【高考数学经典习题】圆锥曲线压轴题(含答案)8

合集下载

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。

(完整版)高考圆锥曲线经典真题

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题知识整合:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= .132 (2008年安徽卷)若过点A(4,0)的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C.33[33-D. 33(,33-3(2008年海南---宁夏卷)设双曲线221916x y -=的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究:考点一:直线与曲线交点问题例1.已知双曲线C :2x2-y2=2与点P(1,2)(1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点.解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=±2时,方程(*)有一个根,l 与C 有一个交点(ⅱ)当2-k2≠0,即k ≠±2时Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即3-2k=0,k=23时,方程(*)有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即k >23时,方程(*)无解,l与C 无交点.综上知:当k=±2,或k=23,或k 不存在时,l 与C 只有一个交点; 当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l与C 没有交点.(2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB=2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.(2)若Q(1,1),试判断以Q 为中点的弦是否存在. 考点二:圆锥曲线中的最值问题对于圆锥曲线问题上一些动点,在变化过程中会引入一些相互联系、相互制约的变量,从而使变量与其中的参变量之间构成函数关系,此时,用函数思想与函数方法处理起来十分方便。

高中数学圆锥曲线压轴题大全

高中数学圆锥曲线压轴题大全

高中数学圆锥曲线压轴题大全(总25页)-本页仅作为预览文档封面,使用时请删除本页-数学压轴题圆锥曲线类一1.如图,已知双曲线C :x a yba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:O M M F→⊥→; (II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P在A 、Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.2.已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,, 数列{}a n 满足a f n nN n=∈()(*) (I )求数列{}a n 的通项公式; (II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为Sa a ()()≥0,求S nS n n N ()()(*)--∈1; (III )在集合M N N kkZ ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n nb b b →∞+++12 存在,并求出这个极限值. 19. 设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程; (II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线; (III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.3. 已知数列{}a n 的前n 项和为S n N n ()*∈,且S m m a n n=+-()1对任意自然数都成立,其中m 为常数,且m <-1. (I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,l i m (l g )l i m (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?4.设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率; (2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.5.(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.6.垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;2202为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 7.已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出过程).数学压轴题圆锥曲线类二1.如图,设抛物线2:xy C=的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 2.设A 、B 是椭圆λ=+223y x上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)3. 已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n>时,对任意b>0,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.5.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(Ⅰ)求函数()g x 的解析式;(Ⅱ)解不等式()()1g x f x x ≥--;(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.数学压轴题圆锥曲线类三1.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.2.函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ;(Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.3.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()nn f x a x a x a x=+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.4.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程; (II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.5.椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.6.数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=….7.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .1.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c a b cF c c a b()()22220,,,, ,∴→=O M a c a b c ()2, M F c a c a b c b c a bc →=--=-()()22,,O M M F a b c a bc O M M F →⋅→=-=∴→⊥→2222220 ……3分(II ) e b a e a b =∴=-=∴=621222222,,||()M F b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分证明:设l 31:y k x =+,点P x y Q x y ()()1122,,, x =由x y y kx 22221-==+⎧⎨⎩得()1244022--+=kx k x l 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k ……11分 A P A Q x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x kk k k k k , -<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分 2.解:(I ) nN ∈* ∴=--+-=+-f n n n n f nn f n ()[()]()()111 ∴--=f n f n n()()1 ……1分 ∴-=-=-=f f f f f f ()()()()()()101212323……fn fn n ()()--=1 将这n 个式子相加,得fnf n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+∴=+∈a n n n N n()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为fn f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N m i n =2010 ……9分(IV )设b a nn=1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ [()()()()]()显然,其极限存在,并且l i m ()l i m []n nn b b b n →∞→∞+++=-+=122112 ……10分 注:b c a n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使l i m ()n n b b b →∞+++12 存在. 19.解:(I ) ec a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l . 14分3.解:(I )由已知S m m a n n ++=+-1111()()S m m a n n=+-()1 (2) 由()()12-得:a m a m a n n n ++=-11,即()m a m a n n+=+11对任意n N ∈*都成立 {} m m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m m a 111=+-() ∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()* ∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-l i m (l g )l i m l g l g l i m ()l i m n b a n n n m m mm n bb bb b b n n n n nn n 121133131414151112112231·……由题意知lg mm +=11,∴+=∴=-m m m 110109, 13分4.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分 而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分圆半径a ca cb r ==+=22222.10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++d n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++.当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为22020201222242y yyx d +=+=+=于是……10分11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分7.解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f fx f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( x f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ 当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分 数学压轴题圆锥曲线类二1.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P=+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB. 方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(0414********=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠ ∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12, ∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )3.本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a nn n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba b n b n b a b a n n +<+=+>∴= 证法2:设n n f 13121)(+++= ,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k+≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bbk k f b b b k f k k b k ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。

2021届高考数学圆锥曲线压轴题专题01 圆锥曲线与重心问题(通用版解析版)

2021届高考数学圆锥曲线压轴题专题01 圆锥曲线与重心问题(通用版解析版)

