煤的粘结性

煤的粘结性
煤的粘结性

煤的工艺性

煤的工艺性质包括:

(1)煤的粘结性和结焦性指数;

(2)煤的发热量和燃点;

(3)煤的反应性;

(4)煤灰熔融性和结渣性等

1、煤的粘结性和结焦性

煤的粘结性和结焦性,是两个有联系、有区别,又难以严格区别开来的概念。煤的粘结性是煤粒(d<0.2mm)在隔绝空气受热后能否粘结其本身或惰性物质(即无粘结力的物质)成焦块的性质;煤的结焦性是煤粒隔绝空气受热后能否生成优质焦炭的性质。两者都是炼焦煤的重要特性之一。煤在干馏结焦过程中,一般要经过软化、熔合、膨胀、固化和收缩几个阶段,最后生成品质不同的焦炭。当温度等于或高于煤的软化点(一般为315~350c)时,煤都软化成胶质体。当温度等于或高于煤的固化点(一般为420c~450c)时,煤都结成半焦。从软化到固化的时间愈长,煤就熔化得愈好,焦炭结构愈均匀。

为了了解煤的结焦性,人们设计了许多实验室方法,直接测试模拟工业焦化条件下所得焦炭品质(2200Kg小焦炉试验);或测试上述胶质体的某一性质也有的直接观察实验室所得焦块的性质,表征煤的结焦性。本节只阐述与我国煤的现行分类有关的几个测试指标。

(1)煤的胶质层指数

煤的胶质层指数,又称煤的胶质层最大厚度,或Y值。它是原苏联、波兰等国家煤的分类指标之一,也是我国煤的现行分类中区分强粘结性的肥煤、气肥煤的一个分类指标。

煤的胶质层指数,是原苏联列.姆.萨保什尼可夫和列.帕.巴齐列维奇提出的。它的测试要点是根据不同结焦性的煤在干馏过程中胶质层的厚度、收缩情况和膨胀曲线的不同,测试胶质层的最大厚度(Y值)、最终收缩度(X值)和体积曲线,来表征煤的结焦性。其中,Y值应用的最广。Y值是通过测试胶质层的上部层面高度和

下部层面高度得出的(一般出现在520~630C之间),X值是曲线终点与零点线间的距离。Y值、X值和体积曲线都是通过胶质层指数测试仪上的记录转筒和记录笔记记录下来的。胶质层指数测试曲线如图30-11所示。胶质层曲线类型如图30-12所示。

250 280 310 340 370 400 430 460 490 520 550 580 610 640 670 700 730

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

图30-11 胶质层指数测试曲线

1 2

3 4

胶质层指数测试的允许误差。同一煤样平行测试结果的允许误差为:

Y值≤20mm 误差1mm;

Y值〉20mm 误差2mm;

X值误差3mm。

胶质层指数报出结果。应选取在允许误差范围内的各结果的平均值。

胶质层指数表征煤的结焦性的最大优点是Y值有可加性。这种可加性可以从单煤Y值计算到配煤Y值,可以估算配煤炼焦Y值的较佳方案。在地质勘探中可以通过加权平均计算出几个煤层的综合Y值。它的缺点一是规范性强,煤样粒度、升温速度、压力、煤杯材料、炉转耐火材料等都能影响测试结果。所以必须使仪器、制样和操作等都符合严格规定;二是用样量大,一次平行测试需要煤样200克,在地质勘探中常常由于煤芯煤样数量不足而无法测试;三是胶质层指数能反映胶质层的最大厚度,但不能反映出胶质层的质量。

(2)煤的罗加指数

罗加指数(R.1),是波兰煤化学家罗加教授1949年提出的测试烟煤粘结力的指标。现已为国际硬煤分类方案所采用。我国1985年颁发了烟煤罗加指数测试的国家标准(GB5549-85),但在我国现行煤的分类中,罗加指数不作为分类指标。

罗加指数的测试要点:将1克煤样和5克标准无烟煤样(宁夏汝箕沟矿专用无烟煤标样,下同)混合均匀,在规定的条件下焦化,然后把所得焦渣在特定的转鼓中转磨3次,测试焦块的耐磨强度,规定为罗加指数。其计算公式如下:

R.1=[(a+d)/2+b+c]/3Q×100

式中:

a——焦渣过筛,其中大于1mm焦渣的重量,g;

b——第一次转鼓试验后过筛,其中大于1mm焦渣的重量,g;

c——第二次转鼓试验后过筛,其中大于1mm焦渣的重量,g;

d——第三次转鼓试验后过筛,其中大于1mm焦渣的重量,g;

Q——焦化后焦渣总量,g;

罗加指数是测试的允许误差:每一测试煤样要分别进行二次重复测试。同一化验室平行测试误差不得超过3,不同化验室测试误差不得超过5。取平行测试结果的算术平均值(取整数)报出。

罗加指数表征煤的粘结力的优点是煤样量少,方法简便易行。它的缺点是,规

范性也很强,对标准无烟煤的要求很严。罗加指数区分强粘煤灵敏度不够。

(3)煤的粘结指数

煤的粘结指数(G.R.I或G),是我国现行煤的分类国家标准(GB5751-86)中代表烟煤粘结力的主要分类指标之一。其方法测试要点是:将1克煤样与5克标准无烟煤混合均匀,在规定条件下焦化,然后把所得焦渣在特定的转鼓中转磨两次,测试焦渣的耐磨强度,规定为煤的粘结指数,其计算公式如下:

G=10+(30m1+70m2)/m

式中:

m1——第一次转鼓试验后过筛,其中大于10mm的焦渣重量,g;

m2——第二次转鼓试验后过筛,其中大于10mm的焦渣重量,g ;

m——焦化后焦渣总重量,g。

当测得的G<18时,需要重新测试,此时煤样和标准无烟煤样的比例为3:3,即3克煤样和3克无烟煤,其余与上同,计算公式如下:

G=(30m1+70m2)/5m

煤的粘结指数测试的允许误差:每一测试煤样应分别进行二次重复测试,G≥18时,同一化验室两次平行测试值之差不得超过3;不同化验室间报告值之差不得超过4。G<18时,同一化验室两次平行测试值之差不得超过1;不同化验室间报告值之差不得超过2。以平行测试结果的算术平均值为最终结果。

(4)煤的奥压膨胀度

煤的奥压膨胀度(b值,%),是1926~1929年由奥蒂伯尔特创立的,1933年又为亚纽所改进,现在西欧各国广泛采用。在国标分类中,与葛金焦性并列作为硬煤分亚组的两种方法之一。我国1985年以国标GB5450-85发布,并与Y值并列作为我国煤炭现行分类中区分肥煤的指标之一。

煤的奥亚膨胀度的测试要点,是将煤样制成一定规格的煤笔,置入一根标准口径的膨胀管内,按规定的升温速度加热,压在煤笔上的压杆纪录煤样在管内的体积变化,以体积曲线膨胀上升的最大距离占煤笔原始长度的百分数,表示煤的膨胀度b值的大小。奥压膨胀度曲线如图30-14所示。

T1——软化点,体积曲线开始下降达0.5mm时的温度,C;

T2——始膨点,体积曲线下降到最低点后开始膨胀上升的温度,C;

