电力电子系统建模与控制0

个人信息

课程信息

现代电力电子技术

电力电子系统建模及控制徐德鸿编著

Fundamentals of Power Electronics

Second Edition by Bob Erickson

课程介绍

课程介绍

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

电力系统稳定与控制作业

华北水利水电大学研究生结课论文 姓名杨双双 学号201420542396 专业控制工程 性质国家统招(√)单考() 工程硕士()同等学力()科目电力系统稳定与控制 成绩

加强电网三道防线建设的建议 开题报告 1、选题的背景及意义 随着电网的发展,电网的动态特性日益复杂,电网运行稳定控制的复杂度也相对提升。然而近年来,美国,澳大利亚,瑞典等国家均发生了大面积停电,给这些国家的经济造成了巨大的损失,并严重影响了这些国家的社会生活,这些引起了国内外对电网安全运行的高度关注。为了确保电网的安全稳定运行,一次系统建立了合理的电网结构、配备完整的电力设施、安排合理的安全运行方式,二次系统应配备性能完备的继电保护系统和适当的安全稳定控制措施,这组成一个完备的防御系统,为三道防线。 《电力系统安全稳定导则》规定我国电力系统承受最大扰动能力的安全稳定标准分为三级: 第一级标准:保持稳定运行和电网的正常供电[单一故障(出现概率较高的故障)]; 第二级标准:保持稳定运行,但允许损失部分负荷[单一严重故障(出现概率较低的故障)]; 第三级标准:当系统不能保持稳定运行是,必须防止系统崩溃并尽量减少负荷损失[多重严重故障(出现概率很低的故障)]。 三道防线是电力系统防御体系的重要组成部分,设置三道防线来确保电力系统在遇到各事故时的安全稳定运行,其定义如下: 第一道防线:由性能良好的继电保护装置构成,确保快速、正确地切除电力系统的故障元件。 第二道防线:由电力系统安全稳定控制系统、装置及切机、切负荷等稳定控制措施构成,对预先考虑到的存在稳定问题的运行方式与故障进行检测、判断和实施控制,确保电力系统的安全稳定运行。 第三道防线:由失步解列、频率及电压紧急控制装置构成,当店里系统发生失步震荡、频率异常、电压异常等事故时采取解列、切负荷、切机等控制等措施,防止系统崩溃,避免出现大面积停电。第三道防线一般不站队特定的运行方式与

电力电子技术课程综述.doc

HefeiUniversity 合肥学院电力电子技术课程综述 系别:电子信息及电气工程系 专业:自动化 班级: 姓名: 学号:

目录 摘要: (3) 绪论 (4) 1.1电力电子技术简介: (4) 1.2电力电子技术的应用: (4) 1.3电力电子技术的重要作用: (5) 1.4电力电子技术的发展 (5) 本课程简介 (6) 2.1电力电子器件: (6) 2.1.1根据开关器件是否可控分类 (6) 2.1.2 根据门极)驱动信号的不同 (6) 2.1.3 根据载流子参与导电情况之不同,开关器件又可分为单极型器件、双极型器 件和复合型器件。 (6) 2.2 DC-DC变换器 (7) 2.2.1主要内容: (7) 2.2.2直流-直流变换器的控制 (7) 2.3 DC-AC变换器(无源逆变电路) (8) 2.3.1电压型变换器 (8) 2.3.2电流型变换器 (8) 2.3.3脉宽调制(PWM)变换器 (9) 2.4 AC-DC变换器(整流和有源逆变电路) (9) 2.4.1简介 (9) 2.4.2工作原理 (9) 2.5 AC-AC变换器 (10) 2.5.1 简介 (10) 2.5.2 分类 (10) 2.6 软开关变换器 (10) 2.6.1分类 (10) 2.6.2 重点 (10) 总结 (11) 参考文献 (11)

摘要:电力电子技术是在电子、电力与控制技术上发展起来的一门新兴交 叉学科,被国际电工委员会(IEC)命名为电力电子学(Power Electronics)或称为电力电子技术。近20年来,电力电子技术已渗透到国民经济各领域,并取得了迅速的发展。作为电气工程及其自动化、工业自动化或相关专业的一门重要基础课,电力电子技术课程讲述了电力电子器件、电力电子电路及变流技术的基本理论、基本概念和基本分析方法,为后续专业课程的学习和电力电子技术的研究与应用打下良好的基础。 关键词:电力电子技术控制技术自动化电力电子器件 Abstract: Power electronic technology is in Electronics, electric Power and control technology developed on an emerging interdisciplinary, is the international electrotechnical commission (IEC) named Power Electronics (Power Electronics) or called Power electronic technology. Nearly 20 years, power electronic technology has penetrated into every field of national economy, and have achieved rapid development. As electrical engineering and automation, industrial automation or related professional one important courses, power electronic technology course about power electronics device, power electronic circuits, the basic theory of converter technology, the basic concept and basic analysis for subsequent specialized course of study and power electronic technology research and application lay a good foundation. Keywords:Power electronic technology control technology automation power electronics device