专题1、圆锥曲线与重心问题从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。

而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。

“四心”问题进入圆锥曲线,让我们更是耳目一新。

因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.三角形的重心:三角形三条中线的交点。

知识储备:(1)G 是ABC ∆的重心0GA GB GC ⇔++=;重心坐标(,)33A B C A B Cx x x y y y G ++++;(2)G 为ABC ∆的重心,P 为平面上任意点,则1(+)3PG PA PB PC =+;(3)重心是中线的三等分点;重心到顶点的距离与重心到对边中点的距离之比是2:1;(4)重心与三角形的3个顶点组成的3个三角形的面积相等,即重心到3条边的距离与3条边的长成反比; 经典例题例1、(2019成都市树德中学高三二诊12题)抛物线2:4C y x =的焦点为F ,点P 、Q 、R 在C 上,且PQR ∆的重心为F ,则PF QF +的取值范围为( ) A .993,,522⎛⎫⎛⎤ ⎪ ⎥⎝⎭⎝⎦ B .994,,522⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦ C .()93,44,2⎛⎫⎪⎝⎭D .[]3,5【答案】A【解析】由题意知,抛物线C 的焦点为()1,0F ,设点(),P P P x y 、(),Q Q Q x y 、(),R R R x y ,由重心的坐标公式得1303P Q RP Q R x x x y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,()3R P Q x x x ∴=-+,()R P Q y y y =-+,设直线PQ 的方程为x ky m =+,由24x ky m y x=+⎧⎨=⎩,消去x 得2440y ky m --=,()221616160k m k m ∆=+=+>,由韦达定理得4P Q y y k +=,4P Q y y m =-,所以,()()()2242P Q P Q P Q x x ky m ky m k y y m k m +=+++=++=+,故()23342R P Q x x x k m =-+=--,()4R P Q y y y k =-+=-,将点R 的坐标代入抛物线C 的方程得()22164342k k m =⨯--,得2238m k =-, 则()()228228360k m k∆=+=->,得2102k≤<, 则(]222422543,5P Q PF QF x x k m k +=++=++=-∈.()1,0F 不在直线PQ 上,则1m ≠,此时,218k ≠,则92PF QF +≠. 因此,PF QF +的取值范围是993,,522⎛⎫⎛⎤⎪ ⎥⎝⎭⎝⎦.故选:A. 【点睛】考查抛物线与直线的综合,求距离的取值范围,重心坐标的计算,属于难题.例2.(2020·浙江高三月考)已知()11,0F -,21,0F ,M 是第一象限内的点,且满足124MF MF +=,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( ) A .12S S > B .12S SC .12S S <D .1S 与2S 大小不确定【答案】B【分析】作出图示,根据,I G 的特点分别表示出1S ,2S ,即可判断出12,S S 的大小关系.【详解】因为121242MF MF F F +=>=,所以M 的轨迹是椭圆22143x y +=在第一象限内的部分,如图所示:因为I 是12MF F △的内心,设内切圆的半径为r ,所以()12121222MMFMF F F rF F y ++⋅⋅=,所以3M y r =,所以12121223I M F F y F F r y S ⋅⋅===, 又因为G 是12MF F △的重心,所以:1:2OG GM =,所以12112221133323M M MOF F OF F F yy S S S ⋅===⋅=,所以12S S ,故选:B . 【点睛】本题考查椭圆的定义,其中涉及到三角形的内心和重心问题,对学生分析图形中关系的能力要求较高,难度一般.例3.(2020·湖南长郡中学高三期中)已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,P 的椭圆上一点(左右顶点除外),G 为12PF F △为重心.若1223F GF π∠≤恒成立,则椭圆的离心率的取值范围是( ) A .10,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .11,32⎡⎤⎢⎥⎣⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】B【分析】根据P 的椭圆上一点,且1223F GF π∠≤恒成立,不妨设点P 为上顶点,再根据G 为12PF F △为重心,由111tan 336GO PO b F O π==≥=求解. 【详解】因为P 的椭圆上一点,且1223F GF π∠≤恒成立,不妨设点P 为上顶点,如图所示:因为G 为12PF F △为重心,所以1133GO PO b ==,而1tan6GO FO π≥,即1GO O ≥,所以13b ≥,所以223b c ≥,所以2223a c c -≥,即214e ≤,解得102e <≤.故选:B 【点睛】本题主要考查椭圆的几何性质以及焦点三角形的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.例4.(2020·全国高二单元测试)已知A 、B 分别是双曲线22:12y C x -=的左、右顶点,P 为C 上一点,且P 在第一象限.记直线PA ,PB 的斜率分别为1k ,2k ,当122k k +取得最小值时,PAB △的重心坐标为( ) A .(1,1) B .41,3⎛⎫⎪⎝⎭C .4,13⎛⎫⎪⎝⎭D .44,33⎛⎫⎪⎝⎭【答案】B【分析】由双曲线的性质可得点()1,0A -,()10B ,,设点()(,),1,0P x y x y >>,则122k k =,再由基本不等式可得1222k k ==,进而可得点(3,4)P ,即可求得重心坐标.【详解】由题意点()1,0A -,()10B ,,设点()(,),1,0P x y x y >>, 则10k >,20k >,2212222(1)21111y y y x k k x x x x -=⋅===+---,所以1224k k +≥=,当且仅当1222k k ==时取等号,所以221112yx y x ⎧=⎪⎪+⎨⎪-=⎪⎩,解得34x y =⎧⎨=⎩,所以点(3,4)P , 则PAB △重心坐标为113004,33-++++⎛⎫⎪⎝⎭即41,3⎛⎫⎪⎝⎭.故选:B. 【点睛】本题考查了直线斜率的求解及双曲线的应用,考查了基本不等式的应用及运算求解能力,属于中档题.例5.已知椭圆22:14x y C m+=的右焦点为()1,0F ,上顶点为B ,则B 的坐标为_____________,直线MN与椭圆C 交于M ,N 两点,且BMN △的重心恰为点F ,则直线MN 斜率为_____________.【答案】【分析】空1:由椭圆的标准方程结合右焦点的坐标,直接求出a , c ,再根据椭圆中a ,b ,c 之间的关系求出m 的值,最后求出上顶点B 的坐标;空2:设出直线MN 的方程,与椭圆联立,消去一个未知数,得到一个一元二次方程,利用一元二次方程根与系数的关系,结合中点坐标公式求出弦MN 的中点的坐标,再利用三角形重心的性质,结合平面向量共线定理进行求解即可.【详解】空1:因为22:14x y C m+=右焦点为()1,0F ,所以有40m >>且2,1a b c ===,而222a b c =+,所以413m m =+⇒=,因此椭圆上顶点的坐标为:; 空2:设直线MN 的方程为:y kx m =+,由(1)可知:椭圆的标准方程为:22143x y+=,直线方程与椭圆方程联立:22143x y y kx m⎧+=⎪⎨⎪=+⎩,化简得: 222(34)84120k x kmx m +++-=,设1122(,),(,)M x y N x y ,线段MN 的中点为D ,于是有:122834km x x k -+=+,121226()234m y y k x x m k +=++=+,所以D 点坐标为:2243()3434km mk k -++, 因为BMN △的重心恰为点F ,所以有2BF FD =,即2243(1,2(1,)3434km mk k -=-++,因此有:22224432(1)1(1)343423623434km km k k m m k k --⎧⎧-==⎪⎪⎪⎪++⇒⎨⎨⎪⎪⋅==⎪⎪++⎩⎩,(1)(2)÷得:k =MN斜率为4.故答案为:;4【点睛】本题考查了求椭圆上顶点的坐标,考查了直线与椭圆的位置关系的应用,考查了三角形重心的性质,考查了数学运算能力.例6.(2020·上海高三专题练习)已知直线L 交椭圆 2212016x y +=于M N 、两点,椭圆与y 轴的正半轴交于点B ,若BMN ∆的重心恰好落在椭圆的右焦点F 上,则直线L 的方程是__________. 【答案】65280x y --=【分析】结合重心坐标公式推导出弦中点坐标,可设()()1122,,,M x y N x y ,采用点差法,求出直线斜率,采用点斜式即可求出直线方程【详解】由题可知,()0,4B ,()2,0F ,设()()1122,,,M x y N x y ,由重心坐标得1212042,033x x y y ++++==, 所以弦MN 的中点坐标为12123,222x x y y ++==-,即()3,2-, 又()()1122,,,M x y N x y 在椭圆上,故221122221201612016x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 作差得()()()()12121212450x x x x y y y y +-++-= 将中点坐标代入得212165y y k x x -==-,所以直线L 的方程为:()6325y x =--,即65280x y --= 故答案为:65280x y --=【点睛】本题考查重心坐标公式,点差法的应用,点斜式的用法,属于中档题例7、(2020年石家庄高三模拟12题)已知抛物线C :28y x =的焦点为F ,()111,P x y ,()222,P x y ,()333,P x y 为抛物线C 上的三个动点,其中123x x x <<且20y <,若F 为123PP P △的重心,记123PP P △三边12P P ,13P P ,23P P 的中点到抛物线C 的准线的距离分别为1d ,2d ,3d ,且满足1322d d d +=,则13P P 所在直线的斜率为( ) A .1 B .32C .2D .3【答案】C【解析】由题意知12313321222;;2222x x x x x x d d d +++=+++=;带入1322d d d +=中,得到:()123132;2x x x x x +++=即2132x x x =+; 又F 为123PP P △的重心,则有1231232;033x x x y y y ++++==,即2226x x =-,得到222,4x y ==-,因此有134y y +=,故13P P 的中点坐标为(2,2). 所以直线的斜率为:13131382y y k x x y y -===-+;故答案为2.例8、(2019年衡水中学高三半期11题)在双曲线C :22221(0,0)x y a b a b-=>>的右支上存在点A ,使得点A与双曲线的左、右焦点1F ,2F 形成的三角形的内切圆P 的半径为a ,若12AF F ∆的重心G 满足12//PG F F ,则双曲线C 的离心率为( ) ABC .2 D【答案】C【解析】如图,由PG 平行于x 轴得G P y y a ==,则33A G y y a ==, 所以12AF F △的面积1232S c a =⋅⋅121(||||2)2AF AF c a =⋅++⋅,又12||||2AF AF a -=, 1||2AF c a =+则,2||2AF c a =-,由焦半径公式1||A AF a ex =+,2A x a =得,因此(23)A a a ,,代入椭圆方程得2222491a a a b-=,b =可得,2c a ==, 2.ce a==即故选C .例9、(2020年绵阳南山中学高三月考16题)已知P 为双曲线C :221412x y -=上一点,1F 、2F 为双曲线C 的左、右焦点,M 、I 分别为12PF F △的重心、内心,若M I x ⊥轴,则12PF F △内切圆的半径为 。