T3——固化点,体积曲线膨胀上升达最大值时的温度,C;

b——最大膨胀度,体积曲线上升的最大距离占煤笔长度的百分数,%;

a——最大收缩度,体积曲线收缩下降的最大距离占煤笔长度的百分数,%;

2、煤的燃点

煤的燃点时将煤加热到开始燃烧时的温度,叫做煤的燃点(也称着火点,临界温度和发火温度)。测定煤的燃点的方法很多,一般是将氧化剂加入或通入煤中,对煤进行加热,使煤发生爆燃或有明显的升温现象,然后求出煤爆燃或急剧升温的临界温度,作为煤的燃点。我国测定燃点时采用亚硝酸钠做氧化剂。在燃点测定仪中进行测定。煤的燃点随煤化度增加而增高,风化煤的燃点明显下降。

3、煤的反应性

煤的反应性又叫反应活性,是指在一定温度条件下,煤与不同的气体介质(CO2、O2和H2O蒸气)相互作用的反应能力。反应性强的煤,在气化燃烧过程中,反应速度快、效率高。我国测定反应性的方法是在高温下煤或焦炭还原二氧化碳的性能,以CO2还原率表示煤或焦炭在燃烧、气化和冶金中的重要指标。反应性强的煤,在汽化燃烧过程中,反应速度快、效率高。我国测定反应性的方法是在高温下煤或焦炭还原二氧化碳的性能,以CO2还原率表示煤或胶的反应性。具体测定方法见GB220-89。

4、煤灰熔融性和结渣性

煤灰熔融性是动力和气化用煤的重要指标。煤灰是由各种矿物质组成的混合物,没有一个固定的熔点,只有一个熔化温度的范围。煤灰熔融性又称灰熔点。煤的矿物质成分不同,煤的灰熔点比其某一单个成分灰熔点低。灰熔点的测定方法常用角锥法、见GB219-74。将煤灰与糊精混合塑成三角锥体,放在高温炉中加热,根据灰锥形态变化确定DT(变形温度)、ST(软化温度)和FT(熔化温度)。一般用ST 评定煤灰熔融性。

图 30-13 奥亚膨胀曲线

由于煤灰熔融性不能反映煤在气化炉中的结渣性,通常用测定煤的结渣性来判断。测定方法见GB1572-89。主要是将煤样送入炉内与空气气化,燃尽后冷却称重,用6mm筛分出大于6mm的渣块占总重量的百分数,称做结渣率。

在干馏段内煤料受热将出现膨胀与粘结的现象,如果煤的粘结性强,则会在此聚成大团块或煤饼,破坏上升气体的均匀分布,影响干馏效果,而且还会阻碍甚至堵塞料层均匀下移,导致整个炉内的气化过程恶化。

反应煤在受热状态下的粘结性的检测项目有:胶质层厚度(Y)值,罗加指数及等煤工业分析中的焦渣特征等。

煤的粘结性不可过大,也不可过小,罗加指数RI=15-20 粘结性过大,原料下移速度慢,煤料在炉内停留时间长,容易结疤、悬料,引起生产停顿或停止;而粘结性过小,原料下移速度快,煤料在炉内停留时间短,导致干馏效果差,气化反应条件变差,气化率随之降低,返碳率相应增加,导致原料浪费。

粘结性是指煤被加热到一定温度时,煤质受热分解并产生胶质体,最后粘结成块状焦炭的能力。煤的粘结性不利于气化过程的进行。粘结性强的煤料,在气化炉加热到400℃-500℃时,会出现高粘结度的液体,使料层粘结,小块的煤被粘合成大块,阻碍料层的正常气化,使气化过程恶化。

煤炭基础知识

煤炭基础知识

煤炭基础知识 一、煤炭的生成 煤炭的生成。煤炭是古代的有机物(主要是植物)的遗体,经过生物及化学的变质作用而形成的。大体可分为两个阶段,第一阶段是泥煤炭化阶段,即由植物转变成泥炭阶段。当植物枯死之后,堆积在充满水的沼泽中,开始是水存在的氧气不足,后来在水面下隔绝空气,并在细菌的作用下,直到植物的各部分不断分解,相互作用,最后植物的遗体变成了褐色或黑褐色的淤泥物质,这就是泥炭。这个过程,叫做泥炭化过程。这个阶段需要漫长的地质历史时期,需要进行千百万年。第二阶段,由泥炭转变成褐煤,褐煤转变成烟煤,烟煤再转变成无烟煤阶段。当泥炭层形成后。有水经常冲刷大陆的低洼地方,带来了大量的砂、石,在泥潭层逐渐形成岩层(称为顶板)。被埋在顶板下的泥炭层在顶板下的泥潭层在顶板岩石层的压力作用下,发生了压紧、失水、胶体老化、硬结等一系列变化,同时它的化学组成也发生了缓慢的变化,逐步变成比重较大,较致密的黑褐色的褐煤。当顶板逐渐加厚,顶板的静压力逐渐增高,煤层中温度也逐渐升高后,煤质便发生变化,逐渐由成岩作用变成了以温度影响为主的变质作用。这样褐煤逐渐变成了烟煤、无烟煤。如果有更高的温度,最终可能变成石墨。成煤必须具备四个先决条件:(1)植物条件。(2)气候条件。(3)地理条件。(4)地壳运动条件。 二、煤炭的分类及各类煤的主要特征和用途 (1)煤炭按煤的用途分为:动力煤、炼焦煤、喷吹煤及无烟煤 凡是以发电、机车推进、锅炉燃烧等为目的,产生动力而使用的煤炭都属于

动力用煤,简称动力煤; 作为生产原料,用来生产焦炭,进而用于钢铁行业的煤炭种,称为炼焦煤; 钢铁行业高炉喷吹用的喷吹煤; 无烟煤块煤主要应用是化肥(氮肥、合成氨)、陶瓷、制造锻造等行业;无烟粉煤主要应用在冶金行业用于高炉喷吹。 我国约1/3的煤用于发电,目前平均消耗为标准煤(7000大卡)370g/kw.h。 (2)煤炭按粒度分类:经简单筛选后剩下的大块有烟煤,筛选常用通过网目大小来规定最小尺寸的块度。 块煤:﹥13mm,最大块不得大于300mm 主要分为三类混煤 末煤(助燃用):粒度﹤13mm (3)煤炭按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤三大类,具体分类如下: 1.褐煤(HM) 它是煤化程度最低的煤。其特点是水分高、比重小、挥发分高、不粘结、化学反应性强、热稳定性差、发热量低,含有不同数量的腐殖酸。多被用作燃料、气化或低温干馏的原料,也可用来提取褐煤蜡、腐殖酸,制造磺化煤或活性炭。一号褐煤还可以作农田、果园的有机肥料。 2.长焰煤(CY) 它的挥发分含量很高,没有或只有很小的粘结性,胶质层厚度不超过5mm,易燃烧,燃烧时有很长的火焰,故得名长焰煤。可作为气化和低温干馏的原料,也可作民用和动力燃料。