电力电子电路建模与分析考试题答案

1.推演单相全桥SPWM 逆变电路的动态模型 L E S 1S3 S 2S 4R L 非线性部分(开关网络)线性部分R 电感内阻 C 电路可看作两部分:线性部分→输出u 0,输入u i ;非线性部分(开关网络) →输出u i ,输入u r (调制波)。 分析:u i 有两种电平,当S 1、S 4导通时,u i =E ; 当S 2、S 3导通时,u i =-E ; ()12-=S E u i ???=导通时、 导通时、S S S S S 324101(1) 由于开关函数S 的存在,使得u i 的幅值变化不连续,故对上式取开关周期平均值; () ()t D S S E u i =-=,12(2) 假设采用如图所示规则采样,则D (t )可推导如下(设载波频率为f W ,对应周期为T W ): u r U tri T w /2Δt D (t ) 可得,()???? ??+=+=U u T t T t D tri r w w 12122?(3) 将(3)代入(2)有: ()()()U u E t D E S E u tri r i =-=-=1212(4) 即:U E u u tri r i = 可得调制器逆变桥输出u i 的开关周期平均值与输入u r 之间的传递函数为: ()()U E S U S U t r i r i = U i 与U o 之间是一个线性电路,不难得出其传递函数为:

()()()???? ??++???? ??++=++=R R s C R R L s LC Cs //R Ls R Cs //R s U s U L L L L i o 11211111 综上可得调制器输入u r 与逆变器输出u o 之间的传递函数为: ()()()()()()U E R R s C R R L s LC s U s U s U s U s U s U tri L L r i i o r o ???? ? ??++???? ??++=?=11211 2.以DC/DC 变换器输出稳定直流电压为例,画出控制系统的一般组成框图,说明对电力电子变换电路进行建模、并且线性化的主要目的何在? + -Gc (s ) PWM 调制v v ref +-Vin (t ) 补偿网络 DC/DC 变换器反馈控制系统 Gc (s )Gm (s )Gvd (s )H (s )Vref (s ) 误差信号E(s)Vc (s )d (s )Vo (s ) B (s ) 参考信号 控制系统组成框图 答:要满足系统的技术性能指标要求,取决于对控制器的良好设计(含补偿或校正环节)以及设计合适的反馈网络及其参数等,因此需要确切掌握控制器的控制对象的行为特征,即被控对象的数学模型 。 作为电力电子转换的电力电子装置,应用越来越广泛,电力电子装置要满足一定的性能指标,这就要进行系统设计,设计满足性能要求的控制器,这就要借助被控对象的数学模型,设计成满足要求的闭环系统,是系统达到稳准快高性能要求。同时对电力电子电路进行建模,还可以分析不同的电路参数对电路有怎样的影响,为更好地分析,设计做基础。 而电力电子变换电路具有强烈的非线性(开关元件),与线性系统不同,非线性系统性能与初始条件、工作状态、参量变化范围等等均有关联,难以有统一的数学分析方法,而经典控制理论中关于控制器的设计方法只适用于线性系统,所以,往往需进行线性化近似处理,得到线性化模型,然后按照线性设计方法进行设计。 3.根据开关元件的通、断对电力电子变换器进行分时分段数学描述,指出:按照这样的分段描述“数学模型”对变换器进行闭环系统PI 控制器设计可行吗?为什么?