(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C :y 2=2px (p >0)的焦点是椭圆M :+=1(a >b >0)的右焦点,且两曲线有公共点(,).(1)求椭圆M 的方程;(2)O 为坐标原点,A ,B ,C 是椭圆M 上不同的三点,并且O 为△ABC 的重心,试探究△ABC 的面积是否为定值.若是,求出这个定值;若不是,请说明理由. 2.已知直线11:ax ﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l 2的交点为M,当a 变化时,求点M 的轨迹C 的方程:(2)已知点D (2,0),过点E (﹣2,0)的直线1与C 交于A ,B 两点,求△ABD 面积的最大值. 3.已知椭圆C:+=1(a >b >0)的四个顶点围成的菱形的面积为4,点M 与点F 分别为椭圆C 的上顶点与左焦点,且△MOF 的面积为(点O 为坐标原点).(1)求C 的方程;(2)直线l 过F 且与椭圆C 交于P ,Q 两点,点P 关于O 的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C 1:+y 2=1,抛物线C 2:y=x 2﹣1,其中C 2与y 轴的交点为M,过坐标原点O的直线l 与C 2相交于点A ,B,直线MA ,MB 分别与C 1相交于点D ,E . (Ⅰ)证明:MA ⊥MB;(Ⅱ)记△MAB ,△MDE 的面积分别是S 1,S 2.问:是否存在直线l ,使得=.若存在,求出直线l 的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B 两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围. 12.已知椭圆经过点,离心率为,过右焦点F 且与x 轴不垂直的直线l 交椭圆于P ,Q 两点. ( I )求椭圆C 的方程; ( II )当直线l 的斜率为时,求△POQ 的面积;( III )在椭圆C 上是否存在点M ,使得四边形OPMQ 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由. 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD|=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由. 14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E(,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使=2,求以F 1P 为直径的圆面积取值范围. 15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A ,B 两点,且.(I )求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 16.已知椭圆C :(a >b >0)的离心率,抛物线E :的焦点恰好是椭圆C的一个顶点.(1)求椭圆C 的标准方程;(2)过点P (0,1)的动直线与椭圆C 交于A,B 两点,设O 为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G ,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN |的最大值,并判断此时△OMN 的形状. 18.已知抛物线C :y 2=2px (p >0),其内接△ABC 中∠A=90°. (I)当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II )当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 19.如图,已知F 1,F 2分别是椭圆的左、右焦点,点P (﹣2,3)是椭圆C上一点,且PF 1⊥x 轴. (1)求椭圆C 的方程;(2)设圆M :(x ﹣m )2+y 2=r 2(r >0).①设圆M 与线段PF 2交于两点A,B ,若,且AB=2,求r 的值;②设m=﹣2,过点P 作圆M 的两条切线分别交椭圆C 于G ,H 两点(异于点P ).试问:是否存在这样的正数r,使得G,H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C 的焦点且与长轴垂直的弦的长度为.(1)求椭圆C 的标准方程;.(2)过点A (﹣2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为,,求直线l 2的斜率.21.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0),直线y=x 与C 交于O ,T 两点,|OT |=4.(Ⅰ)求C 的方程; (Ⅱ)斜率为k (0)的直线l 过线段OT 的中点,与C 交于A,B 两点,直线OA,OB 分别交直线y=x ﹣2于M ,N 两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S△ABC=|AB|•d=.综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1.(2)由题意可知,点O为PP′的中点,则=2S△POQ.设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S△POQ =|OF|•|y1﹣y2|=.设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l 的斜率存在,设为k,则直线l 的方程为:y=kx, 由y=kx 和y=x 2﹣1,得x 2﹣kx ﹣1=0.设A(x 1,y 1),B(x 2,y 2), 于是x 1+x 2=k ,x 1•x 2=﹣1,又点M 的坐标为(0,﹣1). 所以k MA •k MB =•====﹣1.故MA ⊥MB ,即MD ⊥ME;(Ⅱ)设直线MA 的斜率为k 1,则直线MA 的方程为y=k 1x ﹣1. 联立y=x 2﹣1可得或则点A 的坐标为(k 1,k 12﹣1). 又直线MB 的斜率为﹣,同理可得点B 的坐标为(﹣,﹣1).于是S 1=|MA |•|MB |=|k 1|•••|﹣|•=.由椭圆方程x 2+4y 2=4和y=k 1x ﹣1, 得(1+4k 12)x 2﹣8k 1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y 轴上是否存在异于点P 的定点Q,使得直线l 变化时,总有∠PQA=∠PQB?若存在,求出点Q 的坐标;若不存在,请说明理由. 【解答】解:(1)∵,∴a 2=2c 2=b 2+c 2,b=c,a 2=2b 2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b 2=4,a 2=8,所以椭圆C 的方程为:;(2)当直线l 斜率存在时,设直线l 方程:y=kx+1, 由得(2k 2+1)x 2+4kx ﹣6=0,△=16k 2+24(2k 2+1)>0,设,假设存在定点Q (0,t)符合题意,∵∠PQA=∠PQB ,∴k QA =﹣k QB , ∴=,∵上式对任意实数k 恒等于零,∴4﹣t=0,即t=4,∴Q (0,4),当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点(0,﹣2),(0,2), 显然此时∠PQA=∠PQB ,综上,存在定点Q (0,4)满足题意. 7.已知椭圆,点在椭圆C 上,椭圆C 的四个顶点的连线构成的四边形的面积为.(1)求椭圆C 的方程;(2)设点A 为椭圆长轴的左端点,P 、Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP 、AQ 斜率分别为k 1、k 2,若k 1k 2=2,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由. 【解答】解:(1)由点在椭圆C 上可得:,整理为:9a 2+4b 2=4a 2b 2, 由椭圆C 的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a >b >0可解得:,故椭圆C 的方程为:.(2)设点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),点A 的坐标为(﹣2,0), 故,可得y 1y 2=2(x 1+2)(x 2+2),设直线PQ 的方程为y=kx+m (直线PQ 的斜率存在), 可得(kx 1+m)(kx 2+m )=2(x 1+2)(x 2+2), 整理为:,联立,消去y 得:(4k 2+3)x 2+8kmx+(4m 2﹣12)=0,由△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=48(4k 2﹣m 2+3)>0,有4k 2+3>m 2, 有,,故有:,整理得:44k 2﹣32km+5m 2=0,解得:m=2k 或,当m=2k 时直线PQ 的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意, 当时直线PQ 的方程为,即,过定点.8.