太原理工大学-煤科学

太原理工大学-煤科学

Proximate Analysis/煤的工业分析:水分、灰分、挥发分、固定碳 Moisture :最高内在水分MHC (moisture holding capacity):一定的湿度和温度下,内在水分可以达到最大值。此时的内在水分即称为最高内在水分。 挥发分V(Volatile matter )、固定碳FC (fixed carbon ): 煤的挥发分是指煤在900 ℃下隔绝空气热分解后气体产物的量,称作挥发物质产率。 挥发分不是煤的固有物质,而是煤在特定温度下的分解 Mf Ma Ma Minh

产物。在900 ℃的高温下,不仅煤的有机质会发生分解而且煤中的矿物质也都会有不同程度的热分解。 作为煤分类指标时是要用干燥无灰基的挥发份产率Vdaf %表示 FCad = 100 –( Mad + Aad + Vad ) FCdaf= 100 –Vdaf 煤的最高内在水分MHC与挥发分Vdaf的关系 煤中固定碳FC:煤在隔绝空气下高温热解后残存在焦渣中的以碳为主的有机部分。含有碳、氢、氧、氮等元素。 矿物质:原生矿物质(1% ~ 2%)、次生矿物质和外来矿物质灰Ash :Major:SiO2、Al2O3、CaO、MgO >95 % The rest:K2O、Na2O、SO3、P2O5、铁磁性物质 Is important : 灰熔点,熔渣粘度,流动性 Ultimate Analysis (daf%)/煤的元素分析: C、H(< 7 %)、O (30%~1%)、N (0.5 ~3.0%):2.5以下, Ndaf = 0.3 Hdaf、S(0.1 ~10%):St = So+ Sp+Ss+ Se Sp:团状黄铁矿一般可洗,极细的难除。So:有机硫典型烟煤的热解Pyrolysis process of typical bituminous:

【免费下载】GBT16417 煤炭可选性评定方法

G B/T16417-1996煤炭可选性评定方法 1.范围 本标准规定了煤炭可选性评定方法、可选性等级的命名和划分指标。 本标准适用于大于0.5mm粒级的煤炭。 2.引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 478-1987 煤炭浮沉试验方法 GB 7186-1987 选煤名词术 MT 320-1993 煤芯煤样可选性试验方法 3.评定方法 1.煤炭可选性评定采用“分选密度±0.1含量法”(简称“δ±0.1含量法”, 下同)。 2.所用浮沉试验资料应符合GB 487?987或MT 320?993的规定。 3.δ±0.1含量的计算: a) δ±0.1含量按理论分选密度计算; b) 理论分选密度在可选性曲线上按指定精煤灰分确定(准确到小数点后二位); c) 理论分选密度小于1.70g/cm3时,以扣除沉矸(+2.00g/cm3)为100%计算δ±0.1 含量;理论分选密度等于或大于1.70g/cm3时,以扣除低密度物(-1.50/cm3)为100%计算δ±0.1含量; d) δ±0.1含量以百分数表示,计算结果取小数点后一位。 4.等级命名和划分

按照分选的难易程度,把煤炭可选性划分为5个等级,各等级的名称及δ±0.1含量指标见表1。 表1 煤炭可选性等级的划分指标δ±0.1含量%可选性等级≤10.0易选10.1~20.0中等可选20.1~30.0较难选30.1~40.0难选>40.0极难选附录A (提示的附录)煤炭可选性评定示例A1 浮沉试验资料某原煤50~0.5mm 粒级(综合级)浮沉试验资料如表A1所示。该资料符合GB478-1987的规定。A2 确定精煤灰分用δ±0.1含量法评定原煤可选性,是指在某一精煤灰分时的可选性。精煤灰分由用户提出或根据有关资料假定一个或几个精煤灰分值。本例中假定精煤灰分为10.0%和13.0%,评定这两种条件下的煤炭可选性。A3 绘制可选性曲线技术、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 术,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

煤的粘结性和结焦性

煤的粘结性和结焦性 煤的粘结性就是烟煤在干馏时粘结其本身或外加惰性物的能力。煤的热解结焦性就是在工业焦炉中结成焦炭的能力。煤的粘结性是评价干馏、炼焦、气化、动力用煤的重要依据。 煤粘结性是在煤的热解,即干馏时考虑的,特指烟煤。从煤的热解过程可知,褐煤、无烟煤无粘结性。 4.1.粘结指数GR.I---GRI 是煤炭分类国家标准GB5751-86中代表烟煤粘结性的主要分类指标。测定方法是:将一定质量和专用无烟煤,按规定的条件混合(1:5),快速加热成焦,所得焦块在一定规格的转鼓内进行强度检验,以焦块的耐磨性强度,表示煤样的粘结能力。 4.2.胶质层指数 胶质层指数的测定是测定煤的胶质层最大厚度(以Y表示),焦块最终体积收缩X及收缩曲线三个参数来描述煤样的粘结能力。方法是煤样在杯中逐渐加热,并观察记录过程情况。奥阿膨胀度与此类似。 4.3.葛金低温干馏试验 是用来评价煤的结焦性的的指标。最后以焦型来定粘结性和结焦性。 试验方法如下:将煤样装入干馏管中,置干馏管于葛金低温干馏炉内,以一定升温程序加热到最终温度600℃,保持一定时间,测定所得的焦油、热解水和半焦产率,同时将焦炭与一组标准焦型比较定出型号。从A到G粘结性越来越大。 A:不粘结 B:微粘结 C:粘结 D:粘结微熔融 E:熔融 F:横断面完全熔融 G:完全熔融,开始膨胀 4.4.煤的铝甑低温干馏试验 为了评定煤的炼油适合性以及干馏产物,常用铝甑低温干馏试验方法。要点是:将煤样装在铝甑中,以一定程序加热到510℃,保持一定时间,测定所得的焦油、热解水和半焦和煤气的产率。评价煤的低温干燥焦油产率时用空气干燥基指标Tarad。Tarad>12%称为高油煤,Tarad=7—12%称为富油煤,Tarad≤7%称为含油煤。