电力系统分析报告仿真实验报告材料

实用文档 电力系统分析仿真 实验报告 ****

目录 实验一电力系统分析综合程序PSASP概述 (3) 一、实验目的 (3) 二、PSASP简介 (3) 三、实验内容 (5) 实验二基于PSASP的电力系统潮流计算实验 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验步骤 (14) 四、实验结果及分析 (15) 1、常规方式 (15) 2、规划方式 (23) 五、实验注意事项 (32) 六、实验报告要求 (32) 实验三一个复杂电力系统的短路计算 (34) 一、实验目的 (34) 二、实验内容 (34) 三、实验步骤 (35) 四、实验结果及分析 (36) 1、三相短路 (36) 2、单相接地短路 (36) 3、两相短路 (37) 4、复杂故障短路 (37) 5、等值阻抗计算 (38) 五、实验注意事项 (39) 六、实验报告要求 (39) 实验五基于PSASP的电力系统暂态稳定计算实验 (40) 一、实验目的 (40)

二、实验内容 (40) 三、实验步骤 (41) 四、实验结果级分析 (41) 1、瞬时故障暂态稳定计算 (41) 2、冲击负荷扰动计算 (45) 五、实验注意事项 (74) 六、实验结果检查 (74)

实验一电力系统分析综合程序PSASP概述 一、实验目的 了解用PSASP进行电力系统各种计算的方法。 二、PSASP简介 1.PSASP是一套功能强大,使用方便的电力系统分析综合程序,是具有我国自主知识产权的大型软件包。 2.PSASP的体系结构: 第一层是:公用数据和模型资源库,第二层是应用程序包,第三层是计算结果和分析工具。 3.PSASP的使用方法:(以短路计算为例) 1).输入电网数据,形成电网基础数据库及元件公用参数数据库,(后者含励磁调节器,调速器,PSS等的固定模型),也可使用用户自定义模型UD。在此,可将数据合理组织成若干数据组,以便下一步形成不同的计算方案。 文本支持环境: 点击“数据”菜单项,执行“基础数据”和“公用参数”命令,可依次

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力系统安全稳定控制

摘要:近年来,伴随着经济社会的快速发展,电力系统规模的不断扩大使得电网体系的结构日趋复杂,电力设备单机容量逐步提高,与之相关的电力系统安全稳定问题也不断涌现。积极研究和运用先进的安全稳定控制技术不但可以使电力系统运行的可靠性大大提高,而且可以直接带来可观的经济效益。从电力系统安全稳定的相关概念入手分析了电力系统安全稳定控制的相关技术,然后就这些技术在电力系统中的实际应用进行了说明,旨在为电力部门提高安全稳定控制水平提供参考。 关键词:电力系统;安全稳定;控制技术;应用 电力作为当今社会最主要的能源,与人民生活和经济建设息息相关。供电系统如果不稳定,往往导致大面积、长时间的停电事故,造成严重的经济损失及社会影响。因此,学习电力系统安全稳定控制理论并研究适应时代发展要求的新的电力系统安全稳定控制技术对于实现当前电力资源的合理配置、提高我国现有电力系统的输电能力和电网的安全稳定运行具有十分重要的意义。 一、电力系统安全稳定控制概述 1.电力系统稳定的相关概念 电力系统的主要任务就是向用户提供不间断的、电压和频率稳定的电能。它的性能指标主要包括安全性、可靠性和稳定性。电力系统可靠性是指符合要求长期运行的概率,它表示长期连续不断地为用户提供充足电力服务的能力。安全性指电力系统承受可能发生的各种扰动而不对用户中断供电的风险程度。稳定性是指经历扰动后电力系统保持完整运行的持续性。 2.电力系统安全稳定控制模式的分类 按照信息采集和传递以及决策方式的不同,电力系统安全稳定控制模式可以分为以下几种:一是就地控制模式。在这种控制模式中,控制装置安装在各个厂站,彼此之间不进行信息交换,只能根据各厂站就地信息进行切换和判断,解决本厂站出现的问题。二是集中控制模式。这种控制模式拥有独立的通信和数据采集系统,在调度中心设置有总控,对系统运行状态进行实时检测,根据系统的运行状态制定相应的控制策略表,发出控制命令并实施对整个系统的安全稳定控制。三是区域控制模式。区域控制型稳定控制系统是针对一个区域的电网安全稳定问题而安装在多个厂站的安全稳定控制装置,能够实现站间运行信息的相互交换和控制命令的传送,并在较大范围实现电力系统的安全稳定控制。 二、电力系统安全稳定控制的关键技术