已知椭圆Γ:=1(0<b <2)的左右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q (1,0),点P 是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B 的直线l 与椭圆Γ相交于M 、N 两点,且直线BM 、BN 的斜率之和为1,证明:直线l 过定点. 【解答】解:(1)椭圆Γ:=1(0<b <2)的a=2,向量与的夹角为,可得|BF 1|=|BF 2|=a==2b=2,即b=1,则椭圆方程为+y 2=1;(2)设P (m ,n ),可得+n 2=1,即n 2=1﹣,•=(1﹣m ,﹣n )•(﹣m ,﹣n )=m 2﹣m+n 2=m 2﹣m+1=(m ﹣)2+,由﹣2≤m ≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6, 则•的范围是[,6];(3)证明:当直线l 的斜率不存在时,设M (x 1,y 1),N(x 2,y 2), 由k BM +k BN =+==1,x 1=x 2,y 1=﹣y 2,得x 1=﹣2,此时M ,N 重合,不符合题意;设不经过点P 的直线l 方程为:y=kx+m ,M (x 1,y 1),N (x 2,y 2), 由得(1+4k 2)x 2+8ktx+4t 2﹣4=0,x 1+x 2=﹣,x 1x 2=,k BM +k BN =+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.( I)求椭圆C的方程;( II)当直线l的斜率为时,求△POQ的面积;( III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I) 根据题意,解得,故椭圆C的方程为.…(5分)( II) 根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)( III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ 的中点.要使四边形OPMQ 为平行四边形,则N 为OM 的中点,所以.要使点M 在椭圆C 上,则,即12k 2+9=0,此方程无解.所以在椭圆C 上不存在点M ,使得四边形OPMQ 为平行四边形.….(14分) 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B 两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD |=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT |是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF 2⊥x 轴,|OD|=1, ∴AB ∥OD,∵O 为F 1F 2为的中点, ∴D 为BF 1的中点, ∵AD ⊥F 1B ,∴|AF 1|=|AB |=2|AF 2|=4|OD |=4, ∴2a=|AF 1|+|AF 2|=4+2=6, ∴a=3, ∴|F 1F 2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y),直线PA1:y﹣=x,令y=0,得xM=;直线PA2:y+=x,令y=0,得xN=;|OM|•|ON|=,∵+=1,∴6﹣y02=x2,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E (,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M,N 使=2,求以F 1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=, ∴2a=|EF 1|+|EF 2|=+=4,∴a=2,∴b 2=a 2﹣c 2=8﹣2=6, ∴椭圆方程为+=1,(Ⅱ)设点P 的坐标为(0,t),当直线MN 的斜率不存在时,可得M,N 分别是椭圆的两端点,可得t=±,当直线MN 的斜率存在时,设直线MN 的方程为y=kx+t ,M(x 1,y 1),N (x 2,y 2), 则由=2可得x 1=﹣2x 2,①,由,消y 可得(3+4k 2)x 2+8ktx+4t 2﹣24=0,由△>0,可得64k 2t 2﹣4(3+4k 2)(4t 2﹣24)>0,整理可得t 2<8k 2+6,由韦达定理可得x 1+x 2=﹣,x 1x 2=,②,由①②,消去x 1,x 2可得k 2=,由,解得<t 2<6, 综上得≤t 2<6,又以F 1P 为直径的圆面积S=π•,∴S 的范围为[,2π).15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A,B 两点,且.(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 【解答】解:(Ⅰ)由题意可得:,∵平行于x 轴的直线交椭圆于A ,B 两点,且.∴,a=,∴c=2,b 2=a 2=﹣c 2=2. ∴椭圆C 的方程为(Ⅱ)设直线l 的方程为y=k (x ﹣2), 代入椭圆C 的方程,得(3k 2+1)x 2﹣12k 2x+12k 2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C 的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k 2+3)x 2+8kx ﹣8=0.其判别式△>0,x 1+x 2=﹣,x 1x 2=﹣.∴•+λ•=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)],=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN|的最大值,并判断此时△OMN 的形状. 【解答】解:(1)设F 1,F 2分别为(﹣c ,0),(c ,0) 可得,b 2=c 2﹣a 2=3a 2,又点(1,)在双曲线C 上,∴,解得,c=1.连接PQ ,∵OF 1=OF 2,OP=OQ ,∴四边形PF 1QF 2的周长为平行四边形. ∴四边形PF 1+PF 2=2>2,∴动点P 的轨迹是以点F 1、F 2分别为左右焦点的椭圆(除左右顶点),∴动点P 的轨迹方程(y ≠0);(2)∵x 12+x 22=2,,∴y 12+y 22=1.∴|OG |•|MN|=•=•=.∴当3﹣2x 1x 2﹣2y 1y 2=3+2x 1x 2+2y 1y 2⇒x 1x 2+y 1y 2=0时取最值, 此时OM ⊥ON ,△OMN 为直角三角形.18.已知抛物线C:y 2=2px (p >0),其内接△ABC 中∠A=90°. (I )当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II)当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 【解答】解:(I )设B (,y 1),C (,y 2),∵AB ⊥AC ,∴+y 1y 2=0,∴y 1y 2=﹣4p 2.∴设BC 的中点M (x ,y ),则=x ,y 1+y 2=2y ,∵y 12+y 22=(y 1+y 2)2﹣2y 1y 2, ∴px=4y 2+8p 2,∴M 的轨迹方程为:y 2=(x ﹣8p ). (II )A (,t 0),设直线BC 的方程为y=kx+b,B (,y 1),C (,y 2),∴k AB ==,k AC ==,∵AB⊥AC,∴•=﹣1.即y1y2+t(y1+y2)+t2+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t2+4p2=0.解得b=﹣t﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t,∴直线BC过定点(2p+,﹣t).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y),则H(﹣x,﹣y),不妨设x<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即kGP =﹣kHP,所以,化简得x0y=﹣6,即,代入,化简得,解得x=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。