煤的热解与粘结成焦07.8.30

煤的热解与粘结成焦 煤的热解是指煤在隔绝空气或在惰性气体条件下持续加热至较高温度时,所发生的一系列物理变化和化学反应的复杂过程。粘结和成焦则是煤在一定条件下的热解的结果。由于命名尚未统一,除“热解”(Pyrolysis)这一名称外,还常用“热分解”(thermal decomposition)和“干馏”(carbonization)等术语。 煤的热加工是当前煤炭加工中最重要的工艺,大规模的炼焦工业是煤炭热加工的典型例子。研究煤的热解与煤的热加工技术关系极为密切,对煤的热加工有直接的指导作用,例如,对于炼焦工业可指导正确选择原料煤,探索扩大炼焦用煤基地的途径,确定最佳工艺条件和提高产品质量。此外,还可以对新的热加工技术的开发,如高温快速热解,加氢热解和等离子热解等起指导作用。 煤的热解与煤的组成和结构关系密切,可通过热解研究阐明煤的分子结构。此外,煤的热解是一种人工炭化过程,与天然成煤过程有些相似,故对热解的深入了解有助于对煤化过程的研究。 炼焦是将煤放在干馏炉中加热,随着温度的升高(最终达到1000℃左右)。煤中有机质逐渐分解,其中,挥发性物质呈气态或蒸汽状态逸出,成为煤气和煤焦油,残留下的不挥发性产物就是焦炭。焦炭在炼铁炉中起着还原、熔化矿石,提供热能和支撑炉料,保持炉料透气性能良好的作用。因此,炼焦用煤的质量要求,是以能得到机械强度高、块度均匀、灰分和硫分低的优质冶金焦为目的。 1 粘结性烟煤受热时发生的变化 煤在隔绝空气条件下加热时,煤的有机质随温度升高发生一系列变化,形成气态(干馏煤气)、液态(焦油)和固态(半焦或焦炭)产物。 煤的热解过程大致可分为三个阶段: (1)第一阶段(室温到350~400℃ )。从室温到活泼热分解温度(Td,除无烟煤外一般为350~400℃),称为干燥脱气阶段。褐煤在200℃以上发生脱羧基反应,约300℃开始热解反应,烟煤和无烟煤的原始分子结构仅发生有限的热 作用(主要是缩合作用)。120℃前主要脱水,约200℃完成脱气(CH 4、CO 2 和 N 2 )。 (2)第二阶段(Td~550℃)。这一阶段的特征是活泼分解,以解聚和分解反应为主。生成和排出大量挥发物(煤气和焦油),约450℃排出的焦油量最大,在450~500℃气体析出量最多。烟煤约350℃开始软化,随后是熔融、粘结,到500℃时结成半焦。 烟煤(尤其是中等变质程度烟煤)在这一阶段经历了软化熔融、流动和膨胀直到再固化,出现一系列特殊现象,并形成气、液、固三相共存的胶质体。液相中有液晶(中间相)存在。胶质体的数量和质量决定了煤的粘结性和结焦性。固体产物半焦与原煤相比,芳香层片的平均尺寸和氦密度等变化不大,这表明半焦生成过程中缩聚反应并不太明显。 (3)第三阶段(550~1000℃ )。又称二次脱气阶段。在这一阶段,半焦变成焦炭,以缩聚反应为主。析出的焦油量极少,挥发分主要是煤气。煤气成分主要 是H 2,少量CH 4 和C的氧化物。焦炭的挥发分小于2%,芳香核增大,排列的有

煤的基本知识

煤的基本知识 1.煤的种类和特征 根据成煤植物种类的不同,煤主要可分为两大类,即腐殖煤和腐泥煤。 1)、腐殖煤 由高等植物形成的煤称为腐植煤。腐殖煤是因为植物的部分木质纤维组织在成煤过程中曾变成腐殖酸这一产物而得名。它在自然界中分布最广,储量最大。绝大部分是由高等植物中的木质素和纤维素等主要成分形成的。亦有少量腐殖煤是由高等植物中经微生物分解后残锱的脂类化合物形成的,称为残殖煤。单独成矿的残殖煤很少,多以薄层或透镜状夹在腐殖煤中。我国江西平煤田和浙江长广煤田有典型的树皮和角质残殖煤,大同煤田有少量阢子残殖煤。 2)、腐泥煤 由低等植物和少量浮游生物形成的煤称为腐泥煤。腐泥煤包括藻煤和胶泥煤等。藻煤主要藻类生成,山西浑源有不少藻煤,山东兖州、肥城也有发现,胶泥煤是无结构的腐泥煤,植物成分分解彻底,几乎完全由基质组成。这种煤数量很少,山西浑源有少量存在。胶泥煤的矿物质含量大于40%即称为油页岩,我国辽宁抚须、吉林桦甸、广东茂名和山东黄县等地有丰富的油页岩资源。 此外,还有腐殖煤和腐泥煤的混合体,有时单独分类成与腐殖煤和腐泥煤并列的第三类煤,称为腐殖腐泥煤。主要有烛煤和精

煤,前者与藻类很相似,宏观上几乎难以区分,易燃,用火柴即可点燃,燃烧时火焰明亮,好像蜡烛一样;精煤盛主于我国抚顺,结构细腻,质轻而有契性,因能雕琢工艺美术品而驰名。 2、煤的性质 1)、煤的物理性质 煤的物理性质主工包括空间结构性质、机械性质、热性质、光学性质、电性质与磁性质等。从胶体化学的观点,可将煤看作是一种特殊和复杂的固态胶体体系。 煤的物理和物理化学性质也和煤的其它性质一样,主要取决于煤化度和煤岩组成,有时还取决于煤的还原程度。煤的某些物理性质学与矿物质(数量、性质与分布)、水分和风化程度有关。 3、煤的分类指标与煤质评价 1)、煤分类在科学和实用方面都有重大的意义。由于煤的复杂性和结煤质的认识有待深化,目前国内外使用的煤分类方案都不是完整、科学的系统分类。 由于煤的成因、产地、种类、组成和性质的多样性,以及分类的角度与目的的不同因此煤分类的指标繁多,归纳起来可有如下四类。 (1)煤化度指标。主要有镜质组反射率、挥发份、发热量、最高内在水分含量、透光率、显微硬度,X射线衍射等。 (2)煤岩显微组分指标。采取镜质组分含量或采用惰性组分含量和稳定组分含量。

黏结性碎煤射流预氧化破黏与流化

2014年6月 CIESC Journal June 2014第 65卷 第6期 化 工学 报 V ol.65 No.6 黏结性碎煤射流预氧化破黏与流化 赵飞翔1,2,赵志刚1,张聚伟1,曾玺1,初茉2,许光文1 (1中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190; 2中国矿业大学(北京)化学与环境工程学院,北京 100083) 摘要:具有黏结性(黏结性指数10~30)并高灰的劣质煤,如洗中煤难于适应于现有气化技术,但焦化等行业对 这些煤的气化高价值利用具有极大的需求。中国科学院过程工程研究所提出了黏结性煤射流预氧化流化床气化技 术,采用含氧气体向流化床气化炉稀相区喷射供料,有效破除煤的黏结性,同时强化气固接触和气化反应,实现 对黏结性劣质煤的高效转化。采用小型射流预氧化流化床反应器,研究了黏结性指数为20的一种煤通过射流预氧 化的破黏与实现流化的效果。分别考察了射流气过量空气系数(ER )和氧浓度(2O C ) 、加热炉设定温度(T )对预氧化破黏及煤颗粒流化的影响效果,分析了反应器内射流区的温度分布与生成气组成随时间的变化规律,并对 预氧化后的半焦进行了电镜观测和气化反应活性测试及傅里叶红外分析。结果表明,在流化床中通过射流预氧化 有效破黏、实现黏结性煤颗粒流化的工艺条件为:T > 950℃,2O 21%C =,ER > 0.1。在有效破黏的条件下射流 区内的温度变化平稳,生成气中H 2与CO 含量较低,波动较小,而结焦条件下射流区内温度逐渐下降,生成气中 H 2与CO 含量增加。经历结焦的半焦表面生成了黏结性物质,而经过预氧化成功破黏后的半焦其表面大部分官能 团消失。 关键词:流化床;气化;黏结性煤;预氧化;破黏 DOI :10.3969/j.issn.0438-1157.2014.06.007 中图分类号:TQ 530.2 文献标志码:A 文章编号:0438—1157(2014)06—1993—10 Caking property destruction and particle fluidization for caking coal in fluidized bed by jetting pre-oxidation ZHAO Feixiang 1,2, ZHAO Zhigang 1, ZHANG Juwei 1, ZENG Xi 1, CHU Mo 2, XU Guangwen 1 (1National Key Laboratory of Multiphase Complex System , Institute of Process Engineering , CAS , Beijing 100190, China ; 2Institute of Chemistry and Environment Engineering , China University of Mining and Technology , Beijing 100083, China ) Abstract : The existing gasification technologies can hardly treat the coal like washing middlings that has caking index above 10 and also ash content, as high as above 40% (mass). Coal industry, such as coking industry, however, has great need to gasify this kind of coal for realizing its value-added utilization. Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS) proposed the jetting pre-oxidation fluidized bed gasification (JPFBG) to treat such a kind of coal. Coal particles are fed into the dilute zone of a fluidized bed reactor with a gas jet containing oxygen to implement the destruction of coal’s caking property. The jetting feed also strengthens gas-solids contact and accelerates gasification reaction. This study was devoted to characterizing 2013-06-17收到初稿,2014-03-04收到修改稿。 联系人:张聚伟,许光文。第一作者:赵飞翔(1988—),男,硕士 研究生。 基金项目:中国科学院战略性先导科技专项(XDA07050400);国 家自然科学基金项目(21306209)。 Received date : 2013-06-17. Corresponding author : ZHANG Juwei, jwzhang@https://www.360docs.net/doc/c215997024.html,; XU Guangwen, gwxu@https://www.360docs.net/doc/c215997024.html, Foundation item : supported by the Strategic Priority Research Program (XDA070050400) and the National Natural Science Foundation of China (21306209).

