RC串联电路实验报告讨论题答案.doc

RC串联电路实验报告讨论题答案.doc

1. 简述计算机数据采集系统的主要组成和工作原理答:数据采集系统主要由输入模块、AD 转换模块、稳压电源、单片机、计算机等组成。系统通过输入电路将RC电路中的信号输入,并利用其中的AD转换器将信号转换为数字信号,并通过计算机程序将数字信号进一步加工和处理,最后得到期望的实验数据。

2. 为什么说时间常数RCτ=是RC电路充放电快慢的标志?RC电路有什么实验应用?答:根据充电过程中/()tRCEiteR?=级放电过程中/()tRCEiteR?=?,有公式1/2ln2Tτ=,所以半周期与τ成正比,因此τ是RC电路充放电快慢的标志,RC电路可以用来求得电路的时间常数,进而可以测得电路中电容值。

3. 你做过的物理实验中,你认为那些实验可以用计算机采集数据?分析需要首先解决的问题和计算机采集数据的优点答:大多数电学实验及利用到电学原理的实验均可以采用计算机来采集数据,如气体放电、弗兰克-赫兹实验、铁磁材料磁化曲线的测量等。首要解决的问题是如何精确的将电信号采集和转换。使用计算机采集数据可以大大提高实验效率,减少人力,节省时间,同时可以减少观察产生的误差

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

(完整word版)日光灯实验报告答案

日光灯实验报告答案 篇一:日光灯实验报告 单相电路参数测量及功率因数的提高 实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。3.研究日光灯电路中电压、电 流相量之间的关系。4.理解改善电路功率因数的意义并掌握其应用方法。 实验原理 1.日光灯电路的组成日光灯电路是一个rl串联电路,由灯管、镇流器、起辉器组成,如图所示。由于 有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。图日光灯的组成电路灯管:内壁

涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器 突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二 是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯 管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻rl和一个电感l串联 组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双 金属片制成的u形动触片。动触片由两种热膨胀系数不同的金属制成,受

热后,双金属片伸 张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动 开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触 片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流 过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、 静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很 高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气

电路分析基础实验报告

电路分析基础课程实验报告

院系专业:信系科学与技术软件工程 年级班级:2011 级软件五班(1105) 姓名:涂明哲 学号:20112601524 本课程实验全部采用workbench 作为试验仿真工具。 实验一基尔霍夫定理与电阻串并联 实验目的:学习使用workbench 软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 1、基尔霍夫电流、电压定理的验证

解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 实验原理图: 12.DJ "VI 山 *---- 'XAAi- 112 与理论计算数据比较分析: i3 = i1 + i2; u1 + u2 + u7 + u6 = 0; u4 + u3 +u7 + u5 = 0; u1 + u2 + u3 + u4 + u5 + u6 = 0; 2、电阻串并联分压和分流关系验证 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 实验原理图:

与理论计算数据比较分析: 200Q + 100 Q=300Q; (100Q+200 Q)//600 Q = 200 Q; 11= 15/(200+200+100) = 30mA 12= i1*(600/900) = 10mA 13= i1*(300/900) = 20mA u1 = u3*(200/300) = 4v u2 = u3*(100/300) = 2v 实验心得: 1.使用大电阻可以减小误差 2.工具不能熟练的使用而且有乱码实验二叠加定理

电路分析基础实验报告

实验一 1. 实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据KVL和KCL及电阻VCR列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5. 实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与R3并联,电压相同,电流符合分流规律。 6. 实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。并与理论计算值比较。 3. 实验电路及测试数据 电压源单独作用:

电路实验报告

目录实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性和齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