2025届高考数学复习:压轴好题专项(圆锥曲线中的定点问题)练习(附答案)

2025届高考数学复习:压轴好题专项(圆锥曲线中的定点问题)练习(附答案)

2025届高考数学复习:压轴好题专项(圆锥曲线中的定点问题)练习1.(2023届江苏省金陵中学、海安中学高三上学期10月联考)在一张纸上有一个圆C :(224x y ++=,定点)M,折叠纸片使圆C 上某一点1M 好与点M 重合,这样每次折叠都会留下一条直线折痕PQ ,设折痕PQ 与直线1M C 的交点为T .(1)求证:TC TM -为定值,并求出点T 的轨迹C '方程;(2)设()1,0A -,M 为曲线C '上一点,N 为圆221x y +=上一点(M ,N 均不在x 轴上).直线AM ,AN 的斜率分别记为1k ,2k ,且2114k k =-,求证:直线MN 过定点,并求出此定点的坐标.2.(2023届广东省广东广雅中学高三上学期9月测试)已知椭圆C :22221x y a b+=(0a b >>)的离心率为2.圆O (O 为坐标原点)在椭圆C 的内部,.P ,Q 分别为椭圆C和圆O 上的动点,且P ,Q 两点的最小距离为1. (1)求椭圆C 的方程;(2)A ,B 是椭圆C 上不同的两点,且直线AB 与以OA 为直径的圆的一个交点在圆O 上.求证:以AB 为直径的圆过定点.3(2023届湖南省永州市高三上学期第一次考试)点(4,3)P 在双曲线2222:1(0,0)x y C a b a b-=>>上,离心率e =(1)求双曲线C 的方程;(2),A B 是双曲线C 上的两个动点(异于点P ),12,k k 分别表示直线,PA PB 的斜率,满足1232k k =,求证:直线AB 恒过一个定点,并求出该定点的坐标. 4.(2023届陕西师范大学附属中学、渭北中学等高三上学期联考)已知抛物线2:2(0)C y px p =>,O 是坐标原点,F 是C 的焦点,M 是C 上一点,||4FM =,120OFM ∠=︒.(1)求抛物线C 的标准方程;(2)设点()0,2Q x 在C 上,过Q 作两条互相垂直的直线,QA QB ,分别交C 于A ,B 两点(异于Q 点).证明:直线AB 恒过定点.5.(2023届四川省部分重点中学高三上学期9月联考)已知椭圆C :()222210x y a b a b+=>>的右顶点是M (2,0),离心率为12. (1)求椭圆C 的标准方程.(2)过点T (4,0)作直线l 与椭圆C 交于不同的两点A ,B ,点B 关于x 轴的对称点为D ,问直线AD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由. 6.(2023届安徽省滁州市定远县高三上学期9月月考)设直线x m =与双曲线22:(0)3-=>y C x m m 的两条渐近线分别交于A ,B 两点,且三角形OAB(1)求m 的值;(2)已知直线l 与x 轴不垂直且斜率不为0,l 与C 交于两个不同的点M ,N ,M 关于x 轴的对称点为M ',F 为C 的右焦点,若M ',F ,N 三点共线,证明:直线l 经过x 轴上的一个定点.7.(2023届江西省智慧上进高三上学期考试)已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2. (1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PBPF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由.8.(2023届山西省高三上学期第一次摸底)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2. (1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅=,证明:直线PQ 过定点.9.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线221123y x -=有相同的渐近线,且过点1)A -. (1)求双曲线C 的标准方程;(2)已知(2,0),,D E F 是双曲线C 上不同于D 的两点,且0,DE DF DG EF ⋅=⊥于G ,证明:存在定点H ,使||GH 为定值.10.(2023届江苏省南京市高三上学期9月学情调研)已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数;若不存在,说明理由.11.(2023届江苏省百校联考高三上学期第一次考试)设F 为椭圆C :2212x y +=的右焦点,过点F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点.(1)当2BF FA =时,求FA ;(2)在x 轴上是否存在异于F 的定点Q ,使QA QBk k 为定值(其中QA k ,QB k 分别为直线QA ,QB 的斜率)?若存在,求出Q 的坐标;若不存在,请说明理由.【例12】(2022届辽宁省名校联盟高三上学期12月联考)已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52pMF =. (1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.13.(2022届广东省茂名市五校联盟高三上学期联考)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F .离心率等于3,点P 在y 轴正半轴上,12PF F △为直角三角形且面积等于2.(1)求椭圆C 的标准方程;(2)已知斜率存在且不为0的直线l 与椭圆C 交于A ,B 两点,当点A 关于y 轴的对称点在直线PB 上时,直线l 是否过定点?若过定点,求出此定点;若不过,请说明理由. 14.(2022届江苏省南通市高三上学期期末)在平面直角坐标系xOy 中,已知双曲线C :22x a -22y b=1(a 、b 为正常数..)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1ꞏk 2的值;(2)若AMPQ =12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.15.已知抛物线()2:20C y px p =>的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,当l x ⊥轴时,2AB =. (1)求抛物线C 的方程;(2)若直线l 交y 轴于点D ,过点D 且垂直于y 轴的直线交抛物线C 于点P ,直线PF 交抛物线C 于另一点Q .①是否存在定点M ,使得四边形AQBM 为平行四边形?若存在,求出定点M 的坐标;若不存在,请说明理由.②求证:QAF QBFS S ⋅△△为定值.参考答案1.(2023届江苏省金陵中学、海安中学高三上学期10月联考)在一张纸上有一个圆C:(224x y ++=,定点)M,折叠纸片使圆C 上某一点1M 好与点M 重合,这样每次折叠都会留下一条直线折痕PQ ,设折痕PQ 与直线1M C 的交点为T .(1)求证:TC TM -为定值,并求出点T 的轨迹C '方程;(2)设()1,0A -,M 为曲线C '上一点,N 为圆221x y +=上一点(M ,N 均不在x 轴上).直线AM ,AN 的斜率分别记为1k ,2k ,且2114k k =-,求证:直线MN 过定点,并求出此定点的坐标.【过程详解】(1)由题意得1TM TM =,所以12TC TM TC TM CM -=-=<=,即T 的轨迹是以C ,M 为焦点,实轴长为2的双曲线,即C ':2214y x -=;(2)由已知得AM l :()11y k x =+,AN l :()21y k x =+,联立直线方程与双曲线方程()()12222211121424014y k x k x k x k y x ⎧=+⎪⇒----=⎨-=⎪⎩, 由韦达定理得212144A M k x x k --=-,所以212144M k x k +=-,即()1121814M Mk y k x k =+=-, 所以211221148,44k k M k k ⎛⎫+ ⎪--⎝⎭, 联立直线方程与圆方程()()2222222222112101y k x k x k x k x y ⎧=+⇒+++-=⎨+=⎩, 由韦达定理得222211A N k x x k -=+,所以222211Nk x k -+=+,即()2222211N N k y k x k =+=+, 因为14ANAM k k =-,即2114k k =-,所以2112211168,1616k k N k k ⎛⎫-+- ⎪++⎝⎭, 若直线MN 所过定点,则由对称性得定点在x 轴上,设定点(),0T t ,由三点共线得MT NT k k =,即()()1122222211111122112211884164416161416416k k k k k k t k k t t k k t t k k --+=⇒++-=-++⇒=+-+---+, 所以直线MN 过定点()1,0T .2.