煤的粘结性与结焦性关联分析

煤的粘结性与结焦性 一、煤的粘结性与结焦性 煤的粘结性是指粒度小于 0.2mm 的煤,在隔绝空气受热后粘结自身或其他惰性物质成为焦块的能力; 煤的结焦性是指上述煤粒在隔绝空气受热后生成具有一定块度和足够强度的优质焦炭的能力。煤的粘结性和结焦性是煤的极为重要的性质,是两个既有区别,又有联系的概念,一般很难将其严格区分开来。煤的粘结性强是结焦性好的必要条件,即是说结焦性好的煤,它的粘结性肯定为好;结焦性差的煤,其粘结性必定不好; 没有粘结性的煤,不存在结焦性。从而看出,煤的粘结能力在一定程度上反映了煤的结焦性。有时,粘结性好的煤,其结焦性不一定就好,这里面存在着胶质体的质量问题。如有的气肥煤,粘结性很强,但生成的焦炭裂隙多,机械强度差。所以,其结焦性并不好。表征煤的粘结性和结焦性的指标很多:烟煤粘结指数(GR.I)和罗加指数(R.I)属于粘结性指标,胶质层厚度 y 值既能反映煤的粘结性,又能表征煤的结焦性,其他如奥亚膨胀度和葛金干馏等指标,则很难说它们表征是煤的粘结性还是结焦性等。 1.煤的胶质层指数煤的胶质层指数是原苏联尼·萨保什尼科夫(L.M.Sapozhnikov)等人在 1932 年提出的一种姆·测定煤的粘结性和结焦性的方法。主要是测定煤的胶质层最大厚度 y 值、最终体积收缩度 x 值和体积曲线类型等三个参数和描述焦炭的特性等。胶质层指数的测定简介如下: (1)方法概要。称取 100g 粒度小于 1.5mm 的煤样装入一定规格的钢制煤杯中,在煤杯上面加压力盘,在煤杯下面进行单侧加温。当温度升到一定数值后,在杯内形成一系列的等温层面。在温度升到煤的软化点以上时,煤就开始软化并形成粘稠状的流体即胶质体,由胶质体形成的各层称为胶质层。温度继续升高到胶质体开始固化时,煤就固化成半焦。由于煤杯是从底部加热的,煤杯内的煤样通常可分为上部未软化层、中部胶质体层和下部半焦层三部分。在整个测定过程中,煤杯下部开始生成胶质体时,胶质层较薄。随着温度的逐渐升高,胶质体层不断变厚。温度再继续升高,最下部的胶质层间开始固化,所以胶质层厚度又开始减少。在胶质体层厚薄变化的全过程中,用金属探针测出胶质体层的最大厚度,在温度为 730℃时测定结束。在胶质体层内部,由于煤热分解而产生气体。但因胶质体透气性不好,而使气体积聚在胶质体层内,促使胶质体产生膨胀。由于膨胀产生的内应

煤的工艺性煤的粘结性和煤的燃点

煤的工艺性/煤的粘结性和煤的燃点 https://www.360docs.net/doc/c215997024.html,/jishuwenzhang/20071027214839.html 煤的工艺性(一)煤的粘结性和煤的燃点 [煤的工艺性质]煤的工艺性质包括: (1)煤的粘结性和结焦性指数; (2)煤的发热量和煤的燃点; (3)煤的反应活性; (4)煤灰熔融性(煤的灰熔点)和结渣性等 1、煤的粘结性和结焦性 煤的粘结性和结焦性,是两个有联系、有区别,又难以严格区别开来的概念。煤的粘结性是煤 粒(d<0.2mm)在隔绝空气受热后能否粘结其本身或惰性物质(即无粘结力的物质)成焦块的性质 ;煤的结焦性是煤粒隔绝空气受热后能否生成优质焦炭的性质。两者都是炼焦煤的重要特性之一。 煤在干馏结焦过程中,一般要经过软化、熔合、膨胀、固化和收缩几个阶段,最后生成品质不同的 焦炭。当温度等于或高于煤的软化点(一般为315~350c)时,煤都软化成胶质体。当温度等于或 高于煤的固化点(一般为420c~450c)时,煤都结成半焦。从软化到固化的时间愈长,煤就熔化得 愈好,焦炭结构愈均匀。 为了了解煤的结焦性,人们设计了许多实验室方法,直接测试模拟工业焦化条件下所得焦炭品 质(2200Kg小焦炉试验);或测试上述胶质体的某一性质也有的直接观察实验室所得焦块的性质, 表征煤的结焦性。本节只阐述与我国煤的现行分类有关的几个测试指标。 (1)煤的胶质层指数

煤的胶质层指数,又称煤的胶质层最大厚度,或Y值。它是原苏联、波兰等国家煤的分类指标 之一,也是我国煤的现行分类中区分强粘结性的肥煤、气肥煤的一个分类指标。 煤的胶质层指数,是原苏联列.姆.萨保什尼可夫和列.帕.巴齐列维奇提出的。它的测试要点是 根据不同结焦性的煤在干馏过程中胶质层的厚度、收缩情况和膨胀曲线的不同,测试胶质层的最大 厚度(Y值)、最终收缩度(X值)和体积曲线,来表征煤的结焦性。其中,Y值应用的最广。Y值是 通过测试胶质层的上部层面高度和下部层面高度得出的(一般出现在520~630C之间),X值是曲线 终点与零点线间的距离。Y值、X值和体积曲线都是通过胶质层指数测试仪上的记录转筒和记录笔记 记录下来的。胶质层指数测试曲线如图30-11所示。胶质层曲线类型如图30-12所示。250 280 310 340 370 400 430 460 490 520 550 580 610 640 670 700 730 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 图30-11胶质层指数测试曲线 1 2 3 4 胶质层指数测试的允许误差。同一煤样平行测试结果的允许误差为: Y值≤20mm 误差1mm; Y值〉20mm 误差2mm; X值误差3mm。 胶质层指数报出结果。应选取在允许误差范围内的各结果的平均值。 胶质层指数表征煤的结焦性的最大优点是Y值有可加性。这种可加性可以从单煤Y值