330口 R B 1— 1 2. 电路中相邻两点之间的电压值 在图1 — 1中,测量电压U AB :将电压表的红笔端插入 A 点,黑笔端插入B 点,读电压表读数,记入表 1 — 1中。按同样方法测量 U BC 、U CD 、U DE 、U EF 、及U FA ,测量数据记入表1 — 1中。 实验一 电位、电压的测定及电路电位图的绘制 1.学会测量电路中各点电位和电压方法。理解电位的相对性和电压的绝对性; 2?学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 .原理说明 在一个确定的闭合电路中, 各点电位的大小视所选的电位参考点的不同而异, 但任意两点之间的电 压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们 可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标, 电路中各点位置(电阻或电源)作横坐标, 将测量到的各点电位在 该平面中标出,并把标出点按顺序用直线条相连接, 就可得到电路的电位图, 每一段直线段即表示该两 点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定, 对于不同的参考点, 所绘出的电位图形是不同,但其各点电位 变化的规律却是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2 .恒压源(EEL — I 、II 、III 、IV 均含在主控制屏上,可能有两种配置( 1) +6V ( +5V ) , +12 V , 0? 30V 可调或(2)双路0?30V 可调。) 四.实验内容 实验电路如图1 — 1所示,图中的电源U S 1用恒压源中的+6V (+5V )输出端, 输出端,并将输出电压调到 +12V 。 U S2用0?+30V 可调电源 1.测量电路中各点电位 以图1 — 1中的A 点作为电位参考点,分别测量 B 、C 、 用电压表的黑笔端插入 A 点,红笔端分别插入 B 、C 、 以D 点作为电位参考点,重复上述步骤,测得数据记入表 D 、E 、F 各点的电位。 D 、 E 、 F 各点进行测量,数据记入表 1 — 1 中。 1 — 1 中。 5100 S3 VCU 5100 5ion R4

实验二基尔霍夫定律和叠加原理的验证实验报告答案(供参考)

实验二基尔霍夫定律和叠加原理的验证 一、实验目的 1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。 3.进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流数字电压表 1 块 3.直流数字毫安表 1 块 4.万用表 1 块 5.实验电路板 1 块 四、实验内容 1.基尔霍夫定律实验 按图2-1接线。

电路分析实验报告

本科生实验报告 实验课程电路分析 学院名称信息科学与技术学院 专业名称物联网工程 学生小源 学生学号201513060114 指导教师阴明 实验地点6B602 实验成绩

二〇一六年三月——二〇一六年六月

实验一、电路元件伏安特性的测绘 摘要 实验目的 1、学会识别常用电路元件的方法。 2、掌握线性电阻、非线性电阻元件伏安特性曲线的测绘。 3、掌握实验台上直流电工仪表和设备的使用方法。 实验步骤 U 测量线性电阻的伏安特性 按图接线。调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表中记下相应的电压表和电流表的读数。 R为各个值时所测得数据如下:

I(mA) 0 0.99 2 2.98 3.99 4.99 5.99 6.97 8.02 8.98 9.98 R=900Ω时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 1.10 2.22 3.34 4.42 5.55 6.67 7.77 8.89 9.98 10.1 R=800Ω时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 1.2 2.4 3.7 5 6.3 7.5 8.9 10.1 11.3 12.6 线性电阻的伏安特性曲线如下: 白炽灯时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 0 0.3 1.1 0.9 0.7 1 1.3 1.8 1.8 2

伏安特性曲线如下: 为IN4007时: 正向 U(v) 0 0.2 0.4 0.5 0.55 0.6 0.65 0.7 0.73 I(mA) 0 0 0 0.1 0.4 1.3 3.7 11 1.1 反向 U(v) 0 -2 -4 -6 -8 -10 -12

电工实验报告答案

实验四线性电路叠加性和齐次性验证 表4—1实验数据一(开关S3 投向R3侧) 测量项目实验内容U S1 (V) U S2 (V) I1 (mA) I2 (mA) I3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1单独作用120 U S2单独作用0-6 U S1, U S2共同作用12-6 2U S2单独作用0-12 3 测量项目实验内容U S1 (V) U S2 (V) I1 (mA) I2 (mA) I3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1单独作用120 U S2单独作用0-6 U S1, U S2共同作用12-6 2U S2单独作用0-12 S1S2S1S2 直接短接? 答: U S1电源单独作用时,将开关S1投向U S1侧,开关S2投向短路侧; U S2电源单独作用时,将开关S1投向短路侧,开关S2投向U S2侧。 不可以直接短接,会烧坏电压源。 2.实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。 实验五电压源、电流源及其电源等效变换 表5-1 电压源(恒压源)外特性数据 R2(Ω 470400 300 200 100 0 I (mA U (V R2(Ω 470400 300 200 100 0 I (mA U (V 表5-3 理想电流源与实际电流源外特性数据 R2(Ω)470 400 300 200 100 0 R S=∞ U (V)0 R S=1KΩI (mA) U (V)0 U(V)I(mA)图5-4(a)

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案) 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式 I=f(U)来表示,即用 I -U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图 1-1(a)所示。该直线的斜率只由电阻元件的电阻值R 决定,其阻值 R 为常数,与元件两端的电压 U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图 1-1(b)、(c)、(d)所示。在图 1-1 中, U >0的部分为正向特性,U<0 的部分为反向特性。

绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压 U 作用下,测量出相应的电流 I ,然后逐点绘制出伏安特性曲线 I = f ( U ),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表 1 块 3.直流电流表 1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管 1 只 7.稳压二极管 1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性 五、实验预习 1. 实验注意事项 (1)测量时,可调直流稳压电源的输出电压由 0 缓慢逐渐增加,应时刻注意电压表和电流表,不能超过规定值。

大工12秋《电力系统继电保护实验》实验报告 含答案

网络高等教育《电力系统继电保护》实验报告 学习中心:奥鹏学习中心(直属) 层次:专科起点本科 专业:电气工程及自动化 年级:春/秋季 学号: 学生姓名:

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 1. 熟悉DL型电流继电器和DY型电压继电器的的实际结构,工 作原理、基本特性; 2.学习动作电流、动作电压参数的整定方法。 二、实验电路 1.过流继电器实验接线图 2.低压继电器实验接线图

三、预习题 1. DL-20C系列电流继电器铭牌刻度值,为线圈并联时的额定值;DY-20C系列电压继电器铭牌刻度值,为线圈串联时的额定值。(串联,并联) 2.电流继电器的返回系数为什么恒小于1? 答:返回电流与启动电流的比值称为继电器的返回系数Kre ,Kre=Ire/Iop ,使继电器开始动作的电流叫启动电流Iop ,动作之后,电流下降到某一点后接点复归,继电器返回到输出高电子,这一电流点叫返回电流Ire 。为了保证动作后输出状态的稳定性和可靠性,过电流继电器和过量动作继电器的返回系数恒小于1 。在实际应用中,常常要求较高的返回系数,如0.85-0.9 四、实验内容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表

2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表 五、实验仪器设备 六、问题与思考 1.动作电流(压),返回电流(压)和返回系数的定义是什么? 答: 在电压继电器或中间继电器的线圈上,从0逐步升压,到继电器动作,这个电压是动作电压;继电器动作后再逐步降低电压,到继电器动作返回, 这个电压是返回电压. ;继电器动作后再逐步降低电压,到继电器动作返回, 这个电压是返回电压. 返回电流与启动电流的比值称为继电器的返回系数。

电力电子实验报告答案

电力电子技术实验指导书 电力系 2013年3月

目录 第一章电力电子技术实验的基本要求和安全操作说明 1. 实验的基本要求 (2) 2. 实验前的准备 (2) 3. 实验实施 (2) 4. 实验总结 (3) 5.实验安全操作规程 (3) 第二章电力电子技术实验 实验一三相桥式全控整流电路实验 (4) 实验二三相全控桥式有源逆变电路实验 (7) 实验三交直交变频电路实验 (10) 实验四直流斩波电路的性能研究 (13)

第一章电力电子技术实验的基本要求 和安全操作说明 一、实验的基本要求 电力电子技术既是一门技术基础课,也是实用性很强的一门课。电力电子实验是该课程理论教学的重要补充和继续,而理论则是实验教学的基础学生在实验中应学会运用所学的理论知识去分析和解决实际问题,提高动手能力;同时,通过实验来验证理论,促进理论和实际的结合。学生在完成指定的实验后,应具备以下能力: 1.掌握电力电子变流装置主电路、触发电路和驱动电路的构成及调试方法,能初步设计和应用这些 电路。 2.熟悉并掌握基本实验设备、测试仪器的性能及使用方法。 3.能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题。 4.能够综合实验数据、解释实验现象,编写实验报告。 二、实验前的准备 实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。因此,实验前应做到: 1、复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。 2、阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。 3、写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等。 三、实验实施 在完成理论学习、实验预习等环节后,就进入实验实施阶段。实验时要做到以下几点: 1、实验开始前,指导教师要对学生的预习报告作检查,要求学生了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验。 2、指导教师对实验装置作介绍,要求学生熟悉本次实验使用的实验设备、仪器,明确这些设备的功能与使用方法。 3、按实验小组进行实验,实验小组成员应进行明确的分工,以保证实验操作协调,记录数据准确可靠,每个人的任务应在实验进行中实行轮换,以便实验参加者能全面掌握实验技术,提高动手能力。 4、按预习报告上的实验系统详细线路图进行接线,一般情况下,接线次序为先主电路、后控制电路;先串联,后并联。 5、完成实验系统接线后,必须进行自查。串联回路从电源的一端出发,按回路逐项检查各仪器、设备、负载的位置、极性等是否正确;并联支路则检查其两端的连接点是否在指定的位置。距离较远的两连接端必须选用长导线直接跨接,不得用两根导线在实验装置上的某接线端进行过渡连接。 6、实验时,应按实验教材所提出的要求及步骤,逐项进行实验和操作。测试记录点的分布应均匀;改接