(2023届广东省广东广雅中学高三上学期9月测试)已知椭圆C :22221x y a b+=(0a b >>)的离心率为2.圆O (O 为坐标原点)在椭圆C 的内部,半径为3.P ,Q 分别为椭圆C和圆O 上的动点,且P ,Q两点的最小距离为1. (1)求椭圆C 的方程;(2)A ,B 是椭圆C 上不同的两点,且直线AB 与以OA 为直径的圆的一个交点在圆O 上.求证:以AB 为直径的圆过定点.【过程详解】(1)设椭圆的长半轴为a ,短半轴为b ,半焦距为c ,由圆的性质,||||PQ PO ≥当点P 在椭圆上运动时,当P 处于上下顶点时||PO最小,故||||33PQ PO b ≥-≥-,即133-=-b依题意得2221c a b a b c ⎧=⎪⎪⎪⎪=⎨⎪=+⎪⎪⎪⎩11a b c ⎧⎪=⎨⎪=⎩, 所以C 的方程为2212x y +=.(2)因为直线AB 与以OA 为直径的圆的一个交点在圆O 上, 所以直线AB 与圆O 相切.(i )当直线AB 垂直于x轴时,不妨设33A ⎛⎫ ⎪ ⎪⎝⎭,,33B -⎝⎭, 此时0OA OB ⋅=,所以OA OB ⊥,故以AB 为直径的圆过点O .(ii )当直线AB 不垂直于x 轴时,设直线AB 的方程为y kx m =+,()11,A x y ,()22,B x y .因为AB 与圆O 相切,所以O 到直线AB3=, 即223220m k --=.由22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩得()222214220k x kmx m +++-=, 所以2121222422,2121km m x x x x k k --+==++, ()()()()221212*********OA OB x x y y x x kx m kx m k x x km x x m ⋅=+=+++=++++()2222222412121m km k km m k k ⎛⎫--⎛⎫=+++ ⎪ ⎪++⎝⎭⎝⎭()()()22222122(4)2121k mkm km m k k +-+-++=+222322021mk k --==+,所以OA OB ⊥,故以AB 为直径的圆过点O . 综上,以AB 为直径的圆过点O .3(2023届湖南省永州市高三上学期第一次考试)点(4,3)P 在双曲线2222:1(0,0)x y C a b a b -=>>上,离心率2e =. (1)求双曲线C 的方程;(2),A B 是双曲线C 上的两个动点(异于点P ),12,k k 分别表示直线,PA PB 的斜率,满足1232k k =,求证:直线AB 恒过一个定点,并求出该定点的坐标. 【过程详解】(1)由题意点(4,3)P 在双曲线2222:1(0,0)x y C a b a b -=>>上,离心率e =可得;221691a b⎧-=⎪=,解出,2,a b == 所以,双曲线C 的方程是22143x y -=(2)①当直线AB 的斜率不存在时,则可设()()00,,,A n y B n y -,代入22143x y -=,得220334y n =-,则221222003123393444(4)(4)2n y y k k n n y n n -----=⋅===----,即2948480n n -+=,解得43n =或4n =, 当4n =时,03y =±,,A B 其中一个与点()4,3P 重合,不合题意; 当43n =时,直线AB 的方程为43x =,它与双曲线C 不相交,故直线AB 的斜率存在;②当直线AB 的斜率存在时,设直线AB 的方程y kx m =+代入22143x y -=, 整理得,()2223484120k x kmx m ----=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k ++==---, 由()()22222Δ(8)4344120,34km kmm k =----->∴+>,所以()()()221212121212121212123(3)33334444416k x x k m x x m y y kx m kx m k k x x x x x x x x +-++---+-+-=⋅=⋅=-----++ 32=所以,()()()221212232612212300k x x km k x x m m -+-+++--=,即()()2222241282326122123003434m km k km k m m k k ---⋅+-+⋅+--=--, 整理得()2231661690m k m k +-+-=,即()()343430m k m k +++-=, 所以3430m k ++=或430m k +-=, 若3430m k ++=,则433k m +=-,直线AB 化为413y k x ⎛⎫=-- ⎪⎝⎭,过定点4,13⎛⎫- ⎪⎝⎭;若430m k +-=,则43m k =-+,直线AB 化为()43y k x =-+,它过点()4,3P ,舍去综上,直线AB 恒过定点4,13⎛⎫- ⎪⎝⎭4.(2023届陕西师范大学附属中学、渭北中学等高三上学期联考)已知抛物线2:2(0)C y px p =>,O 是坐标原点,F 是C 的焦点,M 是C 上一点,||4FM =,120OFM ∠=︒.(1)求抛物线C 的标准方程;(2)设点()0,2Q x 在C 上,过Q 作两条互相垂直的直线,QA QB ,分别交C 于A ,B 两点(异于Q 点).证明:直线AB 恒过定点. 【过程详解】(1)由||4,120FM OFM =∠=︒,可得2,2p M ⎛+± ⎝,代入2:122242p C p p p ⎛⎫=+=+ ⎪⎝⎭.解得2p =或6p =-(舍), 所以抛物线的方程为:24y x =.(2)由题意可得(1,2)Q ,直线AB 的斜率不为0, 设直线AB 的方程为x my n =+,设()()1122,,,A x y B x y ,由24y x x my n ⎧=⎨=+⎩,得2440y my n --=,从而216160m n ∆=+>, 则121244y y m y y n+=⎧⎨=-⎩. 所以()21212242x x m y y n m n +=++=+,()()()22212121212x x my n my n m y y mn y y n n =++=+++=, ∵QA QB ⊥ , ∴()()()()121211220QA QB x x y y ⋅=--+--=uu r uur,故()()121212121240x x x x y y y y -+++-++=, 整理得2246850n m n m ---+=.即22(3)4(1)n m -=+, 从而32(1)n m -=+或32(1)n m -=-+, 即25n m =+或21n m =-+.若21n m =-+,则21(2)1x my n my m m y =+=-+=-+,过定点(1,2),与Q 点重合,不符合; 若25n m =+,则25(2)5x my n my m m y =+=++=++,过定点(5,2)-. 综上,直线AB 过异于Q 点的定点(5,2)-.5.(2023届四川省部分重点中学高三上学期9月联考)已知椭圆C :()222210x y a b a b+=>>的右顶点是M (2,0),离心率为12.(1)求椭圆C 的标准方程.(2)过点T (4,0)作直线l 与椭圆C 交于不同的两点A ,B ,点B 关于x 轴的对称点为D ,问直线AD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由. 【过程详解】(1)由右顶点是M (2,0),得a =2,又离心率12ce a==,所以1c =, 所以2223b a c =-=,所以椭圆C 的标准方程为22143x y +=.(2)设()11,A x y ,()22,B x y ,显然直线l 的斜率存在.直线l 的方程为()4y k x =-,联立方程组()224,3412y k x x y ⎧=-⎨+=⎩消去y 得()2222433264120k x k x k +-+-=,由0∆>,得1122k -<<, 所以21223243k x x k +=+,2122641243k x x k -=+.因为点()22,D x y -,所以直线AD 的方程为()()1211124y y y x x k x x x +=-+--. 又()12128y y k x x +=+-, 所以直线AD 的方程可化为()()()()()1121212212121842443kx x x k x x x ky x x x x x x x k +---=++---+, 即()()()()()()()2222121212424241434343k k ky x x x x k x x k x x k =-=--+-+-+, 所以直线AD 恒过点(1,0).