平煤天安八矿煤的可选性分析

平煤天安八矿煤的可选性分析 发表时间:2011-04-01T10:42:58.950Z 来源:《价值工程》2011年第3月下旬供稿作者:杨光华 [导读] 平煤天安八矿位于平顶山市东12km,面积约47.9km2。311国道横贯井田中部,公路、铁路均可直达矿山,交通十分便利。 杨光华(河南省煤田地质局四队,平顶山 467000) 摘要:平煤天安八矿位于平顶山市区东,煤炭资源储量丰富,煤层埋藏适中,地理位置有一定的区位优势,煤炭的筛分、浮沉试验等深加工可提高企业的经济效益。 关键词:煤层;筛分试验;浮沉试验;可选性;平煤天安八矿 中图分类号:TD82 文献标识码:A 文章编号:1006-4311(2011)09-0013-02 0 引言 平煤天安八矿位于平顶山市东12km,面积约47.9km2。311国道横贯井田中部,公路、铁路均可直达矿山,交通十分便利。矿井开采煤层计4层。煤炭储量3.73亿吨,截止2009年底保有资源储量2.99亿吨。 1 地质特征 平顶山煤田处于华北板块南缘的崤熊构造区内。煤田构造形态为一复式(李口)向斜;平煤天安八矿位于李口向斜西南翼,总体为一走向北西的单斜构造。 平顶山煤田区划属华北地层区地层,含煤地层为太原组、山西组、下、上石盒子组,含煤46层,地层总厚794.00m。 二1、二2煤层较稳定,为区内主要可采煤层,四2煤层属大部可采煤层。平均煤厚:二1煤 1.71m,二2煤3.49m,四2煤3.66m。 二1、二2煤层以焦煤为主,四2煤以肥煤为主。 2 筛分试验 本区采取筛浮大样3件,现以筛分试验来说明二1、二2、四2煤的自然粒度组成及质量特征(表1)。由表知: 二1煤:随筛分粒级的减小,①各粒级所占全样的产率呈波浪式变化,以6-3mm级产率最高;②除+50mm级外,灰分基本呈逐级降低趋势;③硫分亦呈波浪式变化,以13-6mm级硫分含量最高。 二2煤:随筛分粒级的减小,①各粒级所占全样的产率呈逐级增加趋势,以-0.5mm级产率最高;②灰分基本呈逐级降低趋势;③硫分变化比较大,以25-13mm级硫分含量最高。 四2煤:随筛分粒级的减小,①各粒级(除13-6mm级外)所占全样的产率呈逐级增加趋势,以-0.5mm级产率最高;②灰分呈逐级降低趋势;③硫分呈近正态分布,以6-3mm级硫分含量最高。 3 浮沉试验 以各粒级为单元进行不同密度级的浮沉试验,经汇总后形成浮沉试验结果表,现以煤的浮沉试验结果(表2)说明二1、二2、四2煤的浮物产率及质量特征:

煤化学试题

一、填空题(将正确答案填在括号内,每题1.5分,共 30分)。1.煤中的水分按照它的存在状态及物理化学性质,可分为外在水分、及化合水三种类型。 2.煤的外在水分与的总和称为煤的全水分。 3.碳是煤中有机质组成中含量最高的元素,并随着煤化程度的升高而。(填“增加”或“减少”) 4.煤中硫根据其存在状态可分为有机硫和两类。5.煤的热解按其最终温度不同可分为:高温干馏、和低温干馏。 6.煤的反应性随煤化程度的加深而。(填“增强”或“减弱”) 7..煤的燃点随着煤化程度的增加而。(填“增高”或“降低”) 8.中国煤炭分类方案根据煤化程度将煤分成褐煤、和无烟煤。 9.煤气的有效成分主要有氢气、和甲烷。 10.根据煤在气化过程中使用的气化剂不同,煤气可分为空气煤气、、半水煤气和混合煤气。 11.根据成煤原始物质和堆积的环境不同,可把煤分成:、腐泥煤类和腐植腐泥煤类三种类型。 12.根据成煤过程中煤化程度的不同,腐植煤可分为:泥炭、褐煤、和无烟煤。

13.是煤化程度最高的腐植煤。 14.根据成煤过程中影响因素和结果不同,成煤过程可分为:泥炭化作用和两个阶段。 15.煤岩学的研究方法有:宏观研究法和。 16.根据煤的平均光泽强度、各种煤岩成分的比例和组合情况划分为光亮型煤、、半暗型煤和暗淡型煤。 17.煤的显微硬度与煤化程度之间的关系是靠背椅式的变化规律,“椅背”是无烟煤;“椅面”是;“椅腿”是褐煤。 18.煤的工业分析包括水分、、挥发分和固定碳四项。19.煤的元素分析包括碳、氢、、氮、硫等元素的测定。 20.煤样的制备包括破碎、、混合、缩分和干燥等程序。 二、判断题(正确的打“O ”,错误的打“×”,每题 1.5 分,共 60 分)。 ()1.煤的挥发分,是指煤样在规定条件下,隔绝空气加热,并进行水分校正后挥发物质的产率。 ()2.随着煤化程度的增加,煤中水分逐渐减少;固定碳含量逐渐增加;挥发分产率先增加后减少。 ()3.碳是煤中主要组成元素,是炼焦时形成焦炭的主要物质基础,是燃烧时产生热量的主要来源。

煤的可选性评定方法

GB/T16417-1996煤炭可选性评定方法 1.范围 本标准规定了煤炭可选性评定方法、可选性等级的命名和划分指标。本标准适用于大于0.5mm粒级的煤炭。 2.引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 478-1987 煤炭浮沉试验方法 GB 7186-1987 选煤名词术 MT 320-1993 煤芯煤样可选性试验方法 3.评定方法 1.煤炭可选性评定采用“分选密度±0.1含量法”(简称“δ±0.1含量法”,下 同)。 2.所用浮沉试验资料应符合GB 487?987或MT 320?993的规定。 3.δ±0.1含量的计算: a) δ±0.1含量按理论分选密度计算; b) 理论分选密度在可选性曲线上按指定精煤灰分确定(准确到小数点后二位); c) 理论分选密度小于1.70g/cm3时,以扣除沉矸(+2.00g/cm3)为100%计算δ±0.1含 量;理论分选密度等于或大于1.70g/cm3时,以扣除低密度物(-1.50/cm3)为100%计算δ±0.1含量; d) δ±0.1含量以百分数表示,计算结果取小数点后一位。 4.等级命名和划分

按照分选的难易程度,把煤炭可选性划分为5个等级,各等级的名称及δ±0.1含量指标见表1。 表1 煤炭可选性等级的划分指标 附录A(提示的附录) 煤炭可选性评定示例 A1 浮沉试验资料 某原煤50~0.5mm粒级(综合级)浮沉试验资料如表A1所示。该资料符合GB478-1987的规定。 A2 确定精煤灰分 用δ±0.1含量法评定原煤可选性,是指在某一精煤灰分时的可选性。精煤灰分由用户提出或根据有关资料假定一个或几个精煤灰分值。本例中假定精煤灰分为10.0%和13.0%,评定这两种条件下的煤炭可选性。 A3 绘制可选性曲线 按照GB478-1987附录A的规定,依据表A1绘制5条可选性曲线(H-R曲线)如图A1。可选性曲线绘制在200mm×200mm的坐标纸上。