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

励磁控制与电力系统稳定

技术讲座讲稿 励磁系统与PSS 2004年10月

1. 前言 根据我国国家标准GB/T 7409.1~7409.3-1997“同步电机励磁系统”的规定的定义,同步电机励磁系统是“提供电机磁场电流的装臵,包括所有调节与控制元件,还有磁场放电或灭磁装臵以及保护装臵”。励磁控制系统是包括控制对象的反馈控制系统。励磁控制系统对电力系统的安全、稳定、经济运行都有重要的影响。我国国家标准和行业标准都对励磁控制系统提出了具体的要求。这里,就励磁系统分类、对励磁控制系统的要求、励磁控制系统与电力系统稳定的关系、电力系统稳定器等几个问题和大家一起进行讨论。 2. 励磁系统分类 同步电机励磁系统的分类方法有多种。主要的方法有两种,即按同步电机励磁电源的提供方式分类和同步电机励磁电压响应速度分类两种分类方法。 按同步电机励磁电源的提供方式不同,同步电机励磁系统可以分为直流励磁机励磁系统,交流励磁机励磁系统和静止励磁机励磁系统。 按同步电机励磁电压响应速度的不同,同步电机励磁系统可以分为常规励磁系统、快速励磁系统和高起始励磁系统。 2.1 直流励磁机励磁系统 由直流发电机(直流励磁机)提供励磁电源的励磁系统叫直流励磁机励磁系统。它主要由直流励磁机和励磁调节器组成。早期的中小容量的同步电机的励磁调节器从发电机的PT(电压互感器)和CT(电流互感器)取得电源;较大容量的同步电机的励磁调节器的电源有时经励磁变压器取自发电机端时,此时,励磁变压器也是主要组成部分(图2-1)。 同步电机的励磁电源是直流励磁机的输出,励磁调节器根据发电机运行工况调节直流励磁机的输出,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。 直流励磁机主要采用由原动机拖动与主发电机同轴的拖动方式,少数(主要是备用励磁机)为由异步电动机非同轴的拖动方式。直流励磁机的励磁方式,主要有它励、自并励和自励加它励三种方式。它励方式的直流励磁机的励磁全部由励磁调节器提供;自并励方式的直流励磁机的励磁全部由直流励磁机本身提供,励磁调节的任务是通过调节与励磁绕组相串联的电阻的大小来实现的;自励加它励方式的直流励磁机的励磁,一部分由励磁

电力系统稳定与控制

电力系统稳定与控制 廖欢悦电自101 2 电力系统的功能是将能量从一种自然存在的形式转换为电的形式,并将它输送到各个用户。电能的优点是输送和控制相对容易,效率和可靠性高。为了可靠供电,一个大规模电力系统必须保持完整并能承受各种干扰。因此系统的设计和运行应使系统能承受更多可能的故障而不损失负荷(连接到故障元件的负荷除外),能在最不利的可能故障情况些不知产生不可靠的广泛的连锁反应式的停电。 由此,电力系统控制所要实现的目的: 1.运行成本的控制:系统应该以最为经济的方式供电; 2.系统安全稳定运行的控制:系统能够根据不断变化的负荷变化及发电资源变化情况调整功率 分配情况; 3.供电质量的控制:必须满足包括频率、电压以及供电可靠性在内的一系列基本要求;一.电力系统的稳定性设计与基本准则 首先,一个正确设计和运行的电力系统: 1.系统必须能适应不断变化的负荷有功和无功功率需求。与其他形式的能量不同,电能不能方便地以足够数量储存。因而,必须保持适当的有功和无功的旋转备用。 2.系统应以最低成本供电并具有最小的生态影响 3.考虑到如下因素,系统供电质量必须满足一定的最低标准: a)频率的不变性 b)电压的不变性 c)可靠性水平 对于一个大的互联电力系统,以最低成本保证其稳定性运行的设计是一个非常复杂的问题。通过解决这一问题能得到的经济效益是巨大的。从控制理论的观点来看,电力系统具有非常高阶的多变量过程,运行于不断变化的环境。由于系统的高维数和复杂性,对系统作简化假定并采用恰当详细详细的系统描述来分析特定的问题是非常重要的。 二、电力系统安全性及三道防线可靠性-安全性-稳定性 电力系统可靠性:是在所有可能的运行方式、故障下,供给所有用电点符合质量标准和所需数量的电力的能力。是保证供电的综合特性(安全性和充裕性)。可靠性是通过设备投入、合理结构及全面质量管理保证的。 电力系统安全性:是指电力系统在运行中承受故障扰动的能力。通过两个特征表征(1)电力系统能承受住故障扰动引起的暂态过程并过渡到一个可接受的运行工况,不发生稳定破坏、系统崩溃或连锁反应;(2)在新的运行工况下,各种运行条件得到满足,设备不过负荷、母线电压、系统频率在允许范围内。 电力系统充裕性:是指电力系统在静态条件下,并且系统元件负载不超出定额、电压与频率在允许范围内,考虑元件计划和非计划停运情况下,供给用户要求的总的电力和电量的能力。 电力系统稳定性:是电力系统受到事故扰动(例如功率或阻抗变化)后保持稳定运行的能力。包括功角稳定性、电压稳定性、频率稳定性。 正常运行状态下,通过调度手段让电力系统保持必要的安全稳定裕度以抵御可能遭遇的干扰。要实现预防性控制,首先应掌握当前电力系统运行状态的实时数据和必要的信息,并及时分析电网在发生各种可能故障时的稳定状况,如存在问题,则应提示调度人员立即调整运行方式,例如重新分配电厂有功、无功出力,限制某些用电负荷,改变联络线的送电潮流等,以改善系统的稳定状况。 目前电网运行方式主要靠调度运行方式人员预先安排,一般只能兼顾几种极端运行方式,且往往以牺牲经济性来确保安全性。调度员按照预先的安排和运行经验监视和调整电网的运行状态,但他并不清楚当前实际电网的安全裕度,也就无法通过预防性控制来增强电网抗扰动的能力。因此,实现电力系统在线安全稳定分析和决策,得出当前电网的稳定状况、存在问题、以及相应的处理措