电路实验报告

目录 实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性和齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

实验一电位、电压的测定及电路电位图的绘制 一.实验目的 1.学会测量电路中各点电位和电压方法。理解电位的相对性和电压的绝对性; 2.学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 二.原理说明 在一个确定的闭合电路中,各点电位的大小视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标,电路中各点位置(电阻或电源)作横坐标,将测量到的各点电位在该平面中标出,并把标出点按顺序用直线条相连接,就可得到电路的电位图,每一段直线段即表示该两点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定,对于不同的参考点,所绘出的电位图形是不同,但其各点电位变化的规律却是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2.恒压源(EEL-I、II、III、IV均含在主控制屏上,可能有两种配置(1)+6V(+5V),+12 V,0~30V 可调或(2)双路0~30V可调。) 3.EEL-30组件(含实验电路)或EEL-53组件 四.实验内容 实验电路如图1-1所示,图中的电源U S1用恒压源中的+6V(+5V)输出端,U S2用0~+30V可调电源输出端,并将输出电压调到+12V。 1.测量电路中各点电位 以图1-1中的A点作为电位参考点,分别测量B、C、D、E、F各点的电位。 用电压表的黑笔端插入A点,红笔端分别插入B、C、D、E、F各点进行测量,数据记入表1-1中。 以D点作为电位参考点,重复上述步骤,测得数据记入表1-1中。 图1-1 2.电路中相邻两点之间的电压值 在图1-1中,测量电压U AB:将电压表的红笔端插入A点,黑笔端插入B点,读电压表读数,记入表1-1中。按同样方法测量U BC、U CD、U DE、U EF、及U FA,测量数据记入表1-1中。

电路分析基础实验报告-(13757)

实验一 1.实验目的 学习使用 workbench 软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代 数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测 量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据 KVL 和 KCL 及电阻 VCR 列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得, U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5.实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1 与 R2 串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与 R3 并联,电压相同,电流符合分流规律。 6.实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应, 验证叠加定理。并与理论计算值比较。 3.实验电路及测试数据 电压源单独作用:

[18春答案]大工18春《电路分析实验》实验报告及要求

《电路分析实验》课程学习要求 一、课程考核形式 本课程的考核形式为离线作业(实验报告),无在线作业和考试。“离线作业及要求”在该课程的“离线作业”模块中下载。 二、离线作业要求 学生需要在平台离线作业中下载“大工18春《电路分析实验》实验报告”,观看实验课件,根据课件中的操作及实验结果来读取实验数据、认真填写“大工18春《电路分析实验》实验报告”,并提交至课程平台,学生提交的实验报告作为本课程考核的依据,未提交者无成绩。 三、离线作业提交形式及截止时间 学生需要以附件形式上交离线作业(附件的大小限制在10M以内),选择已完成的作业,点“上交”即可。如下图所示。 截止时间:2018年9月11日。在此之前,学生可随时提交离线作业,如需修改,可直接上传新文件,平台会自动覆盖原有文件。 四、离线作业批阅 老师会在作业关闭后集中批阅离线作业,在离线作业截止提交前不进行任何形式的批阅。

实验一 【实验名称】伏安特性的测量 【实验目的】 1.学习伏安法测量电阻。 2.掌握测量独立电源伏安特性的方法,了解电源内阻对伏安特性的影响。 3.学习用作图法处理数据。 【实验仪器】 1.数字电流表 2.数字电压表 3.标准电阻若干 4.电位器(滑动变阻器) 5.直流稳压电源(1台) 【实验内容】 线性电阻伏安特性的测量按图1接线,R1=1kΩ,R2=2kΩ,调节直流稳压电源输出电压U,使电压表读数如表-1中数字,测量相应的电流值,并记录于表-1中。 【实验线路】 图1

实验报告 姓名: 报名编号: 学习中心: 层次:高起专(高起专或专升本) 专业:电力系统自动化技术 (一)填写数据表格 表1:伏安特性的测量—数据记录(1) (二)实验结论在试验中,对于电表表盘上能对精确度产生影响的标记符号包括:电压表的等级(根据具体实验选择相应等级很重要)、电流规格(实验前了解电流的大致范围选择规格从而减小误差)、精度等级等。 实验二 【实验名称】基尔霍夫定律的验证 【实验目的】 验证基尔霍夫定律的正确性。 学会测定电路的开路电压与短路电流;加深对参考方向的理解。 【实验仪器】 直流稳压电源(两台),分别为12V和6V;万用表(一台);