煤的工艺性质

[煤的工艺性质]煤的工艺性质包括: (1)煤的粘结性和结焦性指数; (2)煤的发热量和燃点; (3)煤的反应性; (4)煤灰熔融性和结渣性等 1、煤的粘结性和结焦性 煤的粘结性和结焦性,是两个有联系、有区别,又难以严格区别开来的概念。煤的粘结性是煤粒(d<0.2mm)在隔绝空气受热后能否粘结其本身或惰性物质(即无粘结力的物质)成焦块的性质;煤的结焦性是煤粒隔绝空气受热后能否生成优质焦炭的性质。两者都是炼焦煤的重要特性之一。煤在干馏结焦过程中,一般要经过软化、熔合、膨胀、固化和收缩几个阶段,最后生成品质不同的焦炭。当温度等于或高于煤的软化点(一般为315~350c)时,煤都软化成胶质体。当温度等于或高于煤的固化点(一般为420c~450c)时,煤都结成半焦。从软化到固化的时间愈长,煤就熔化得愈好,焦炭结构愈均匀。 为了了解煤的结焦性,人们设计了许多实验室方法,直接测试模拟工业焦化条件下所得焦炭品质(2200Kg小焦炉试验);或测试上述胶质体的某一性质也有的直接观察实验室所得焦块的性质,表征煤的结焦性。本节只阐述与我国煤的现行分类有关的几个测试指标。 (1)煤的胶质层指数 煤的胶质层指数,又称煤的胶质层最大厚度,或Y值。它是原苏联、波兰等国家煤的分类指标之一,也是我国煤的现行分类中区分强粘结性的肥煤、气肥煤的一个分类指标。 煤的胶质层指数,是原苏联列.姆.萨保什尼可夫和列.帕.巴齐列维奇提出的。它的测试要点是根据不同结焦性的煤在干馏过程中胶质层的厚度、收缩情况和膨胀曲线的不同,测试胶质层的最大厚度(Y值)、最终收缩度(X值)和体积曲线,来表征煤的结焦性。其中,Y 值应用的最广。Y值是通过测试胶质层的上部层面高度和下部层面高度得出的(一般出现在520~630C之间),X值是曲线终点与零点线间的距离。Y值、X值和体积曲线都是通过胶质层指数测试仪上的记录转筒和记录笔记记录下来的。胶质层指数测试曲线如图30-11所示。胶质层曲线类型如图30-12所示。 250 280 310 340 370 400 430 460 490 520 550 580 610 640 670 700 730 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 图30-11胶质层指数测试曲线

煤的黏结性指标测定方法知识点解说.

煤的黏结性指标测定方法 黏结指数,是我国煤炭分类新标准中烟煤的主要分类指标之一。定义:以在规定条件下烟煤加热后黏结专用无烟煤的能力表征的烟煤黏结性指标。 烟煤黏结指数的实质是试验烟煤样在受热后,煤颗粒之间或煤粒与惰性组分颗粒间结合牢固程度的一种度量。它是各种物理和化学变化过程的最终结果;是煤在各种热加工工艺过程(焦化、气化、液化与燃烧)中最重要的特性。 随着市场经济的发展,很多供需双方把黏结指数作为煤价结算的一个重要依据,因此,准确测定煤的黏结指数,用来指导炼焦配煤和确定最经济的配煤比,对提高企业经济效益具有重要意义。 一、黏结指数分级 烟煤黏结指数按下表分级: 表烟煤黏结指数分级 二、黏结指数的测定 1.方法提要

将一定质量的试验煤样和专用无烟煤,在规定的条件下混合,快速加热成焦,所得焦块在一定规格的转鼓内进行强度检验,用规定的公式计算黏结指数,以表示试验煤样的黏结能力。 2.试验煤样 试验煤样按煤样制备方法制备成粒度小于0.2mm的空气干燥煤样,其中0.1~0.2mm的煤粒占全部煤样的20%~35%。煤样粉碎后并在实验前应混合均匀,装在密封的容器中。制样后到试验时间不应超过一星期。如超过一星期,应在报告中注明制样和试验时间。 3.专用无烟煤 测定黏结指数专用无烟煤(简称专用无烟煤)必须使用经国家计量部门批准的国家标准煤样。 4.仪器设备 (1)分析天平:感量0.1mg。 (2)马弗炉:具有均匀加热带,其恒温区(850±10)℃,长度不小于120mm,并附有调压器或定温控制器。 (3)转鼓试验装置:包括两个转鼓、一台变速器和一台电动机,转鼓转速必须保证(50±2)r/min。转鼓内径200mm、深70mm,壁上铆有两块相距180°、厚为3mm 的挡板。 (4)压力器:以6kg质量压紧试验煤样与专用无烟煤混合物的仪器

煤炭基础知识

煤炭基础知识 一.煤的组成 煤包含有很多元素,由可燃物和不可燃物组成。 可燃物主要包括有机质和少量的矿物质,不可燃物包括水和大部分矿物质,如碱金属,碱土金属,铁,铝等的盐类。 煤的元素组分,即碳,氢,氧,氮,硫五个元素。 碳是组成煤大分子的骨架,在各元素中最高,一般大于70%。随着煤化程度的不断增高,煤中碳元素的含量也越高,如某些超无烟煤,碳含量可达97%。 氢是煤中第二个重要组成元素,它占煤的质量分数为1-6%,越是年青的煤,其含量也越高。氧元素是组成煤有机质的十分重要的元素,越是年青的煤,氧元素的比例也越大,发热量常随氧元素的增高而降低,其含量从1-30%均有。 氮元素在煤中的比例较少,一般为0.5-3%。 硫元素也是组成煤的有机质的一种常见元素,它在煤中含量的多少,与煤化程度的高低没有明显关系,其含量从最低的0.1到最高的10%均有。 煤的元素组分的不同,不仅能反映出煤化程度,而且也直接表征出煤性质的不同。 如碳含量低氧含量高的煤,多是粘结性很差或是没有粘结性的年轻煤;碳含量高氧含量低的煤则常是一些无粘结性的年老煤;只有碳含量在84-85%,氢含量在5%以上的中等变质程度的煤,才是结焦性较好的炼焦用煤。 二.煤的分类 煤的种类很多,质量也相差悬殊,不同类型的煤有不同的用途。如结焦性好或粘结性好的煤是优质的炼焦用煤;热稳定性好的无烟块煤是合成氨厂的主要原料;挥发分和发热量都高的煤是较好的动力用煤;一些低灰,低硫的年轻煤则是加压气化制造煤气和加氢液化制取人造液体燃料的较好原料。 2-1. 煤的国际分类(简单分类) black coal/hard coal (黑煤或硬煤):包括烟煤(bituminous,主要用于钢铁制造工业)和无烟煤(anthracite). brown coal(褐煤),包括低热值的lignite(褐煤,大部分用于电厂)和peat(泥煤,用于电厂,水泥等工业制造行业)。 2-2. 中国的分类法是以炼焦用煤为主的工业分类法 就煤分类国家标准把我国的煤从褐煤到无烟煤之间共划分为14个大类和17个小类: 常见的三类:无烟煤,褐煤,烟煤。 无烟煤分为三个小类,即年老无烟煤,典型无烟煤和年轻无烟煤,主要按各小类工艺利用特性不同而划分。 褐煤分为两类,即年老褐煤和年轻褐煤,根据其性质和利用特征不同而划分。 烟煤共12个煤类,即贫煤,贫廋煤,廋煤,焦煤,肥煤,气肥煤,气煤,1/3焦煤,1/2中