PSS在电力系统稳定性中的应用仿真开题报告

一、选题的目的及研究意义 电力系统的发展,互联电力网络变得越来越大。如此的发展趋势在给电力系统以巨大的技术和经济效益的同时,也使得稳定性破坏事故所波及的范围更加广泛,电力市场的日益开放会使运行方式更加灵活多变,对稳定性的实时性判断要求更高。与此同时,由于受到环境和经济等因素的制约,区域间联网和远距离大容量输电系统的不断出现,系统运行更加接近极限状态,这使得电力系统稳定性问题日趋严重,电力系统一旦失去稳定,往往造成大范围、较长时间停电,在最严重的情况下,则可能使电力系统崩溃和瓦解,因此,准确、快速地分析电力系统在扰动下的稳定性行为,必要时采取适当的控制措施,以保证系统稳定性的要求,是电力系统设计及运行人员最重要也是最复杂的任务之一。 从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题依据电网用电供电系统电路模型要求。因此,利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网在其可能遇到的多种故障方面运行的需要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 实际上, 如何保证和提高电力系统的稳定性是从多个方面进行考虑的。在系统规划阶段应合理选择发电厂厂址, 采用合理的输电方案以及配置相应的保护和自动装置等。在运行管理方面, 控制中心对运行方式的良好安排也有助于保证电力系统的安全稳定运行。当系统遭受扰动后,施加控制是改善和提高电力系统稳定性最经济有效的方法之一, 而严重故障后的紧急控制措施可将由于安全性破坏而对系统造成的影响减小到最低程度。 目前暂态稳定分析的基本方法可分为两类:数值解法和直接法。 数值解法(时域仿真法)是暂态稳定分析基本方法,它以稳态工况或潮流解为初值,对上述方程组联立求解或交替求解,逐步求得状态量和代数量,并根据发电机的转子摇摆曲线来判定系统在扰动下能否保持同步。 目前时域仿真法主要采用的数值计算方法包括显式积分法和隐式积分法。前者包括欧拉法、龙格-库塔法和线形多步法等。后者包括改进的欧拉法和隐式积分法。欧拉法的精度低,数值稳定性较差,一般适用于简单模型和较短的暂态持续时间。龙格-库塔法拟合了泰勒级数的高阶项,具有比较高的精度,数值稳定性好。它的缺点是计算量大,计算速度慢。线形多步法精度高,运算量比龙格一库塔法小,但计算结果受初始值的影响较大,需要选择适当的起步算法来保证其精度。改进的欧拉法用隐式积分校正欧拉法的结果,精度比欧拉法有所提高。隐式梯形积分法在联立求解微分一代数方程时可以消除交接误差,具有较好的数值稳定性,可以采用较大的步长。虽然时域仿真法可以考虑电机的详细模型,而且能够得到足够准确的结果,但是随着网络规模的扩大,时域仿真法的计算量将很大,计算速度不能满足在线监测和控制的要求,并且其不能定量给出系统的稳定裕度。所以对电力系统暂态稳定研究致力于寻找一种快速、准确、实用的暂态分析算法。我国电力科学界对稳定分析的直接法与快速算法的研究大致始于80年代,其中最早发表的一篇是夏道止与Heydt等人关于分解-聚合法在线稳定的研究。随后有电力部电力科学研究院傅书逷等人关于PEBS法的研究:清华大学倪以信与美国Fouad等人对UEP法的直流输电模型与励磁系统模型的研究:1988年我国学者南京电力自动化研究院薛禹胜与比利时Pavella教授等人提出了扩展等面积法(EEAC法),将多机系统变成等值两机系统,利用等面积准则和泰勒展开式导出临界切除时间和稳定裕度的解析式,根据这一解析在注入空间定义稳态稳定域,推算联络潮流的稳定极限。近年来该法经不断完善,已扩展到动态EEAC法,使得计算精度大大提高。到了90年代,直接法与快速算法的研究尤为活跃,如哈尔滨工业大学郭志忠,柳焯等人用高阶Taylor 级数研究快速暂稳计算问题,上海交通大学刘笙等人关于PEBS法复杂模型的研究,东北电力

