个点 A、B 和 C 就共线。

4. 举例说明为了更好地理解上述证明过程,我们举个例子来计算三个点是否共线。

假设有三个点 A(1, 2)、B(3, 4) 和 C(5, 6)。

我们可以计算向量 a 和向量 b 的比值:a = (3 - 1, 4 - 2) = (2, 2)b = (5 - 3, 6 - 4) = (2, 2)k = a / b = (2 - 1) / (2 - 1) = 1由于比值 k 等于常数 1,所以点 A、B 和 C 是共线的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优质资料 欢迎下载
平面向量中三点共线定理的扩展及其应用
广东省云浮市邓发纪念中学 杨再华
一、问题的提出及证明。
1、向量三点共线定理:在平面中A、B、C三点共线的充要条件是:
.OAxOByOC
(O为平面内任意一点),其中1xy。

那么1xy、1xy时分别有什么结证?并给予证明。
结论扩展如下:1、如果O为平面内直线BC外任意一点,则
当1xy时 A与O点在直线BC同侧,1xy时,
A与O点在直线BC的异侧,证明如下:
设 OAxOByOC
且 A与B、C不共线,延长OA与直线BC交于A1点
设 1OAOA(≠0、≠1)A1与B、C共线
则 存在两个不全为零的实数m、n
1
OAmOBnOC

且1mn

则 OAmOBnOC
mn
OAOBOC

mx、n
y

1mnxy


(1)1 则 1xy 则
111OAOAOA

A与O点在直线BC的同侧(如图[1])

(2)0,则101xy,此时OA与1OA反向
A与O在直线BC的同侧(如图[2])

图[2]

B
C
A
1
O
A

O
A1B C
A

图[1]
优质资料 欢迎下载
(3)1o,则1xy
此时 111OAOAOA

A与O在直线BC的异侧(如图[3])

图[3]

2、如图[4]过O作直线平行AB,
延长BO、AO、将AB的O侧区

域划分为6个部分,并设OPxOAyOB,
则点P落在各区域时,x、y满足的条件是:

(Ⅰ)区:0001xyxy (Ⅱ)区:0001xyxy (Ⅲ)区:
0001xyxy






(Ⅳ)区:0011xyxy (Ⅴ)区:00xy (Ⅵ)区:
0010xyxy






(证明略)
二、用扩展定理解高考题。
(1)[2006年湖南(文)10] 如图[5] OMAB,点P在由射线OM,线段OB及
AB

的延长线围成的阴影区域内(不含边界),且OPxOAyOB,则实数对(x、y)
可以是……( )
A.(14,34) B.(23,23) C.(14,34) D.(15,75)

解:根据向量加法的平等四边形法则及扩展定理,则
0x,且1Oxy,则选C
(2)[2006年湖南(理)15] 如图[5]OMAB,点P在由射线OM,线段OB及
AB

的延长线围成的阴影区域内(不含边界)运动,且OPxOAyOB,则x的取值
范围是 。当12x时,y的取值范围是 。
解:根据向量加法的平行四边形法则及扩展定理,则有:
0x,且当12x,有:1Oxy,即1131222Oyy

答案为:0x,(12,32)

A
B
C
A
1

O

A
B
O
Ⅲ Ⅳ Ⅴ Ⅵ
Ⅰ Ⅱ

M
B
A
O

P

图[4]
图[5]

相关文档
最新文档