电工实验报告答案-(厦门大学)

实验四线性电路叠加性和齐次性验证 表4—1 实验数据一(开关S3投向R a侧) 表4—2 实验数据二(S投向二极管VD侧) 1叠加原理中U S1, U S2分别单独作用,在实验中应如何操作?可否将要去掉的电源(U si或U S2)直接短接? 答:U SI电源单独作用时,将开关S投向U SI侧,开关S投向短路侧; U s2电源单独作用时,将开关Si投向短路侧,开关S2投向U s2侧。 不可以直接短接,会烧坏电压源。 2?实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。 实验五电压源、电流源及其电源等效变换

图(a)计算s 土 图(b)测得Is=123Ma 1. 电压源的输出端为什么不允许短路?电流源的输出端为什么不允许开路? 答:电压源内阻很小,若输出端短路会使电路中的电流无穷大;电流源内阻很大,若输出端 开路会使加在电源两端的电压无穷大,两种情况都会使电源烧毁。 2. 说明电压源和电流源的特性,其输出是否在任何负载下能保持恒值? 答:电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性;电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性;其输出在任何负载下能保持恒值。 3. 实际电压源与实际电流源的外特性为什么呈下降变化趋势,下降的快慢受哪个参数影响? 答:实际电压源与实际电流源都是存在内阻的,实际电压源其端电压U随输出电流I增大 而降低,实际电流源其输出电流I随端电压U增大而减小,因此都是呈下降变化趋势。下 降快慢受内阻R s影响。 4?实际电压源与实际电流源等效变换的条件是什么?所谓’等效’是对谁而言?电压源与电流源能否等效变换? 答:实际电压源与实际电流源等效变换的条件为: (1 )实际电压源与实际电流源的内阻均为RS; (2)满足U s I s R s。 所谓等效是对同样大小的负载而言。电压源与电流源不能等效变换。

电工实验报告答案-(厦门大学)

实验四线性电路叠加性和齐次性验证表4—1实验数据一(开关S3 投向R3侧) 测量项目实验内容U S1 (V) U S2 (V) I 1 (mA) I 2 (mA) I 3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1 单独作用1208.65-2.39 6.25 2.390.789 3.18 4.39 4.41 U S2 单独作用0-6 1.19-3.59-2.39 3.59 1.186-1.2210.0680.611 U S1 , U S2共同作用12-69.85-5.99 3.85 5.98 1.976 1.965 5.00 5.02 2U S2 单独作用0-12 2.39-7.18-4.797.18 2.36-2.44 1.217 1.222表4—2实验数据二(S3投向二极管VD侧) 测量项目实验内容U S1 (V) U S2 (V) I 1 (mA) I 2 (mA) I 3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1 单独作用1208.68-2.50 6.18 2.500.639 3.14 4.41 4.43 U S2 单独作用0-6 1.313-3.90-2.65 3.980.662-1.3540.6750.677

U , U S2共同作 12-610.17-6.95 3.21 6.950.688 1.640 5.16 5.18 S1 用 2U 单独作用0-12 2.81-8.43-5.628.430.697-2.87 1.429 1.435 S2 1.叠加原理中U S1, U S2分别单独作用,在实验中应如何操作?可否将要去掉的电源(U S1或U )直接短接? S2 答: U S1电源单独作用时,将开关S1投向U S1侧,开关S2投向短路侧; U 电源单独作用时,将开关S1投向短路侧,开关S2投向U S2侧。 S2 不可以直接短接,会烧坏电压源。 2.实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。 实验五电压源、电流源及其电源等效变换 表5-1 电压源(恒压源)外特性数据 R2(Ω)4704003002001000 I (mA)8.729.7411.6814.5819.4130.0

电工实验报告思考题答案(1)