《电力电子技术》教学大纲

《电力电子技术》教学大纲 学时:51 学分:3 适用专业:电子信息工程 一、课程的性质、目的和任务 电力电子技术是电子信息工程专业的一门专业选修课。其教学目的和任务:掌握各种主要的电力半导体器件的基本原理、特性及参数;熟悉AC/DC变换技术及DC/AC变换技术的基本原理及主要变换方法;对AC/AC变换技术、电力电子装置作一般了解;能阅读常见的电力电子电路及设计简单电力电子电路。 二、课程教学的基本要求 (1)了解新型电力电子器件; (2)理解可关断晶闸管;升降压变换电路;直流变换的PWM控制技术;电流型逆变电路;有源逆变电路;AC/AC变换电路;电力电子装置; (3)掌握电力二极管;晶闸管;电力晶体管;电力场效应管;绝缘栅双极型晶体管;电力电子器件的驱动与保护;DC/DC变换技术;DC/AC变换技术;整流电路;软开关技术。 三、课程教学内容 (一)概述 1.电力电子技术的发展 2.电力电子技术的应用领域 说明: 本章为电力电子技术课程的一般介绍。 (二)电力电子器件 1.电力电子器件概述 电力电子器件基本模型与特性电力电子器件的种类 2.电力二极管 电力二极管及其工作原理电力二极管的特性参数 3.晶闸管 晶闸管及其工作原理晶闸管的特性参数晶闸管的派生器件 4.可关断晶闸管 可关断晶闸管及其工作原理可关断晶闸管的特性参数 5.电力晶体管

电力晶体管及其工作原理电力晶体管的特性参数 6.电力场效应管 电力场效应管及其工作原理电力场效应管的特性参数 7.绝缘栅双极型晶体管 绝缘栅双极型晶体管及其工作原理绝缘栅双极型晶体管的特性参数 8.其它新型电力电子器件 静电感应晶体管静电感应晶闸管MOS控制晶闸管集成门换流晶闸管功率模块与功率集成电路 9.电力电子器件的驱动与保护 驱动电路保护电路缓冲电路散热系统 说明: 本章的重点是电力二极管、晶闸管、电力晶体管、电力场效应管的工作原理、特性、主要参数和使用方法。难点是电力电子器件的驱动与保护。 (三)DC/DC变换技术 1.直流变换电路工作原理 2.降压变换电路 3.升压变换电路 4.升降压变换电路 5.Cuk电路 6.带隔离变压器的直流变换器 反激式变换器正激式变换器半桥变换器全桥变换器 7.直流变换的PWM控制技术 直流PWM控制的基本原理直流变换的PWM控制技术 说明: 本章的重点是直流变换电路工作原理,降压变换电路,升压变换电路,带隔离变压器的直流变换器。难点是流变换的PWM控制技术。 (四)DC/AC变换技术 1.逆变器的性能指标与分类 逆变器的性能指标逆变器的分类 2.电力器件的换流方式与逆变电路的工作原理