(方法二)设()11,A x y ,()22,B x y ,直线l 的方程为4x my =+, 联立方程组224,3412x my x y =+⎧⎨+=⎩消去x 得()223424360m y my +++=, 由0∆>,得2m >或2m <-,所以1222434m y y m +=-+,1223634y y m =+. 因为点()22,D x y -,则直线AD 的方程为()121112y y y x x y x x +=-+-. 又()12121244x x my my m y y -=+--=-, 所以直线AD 的方程可化为()()()()()()()()12121121121121212144y y y y my y m y y y y y x my y x m y y m y y m y y -++++-+=--+=-+---()()()()()()12121222121212424134my y y y y y x x m y y m y y m y y +++=-+=---+-, 此时直线AD 恒过点(1,0),当直线l 的斜率为0时,直线l 的方程为y =0,也过点(1,0). 综上,直线AD 恒过点(1,0).6.(2023届安徽省滁州市定远县高三上学期9月月考)设直线x m =与双曲线22:(0)3-=>y C x m m 的两条渐近线分别交于A ,B 两点,且三角形OAB(1)求m 的值;(2)已知直线l 与x 轴不垂直且斜率不为0,l 与C 交于两个不同的点M ,N ,M 关于x 轴的对称点为M ',F 为C 的右焦点,若M ',F ,N 三点共线,证明:直线l 经过x 轴上的一个定点.【过程详解】(1)双曲线22:(0)3-=>y C x m m的渐近线方程为y =,则不妨令点(),(,)A m B m ,||AB =,而点O 到直线AB 的距离为m ,因此212OAB S m =⋅⋅== ,解得1m =, 所以1m =.(2)由(1)知,双曲线C 的方程为22:13y C x -=,右焦点(2,0)F ,因直线l 与x 轴不垂直且斜率不为0,设直线l 与x 轴交于点(,0)t ,直线l 的方程为()(0)y k x t k =-≠,设()()1122,,,M x y N x y ,则()11,M x y '-,由22()13y k x t y x =-⎧⎪⎨-=⎪⎩消去y 并整理得()()222223230k xtk x k t -+-+=,显然有230k -≠且()()()22222Δ24330tk k k t =+-+>,化简得23k ≠且()22130t k -+>,则22212122223,33tk k t x x x x k k ++=-=---,1122(2,),(2,)FM x y FN x y '=--=-, 而M ',F ,N 三点共线,即//FM FN ',则()()122122y x y x --=-,因此()()()()122122k x t x k x t x ---=--,又0k ≠,有()()()()1221220x t x x t x --+--=, 整理得()12122(2)40x x t x x t -+++=,于是得22222322((2)()4033k t tk t t k k +⋅--+-+=--,化简得12t =, 即直线l :1()2y k x =-,0k ≠过定点1(,0)2,所以直线l 经过x 轴上的一个定点1(,0)2.7.(2023届江西省智慧上进高三上学期考试)已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2. (1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫⎪=+ ⎪⎝⎭,问:l 是否过一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由.【过程详解】(1)由线段RS22b a=又2c a =,所以22212a b a -=,解得222,1,a b ⎧=⎨=⎩ 所以C 的标准方程为2212x y +=.(2)由PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭, 可知PF 平分APB ∠,∴0PA PB k k +=.设直线AB 的方程为x my t =+,()11,A my t y +,()22,B my t y +, 由2222x my t x y =+⎧⎨+=⎩得()2222220m y mty t +++-=, ()22820m t ∆=-+>,即222m t >-,∴12222mt y y m -+=+,212222t y y m -=+,∴1212022PA PB y y k k my t my t +=+=+-+-,∴()()1212220my y t y y +-+=,∴()()222220m t t mt ---⋅=,整理得()410m t -=,∴当1t =时,上式恒为0, 即直线l 恒过定点()1,0Q .8.(2023届山西省高三上学期第一次摸底)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2. (1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅=,证明:直线PQ 过定点.【过程详解】(1)由题设1c =,又12||2F F c =,112||||AF A F a ==, 若内切圆半径为r ,则外接圆半径为2r ,所以112()222r a c c b ⨯+=⨯⨯,即()r a c bc +=,222(2)4c r b r +-=,而222a b c =+,即24a rb =,综上,22()4a a c b c +=,即222(1)444a a b a +==-,可得2a =,所以24a =,23b =,则22:143x y C +=.(2)当直线斜率都存在时,令DE 为1x ky =-,联立22:143x y C +=,整理得:22(34)690k y ky +--=,且2144(1)0k ∆=+>, 所以2634D E k y y k +=+,则28()234D E D E x x k y y k +=+-=-+,故2243,33)44(kk k P -++, 由0DE MN ⋅= ,即DE MN ⊥,故MN 为1y x k =--,联立22:143x y C +=,所以2236(4)90y y k k ++-=,有2634M N k y y k +=-+,则228234M N M N y y k x x kk ++=--=-+,故22243,(3434k kQ k k +--+, 所以274(1)PQ k k k =-,则PQ 为222374()344(1)34k k y x k k k -=++-+,整理得2(74)4(1)k x k y +=-, 所以PQ 过定点4(,0)7-;当一条直线斜率不存在时,P Q 对应1,O F ,故PQ 即为x 轴,也过定点4(,0)7-;综上,直线PQ 过定点.9.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线221123y x -=有相同的渐近线,且过点1)A -.(1)求双曲线C 的标准方程;(2)已知(2,0),,D E F 是双曲线C 上不同于D 的两点,且0,DE DF DG EF ⋅=⊥于G ,证明:存在定点H ,使||GH 为定值.【过程详解】(1)因为双曲线C 与已知双曲线有相同的渐近线, 设双曲线C 的标准方程为224x y λ-= 代入点A 坐标,解得4λ=所以双曲线C 的标准方程为2214x y -=(2)(i )当直线EF 斜率存在时,设:EF y kx m =+,设()()1122,,E x y F x y ,联立y kx m =+与双曲线2214xy -=,化简得()()222418410k x kmx m -+++=,()()222Δ(8)444410km m k =-+->,即22410k m --<, 则有12221228414441km x x k m x x k ⎧+=-⎪⎪-⎨+⎪=⎪-⎩, 又()()()2212121212y y kx m kx m k x x km x x m =++=+++,因为()()1212220DE DF x x y y ⋅=--+=,所以()()()2212121240k x x km x x m +⋅+-⋅+++=,所以()()2222244812404141m kmk km m k k +-+⋅+-⋅++=--,化简,得22316200m km k ++=,即()()31020m k m k ++=, 所以12102,3m k m k =-=-, 且均满足22410k m --<,当12m k =-时,直线l 的方程为()2y k x =-,直线过定点()2,0,与已知矛盾, 当2103m k =-时,直线l 的方程为103y k x ⎛⎫=- ⎪⎝⎭,过定点10,03⎛⎫⎪⎝⎭(ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :2y x =-, 与双曲线C 方程联立解得103E F x x ==,此时EF 也过点10,03M ⎛⎫ ⎪⎝⎭, 综上,直线EF 过定点10,03M ⎛⎫⎪⎝⎭.