[可选性,煤质,原煤]矿区原煤煤质可选性分析

矿区原煤煤质可选性分析 摘要:当前,我国煤炭价格居高不下,且仍有上涨的趋势。对于以煤炭作为燃料的生产工业和煤炭贸易而言,相关企业所面临的挑战难度非常大,因此合理选煤,采取有效办法对煤质分析是必不可少的。文章针对矿区原煤煤质的可选性进行了分析,并就如何提高煤质分析的准确性提出了建议。 关键词:矿区原煤;煤质特征;煤质可选性;煤质分析;煤质检测文献标识码:A 矿区原煤煤质的准确分析是煤炭贸易和以煤炭作为主要燃料的生产企业所必须进行的一项工作。当前,我国煤炭的价格居高不下,对煤质的可选性和准确性的分析是很重要的,它关系到生产的节约能源和高效生产。煤质可选性分析常采用煤的工业分析法,主要包括对煤的灰分、水分和挥发分分析,由此计算煤炭的固定碳和发热量指标。 1 煤炭矿区概况及煤质特征 1.1 矿区概况 某煤炭井田位于凹陷带部,井田以西南方向倾伏的宽缓向斜形状分布,东南方向有明显的一级褶曲,其构造形式简单且有10°左右的底层倾角,多以正断层分布,无岩浆活动状况,主要的采煤区有B煤组和C煤组。该井田内可采煤层有B4和C8两层,平均的总厚度为4.31mm,其中B4煤层的地层岩性和厚度较为稳定。井田斜北翼以单斜构造分布为主,南翼为次一级构造分布,相比于北翼情况要复杂一些。尽管北西―南东方向的煤层厚度略有变化,但总体煤质相对较好,多为瘦煤或瘦焦煤。井田内的地倾角较小,褶曲较平缓且断层较少。 2 矿区原煤的可选性分析 矿区原煤的可选性分析值是利用特定溶液清洗原煤和剔除原煤夹矸和其他矿物杂质的难易度。通常,利用筛分试验和沉浮试验即可确定原煤的可选性。 3 控制煤质分析准确性的对策 矿区原煤的煤质分析要严格控制试验检测数据的准确性。相关检测人员对煤质检测主要包含亮相内容,即采集煤岩样品和样品试验。质检人员对不同种类的煤岩进行相应的试验,可为今后的使用提供一定数据基础。这些试验数据可体现煤岩的质量,为了煤岩试验结果的可靠性和真实性,我们应该注意如下三点: 3.1 提高相关试验人员的综合素质和技术水平 人是生产的基础性资源。矿区试验室水平的高低直接由试验人员的综合素质和技术水平来决定。作为试验工作的直接参与者,从事试验工作的技术人员应该加强培训与学习,通过培训考核并取得相应的执业资格证书后方可上岗。同时,试验人员应熟知相关法律法规和掌握知识技能,对试验过程中出现的错误和偏差要具有高度的判别能力。执行标准发生变更,试验人员应适时加强培训。试验人员还应具备岗位责任感和严谨认真的工作态度。

煤炭常识

针对不同的侧重点,煤的分类方法有: 1.煤的成因分类:成煤的原始物料和堆积环境分类,称为煤的成因分类 2.煤的科学分类:煤的元素组成等基本性质分类,称为科学分类。3.煤的实用分类:煤的实用分类又称煤的工业分类。按煤的工艺性质和用途分类,称为实用分类。中国煤分类和各主要工业国的煤炭分类均属于实用分类,以下详细介绍我国煤实用分类的情况。 根据煤的煤化度,将我国所有的煤分为褐煤、烟煤和无烟煤三大煤类。又根据煤化度和工业利用的特点,将褐煤分成2个小类,无烟煤分成3个小类。烟煤比较复杂,按挥发分分为4个档次,即Vdaf >10~20%、>20~28%、>28~37%和>37%,分为低、中、中高和高四种挥发分烟煤。按粘结性可以分为5个或6个档次,即GR.I.为0~5,称不粘结或弱粘结煤;GR.I.>5~20,称弱粘结煤;GR.I.>20~50,称为中等偏弱粘结煤;GR.I.>50~65,称中等偏强粘结煤;GR.I.>65,称强粘结煤。在强粘结煤中,若y>25mm或b>150%(对于Vdaf>28%,的肥煤,b>220%)的煤,则称为特强粘结煤。参见GB5751-1986。各类煤的基本特征如下: (1)无烟煤(WY)。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。01号无烟煤为年老无烟煤;02号无烟煤为典型无烟煤;03号无烟煤为年轻无烟煤。如北京、晋城、阳泉分别为01、02、03号无烟煤。

(2)贫煤(PM)。贫煤是煤化度最高的一种烟煤,不粘结或微具粘结性。在层状炼焦炉中不结焦。燃烧时火焰短,耐烧。 (3)贫瘦煤(PS)。贫瘦煤是高变质、低挥发分、弱粘结性的一种烟煤。结焦较典型瘦煤差,单独炼焦时,生成的焦粉较多。 (4)瘦煤(SM)。瘦煤是低挥发分的中等粘结性的炼焦用煤。在炼焦时能产生一定量的胶质体。单独炼焦时,能得到块度大、裂纹少、抗碎性较好的焦炭,但焦炭的耐磨性较差。 (5)焦煤(JM)。焦煤是中等及低挥发分的中等粘结性及强粘结性的一种烟煤。加热时能产生热稳定性很高的胶质体。单独炼焦时能得到块度大、裂纹少、抗碎强度高的焦炭,其耐磨性也好。但单独炼焦时,产生的膨胀压力大,使推焦困难。 (6)肥煤(FM)。肥煤是低、中、高挥发分的强粘结性烟煤。加热时能产生大量的胶质体。单独炼焦时能生成熔融性好、强度较高的焦炭,其耐磨性有的也较焦煤焦炭为优。缺点是单独炼出的焦炭,横裂纹较多,焦根部分常有蜂焦。 (7)1/3焦煤(1/3JM)。1/3焦煤是新煤种,它是中高挥发分、强粘结性的一种烟煤,又是介于焦煤、肥煤、气煤三者之间的过渡煤。单独炼焦能生成熔融性较好、强度较高的焦炭。 (8)气肥煤(QF)。气肥煤是一种挥发分和胶质层都很高的强粘结性肥煤类,有的称为液肥煤。炼焦性能介于肥煤和气煤之间,单独炼焦时能产生大量的气体和液体化学产品。 (9)气煤(QM)。气煤是一种煤化度较浅的炼焦用煤。加热时能产生较

相关文档
最新文档