132081 朱海勇_电力电子系统建模控制与仿真_Buck电路模型建立及PI调节器设计

Buck电路模型建立及PI调节器设计 朱海勇 (东南大学电气工程学院,南京市玄武区四牌楼2号) The Construction of Buck Circuit Model and the Design of PI Regulator ZHU Hai-yong (School of Electrical Engineering, Southeast University, Nanjing Xuanwu Four Arches on the 2nd) ABSTRACT:In this paper, the state-space averaging method has been used to get the construction of Buck circuit model. Then the transfer function G(s) from control to output was obtained.And frequency characteristics curve of G(s) has been received in the help of MA TLAB.The design of PI regulator was done due to the instability of the system.The parameters of PI regulator,K P and K I was also obtained with the aid of the Rolls stability criterion. At last,the Buck converter model was built in Simulink simulation and the actual output voltage of the system was 12V after 0.5s . KEY WORDS:buck;state-space averaging method;pi regulator 摘要:本文采用状态空间平均法对Buck变换器建模,得到由控制到输出的传递函数G(s)。使用MA TLAB画出G(s)的频率特性曲线,得知系统不稳定后,设计PI调节器,由劳斯稳定判据得到PI调节的K P、K I参数。在Simulink中搭建Buck变换器的实际仿真模型,系统的输出电压在0.5s后稳定在12V。 关键字:Buck;状态空间平均法;PI 1引言 20世纪人类最伟大的20项科技成果有:电气化、汽车、飞机、自来水供水系统、电子技术、无线电与电视、农业机械化、计算机、电话、空调与制冷、高速公路、航天、互联网、成像技术、家用电器、保健科技、石化、激光与光纤、核能利用、新型材料,这些成果几乎不同程度地应用了电力电子技术,电力电子技术已广泛地应用于工业、交通、IT、通信、国防以及日常生活中。电力电子装置的应用范围十分广泛,粗略地可分为(有功)电源、无功电源、传动装置。电源有直流开关电源、逆变电源、不间断电源设备(UPS)、直流输电装置等;无功电源有静止无功补偿装置(SVC)、静止无功发生装置(SVG)、有缘电力滤波器、动态电压恢复装置(DVR)等;传动装置有直流调速系统、各种电动机的变频调速系统等[1]。 本文采用状态空间平均法对Buck电路建模,得到由控制到输出的传递函数,使用MATLAB画出传递函数的频率特性曲线,得知系统不稳定后,设计PI调节器,最终使系统的输出电压稳定。 2建模过程 2.1状态空间平均法 矩阵方程 )( )( )( K t Bu t Ax dt t dx + = )( )( )(t Eu t Cx t y+ = 状态变量x(t)包含电感电流、电容电压等。 ? ? ? ? ? ? ? ? ? ? = : )( )( )( 2 1 t x t x t x , ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = : )( )( )( 2 1 dt t dx dt t dx dt t dx u(t)为输入量,通常为变换器的输入v g(t)。y(t)为输出向量。系数矩阵K 包含电容、电感、互感。输出变量y(t) 是输入独立电源与状态变量的线性组 合。A、B、C和E为常数矩阵。

电力电子技术课程综述

目录 摘要: (1) 一、电力电子技术主要内容 (1) 1、1电力电子器件及应用 (1) 1、1、1电力电子器件分类 (1) 1.1.2电力电子器件的应用 (2) 1.2 整流(AC-DC变换器) (2) 1.2.1整流电路分类 (2) 1.2.2 整流的概念 (3) 1.3斩波 (3) 1.3.1基本概念 (3) 1.3.2主要内容 (3) 1、4逆变 (4) 1.4.1基本概念 (4) 1.4.2主要内容 (4) 1、5 AC-AC变换器 (4) 1.5.1基本概念 (4) 1.5.2主要内容 (5) 二、电力电子技术的应用 (5) 三、学习小结 (5) 四、电力电子的发展及其发展趋势 (6) 五、电力电子技术的具体应用 (7) 参考文献 (8)

摘要: 电力电子技术(Power Electronics Technology)是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。电力电子技术分为电力电子器件制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装置的综合性学科,是在电子、电力与控制技术基础上发展起来的一门新兴交叉学科。包括电压、电流、频率和波形变换等知识,涉及电子学、自动控制原理和计算机技术等学科。 关键字:整流、逆变、斩波、变频 正文 一、电力电子技术主要内容 1、1电力电子器件及应用 1、1、1电力电子器件分类 按照电力电子器件能够被控制电路信号所控制的程度分类: 1.半控型器件,例如晶闸管;

国内电力系统自动化综述-大连理工大学远程与继续教育学院

网络教育学院本科生毕业论文(设计) 题目:国内电力系统自动化综述 学习中心: 层次:专科起点本科 专业: 年级:年春/秋季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 电力系统具有分布范围广、实时性强、自动化程度高等特点,电力系统自动化是一门科技含量高、涉及专业范围广、技术性较强,对制造、安装、运行和管理工作要求标准非常高的专业。电力系统自动化主要包括电网调度自动化和电厂自动化(包括火电厂自动化、水电厂自动化、变电站综合自动化等)两大部分。 本文主要针对我国电力系统中的电网调度、火电厂、水电厂和变电站综合等四个部分在自动化发展过程、发展现状、问题与措施、新技术新工艺以及发展趋势等方面进行了综合评述。 关键词:电网调度;火电厂;水电厂;变电站