思考题一、在叠加原理实验中,要令U1、U2分别单独作用,应如何操作?可否直接将不作用的电源(U1或U2)短接置零? 在叠加原理中,当某个电源单独作用时,另一个不作用的电压源处理为短路,做实验时,也就是不接这个电压源,而在电压源的位置上用导线短接就可以了。 思考题二、实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么? 电阻器与二极管不能替换使用。电阻器是双通器件,二极管是单通器件,当二极管两端电压低于二极管启动电压,二极管的电阻是无限大的,当二极管单通运用,二极管的电阻又是非常小的。 当然不成立,有了二极管就不是线性系统了,但可能在一定范围内保持近似线性,从而叠加性与齐次性近似成立。如果误差足够小,就可以看成是成立。 实验三 思考题一(1)UL和UD的代数和为什么大于U?(2)并联电容器后,总功率P是否变化?为什么?三相负载根据什么条件作星形或者三角形连接? (1)因为他们的方向不同,是向量相加,三角形关系。(2)并联电容器后,会产生无功功率,总规律会变大。在感性负载中并联一定大小容量的电容,才可使电源(如变压器等)的视在功率减少。纯电阻电路中不减反增。三相负载根据负载设计的额度电压和实际的电源电压决定星形或三角形连接。 比如负载额定电压220V,电源额定电压380V,就接成星形连接,这时负载获得220V电压。 比如负载额定电压220V,电源额定电压220V,就接成角形连接,这时负载获得220V电压。 比如负载额定电压380V,电源额定电压380V,就接成角形连接,这时负载获得380V电压。 思考题二、复习三相交流电路有关内容,是分析三相星形连接不对称负载在无中线情况下。当某相负载开路或短路时会出现什么情况?如果接上中线,情况又如何? 1、当某相负载开路时,就相当于另外两组串联在380V电压下使用,那么电阻大的那组,分得的电压高,如超过其额定电压就会烧毁。 2、如某相负载短路,那么另外两组都处于380V电压下,都将烧毁。 3、如接上中线,可正常使用,中线有电流.。 实验四 思考题一、中线的作用? 当负载作星形接法时,负载三相不平衡时,使得三相负载上的电压仍处于平衡。无中线,出现负载三相不平衡时,三相负载上的电压则不平衡。

三相电路实验报告汇总

实验一 一、实验名称 三相电路不同连接方法的测量 二、实验目的: 1. 理解三相电路中线电压与相电压、线电流与相电流之间的关系。 2. 掌握三相电路的正确连接方法与测量方法。 三、实验原理 1.三相电路 三相电路在生产上应用最为广泛,发电和输配电一般都采用三相制。在用电方面,许多负载是三相的或连接成三相形式的,如三相交流电动机。 三相电路是由三相电源供电的电路。三个频率相同且随时间按正弦函数变换的电动势,如果每相电动势的振幅相等,相位依次相差120o,则称为三相电动势。产生对称三相电动势且各阻抗相等的电源称为对称电源。当三相电动势的相序依次为U相、V相和W相时,称为正序或顺序,反之称为负序或逆序。本实验在三相电源的相序为正序的情况下进行测量。 三相电源由DDSZ-1型实验台台面左侧的DD01三相调压交流电源提供。如下图所示。

在三相电路中,负载一般也是三相的,即由三个部分组成,每一部分称为一个相。如三相负载各相阻抗值相同,则称为对称三相负载。三相负载有两种连接方式:星形联结和三角形联结。 在三相电路中,电源或负载各相的电压称为相电压,端线之间的电压称为线电压;流过电源或负载各相的电流称为相电流,流过各端线的电流称为线电流。星形联结时,各相电压源的负极连在一起称为三相电源的中性点或零点。各相负载的一端接在一起称为负载的中性点或零点。电源的中性点与负载中性点的连线称为中性线或零线。流过中性线的电流称为中性线电流。 2.三相负载的星形联结(三相四线制) 3.三相负载的三角形联结

ou 负载为三角形联结时,线电压等于相电压。当电源与负载对称时,线电流和相电流在数值上的关系为 L P I 。 四、实验设备 1.DDSZ-1型电机及电气技术实验装置 2.D42三相可调电阻器 3.D33交流电压表 4.D32交流电流表 五、实验内容与步骤 1. 组接实验电路; 2. 三相四线制,三相负载为星形联结时,分别测量线电压、相电压、线电流、相电流,记录实验数据。 3. 三相三线制,三相负载为星形联结时,分别测量线电压、相电

电路实验报告-叠加原理的验证

叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、实验原理 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验仪器 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1 3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。

表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。 七、实验小结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。 在实际操作中,开关投向短路侧时,测量点F延至E点,B延至C点,否则测量出错。 线性电路中,叠加原理成立,非线性电路中,叠加原理不成立。功率不满足叠加原理。

相关文档
最新文档