目录 内容摘要............................................................................................................................I 引言.. (1) 1电网调度自动化 (2) 1.1发展过程 (2) 1.2发展现状 (2) 1.3发展趋势 (3) 2火电厂自动化 (4) 2.1发展过程 (4) 2.2新技术新工艺的应用 (4) 2.2.1自动检测技术 (4) 2.2.2自动控制技术 (5) 2.3发展趋势 (6) 3水电厂自动化 (7) 3.1发展过程 (7) 3.2自动化系统 (7) 3.2.1 (7) 3.2.2 (7) 3.3发展趋势 (7) 4变电站综合自动化 (8) 4.1发展过程 (8) 4.2存在的问题与改进措施 (8) 4.3发展趋势 (8) 结论 (9) 参考文献 (11)

电力系统自动控制原理必考题

1、何谓“并列操作”? 答:电力系统中的负荷随机变化,为保证电能质量,并满足安全和经济运行的要求,需经常将发电机投入和退出运行,把一台待投入系统的空载发电机经过必要的调节,在满足并列运行的条件下经开关操作与系统并列,这样的操作过程称为并列操作。 2、同步发电机组并列时遵循什么原则? 答:⑴ 并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值一般不超过1~2倍的额定电流;⑵ 发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减小对电力系统的扰动。 3、同步发电机自动准同期并列的理想条件是什么?实际条件是什么? 答:理想条件:频率相等,电压幅值相等,相角差为零。 实际条件:① 频率差不应超过额定频率的±0.2%~±0.5%;② 电压差不应超过额定电压的±5%~±10%;③ 在断路器合闸瞬间,待并发电机电压与系统电压的相位差应接近零,误差不应大于10°。 4、什么是准同期并列?什么是自同期并列? 答:准同期并列:发电机在并列合闸前已加励磁,当发电机电压的幅值、频率、相位分别与并列点系统侧电压的幅值、频率、相位接近相等时,将发电机断路器合闸,完成并列操作。 自同期并列:将未加励磁、接近同步转速的发电机投入系统,随后给发电机加上励磁,在原动转矩、同步力矩作用下将发电机拉入同步,完成并列操作。 5、什么是滑差、滑差频率、滑差周期?它们之间有什么关系? 答:滑差:并列断路器两侧发电机电压角频率与系统电压角频率之差,用s ω表示;滑差频率:并列断路器两侧发电机电压频率与系统电压频率之差,用s f 表示; 滑差周期:并列断路器两侧发电机电压与系统电压之间相角差变化360°所用的时间,用s T 表示。关系:s s f ?=πω2 s s s f T π21== 6、在自动准同期并列过程中,⑴ 滑差角频率为常数,⑵ 滑差角频率等速变化,⑶ 滑差角频率的一阶导数等加速变化,分别代表并列过程中的什么现象? 答:⑴ 滑差角频率为常数,表示电网和待并机组的频率稳定;⑵ 滑差角频率等速变化,表示待并机组按恒定加速度升速,发电机频率与电网频率逐渐接近;⑶ 滑差角频率的一阶导数等加速变化,说明待并机组的转速尚未稳定,还在升速(或减速)之中。 7、什么是同步发电机自动准同期并列?有什么特点?适用什么场合? 答:同步发电机自动准同期并列是频率差、电压差和相角差都在允许的范围内时进行合闸的过程。其特点是并列时冲击电流小,不会引起系统电压降低;但并列操作过程中需要对发电机电压、频率进行调整,并列时间较长且操作复杂。 适用场合:由于准同步并列冲击电流小,不会引起系统电压降低,所以适用于正常情况下发电机的并列,是发电机的主要并列方式。但因为并列时间较长且操作复杂,故不适用紧急情况的发电机并列。 8、同步发电机自动准同期并列时,不满足并列条件会产生什么后果?为什么? 答:发电机准同期并列时,如果不满足并列条件,将产生冲击电流,并引起发电机振荡,严重时,冲击电流产生的电动力会损坏发电机,振荡使发电机失步,甚

相关文档
最新文档