由于DG EF ⊥,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点8,03H ⎛⎫ ⎪⎝⎭,使GH 为定值23.10.(2023届江苏省南京市高三上学期9月学情调研)已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点.(1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数;若不存在,说明理由.【过程详解】(1)因为(),0,0,22p F P ⎛⎫ ⎪⎝⎭,且点A 恰好为线段PF 中点,所以,14p A ⎛⎫⎪⎝⎭,又因为A 在抛物线上,所以2124pp =⋅,即22p =,解得P = (2)设(),T m n ,可知直线l 斜率存在;设l :2y kx =+,()()1122,,,A x y B x y联立方程得:22y y kx ⎧=⎪⎨=+⎪⎩,所以220y k -+=,所以1212y y y y +==又:()()()1212)(TA TB x m x m y n y n ⋅=--+--()()22121244y m y m y n y n ⎛⎫⎛⎫--+-- ⎪⎪ ⎪⎪⎭⎝⎭= ⎝()()222222*********y y m y y m n y y n -++-++=2222484m m n k k k k k ⎛⎫=--++-+ ⎪ ⎪⎝⎭22244m m n k k++++=-,令4040m ⎧+=⎪⎨-=⎪⎩,解之得:4m n ⎧=⎪⎨=⎪⎩)4T,此时2218TA TB m n ⋅=+=11.(2023届江苏省百校联考高三上学期第一次考试)设F 为椭圆C :2212x y +=的右焦点,过点F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点.(1)当2BF FA =时,求FA ;(2)在x 轴上是否存在异于F 的定点Q ,使QA QBk k 为定值(其中QA k ,QB k 分别为直线QA ,QB 的斜率)?若存在,求出Q 的坐标;若不存在,请说明理由.【过程详解】(1)设直线l 的方程为1x my =+,()11,A x y ,()22,B x y , 联立22122x my x y =+⎧⎨+=⎩,得()222210m y my ++-=,又因为2BF FA = ,所以1221222122122m y y m y y m y y ⎧+=-⎪+⎪-⎪=⎨+⎪=-⎪⎪⎩,解得227m =,12228m y m ==+,所以18FA == ,即8FA = . (2)假设在x 轴上存在异于点F 的定点()(),01Q t t ≠,使得QA QBk k 为定值.设直线AB 的方程为1x my =+,联立22121x y x my ⎧+=⎪⎨⎪=+⎩,得()222210m y my ++-=,则12222m y y m -+=+,12212y y m -=+,所以12122y y my y +=. 所以()()()()11212122121211QA QBy k y x t y my t x t y k y x t y my t x t⋅-+--===⋅-+--1211211212212212(1)22(1)(32)(1)22(1)(32)my y t y my y t y t y y my y t y my y t y y t y +-+--+===+-+-+-.要使QA QBk k 为定值,则321132t t-=-, 解得2t =或1t =(舍去),此时1QA QBk k =-.故在x 轴上存在异于F 的定点()2,0Q ,使得QA QBk k 为定值.【例12】(2022届辽宁省名校联盟高三上学期12月联考)已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52pMF =. (1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系,再根据1MA MB k k ⋅=求解.【过程详解】(1)抛物线2:2C y px =的准线:2p x =-,于是得0522p pMF x =+=,解得02x p =,而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =, 所以M 的坐标为()4,4,C 的方程为24y x =.(2)设()()1122,,,A x y B x y ,直线l 的方程为x my n =+,由24x my n y x =+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-, 因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅=⋅=⋅=--++--, 化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-, 所以直线l 过定点()0,4-.13.(2022届广东省茂名市五校联盟高三上学期联考)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F .离心率等于3,点P 在y 轴正半轴上,12PF F △为直角三角形且面积等于2.(1)求椭圆C 的标准方程;(2)已知斜率存在且不为0的直线l 与椭圆C 交于A ,B 两点,当点A 关于y 轴的对称点在直线PB 上时,直线l 是否过定点?若过定点,求出此定点;若不过,请说明理由.【过程详解】(1)根据题意,由对称性得12PF F △为等腰直角三角形,且1290F PF ︒∠=,因为12PF F △的面积等于2,所以12F F =c = 因为椭圆C,即e a==,解得a = 所以2221b a c =-=,所以椭圆C 的标准方程为:2213x y +=.(2)由(1)得(P ,设直线l 的方程为()0y kx m k =+≠,()()1122,,,A x y B x y , 因为点A 关于y 轴的对称点在直线PB 上,所以直线PB 与直线PA 的斜率互为相反数,即0PB PA k k +=,因为12AP BP k k ==12120y y x x +=,整理得2112((0x y x y +=又因为1122,kx m y kx m y =+=+,所以(()121220kx x m x x ++=,由2233y kx mx y =+⎧⎨+=⎩消去y 得222(31)6330,k x kmx m +++-= 所以0∆>,即2231m k <+,2121222633,,3131km m x x x x k k -+=-=++所以2223362((03131m mkk m k k -⋅+⋅-=++,整理得22(33)6(0,k m mk m ⋅--= 由于0k ≠,故解方程得2m =, 此时直线l的方程为2y kx =+,过定点⎛ ⎝⎭ 所以直线l恒过定点⎛ ⎝⎭. 14.(2022届江苏省南通市高三上学期期末)在平面直角坐标系xOy 中,已知双曲线C :22x a -22y b=1(a 、b 为正常数..)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1ꞏk 2的值;(2)若AMPQ =12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.【过程详解】(1)设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0), 因为P 、Q 在双曲线上,所以212x a -212y b =1,222x a -222y b=1,两式作差得12122()()x x x x a +--12122()()y y y y b +-=0,即01222()x x x a -=01222()y y y b-, 即012012()()y y y x x x --=22b a,即k 1ꞏk 2=22b a;(2)因为AMPQ =12,所以 APQ 是以A 为直角顶点的直角三角形,即AP ⊥AQ ;①当直线l 的斜率不存在时,设l :x =t ,代入22x a -22y b=1得,y =±由|t -a |=得,(a 2-b 2)t 2-2a 3t +a 2(a 2+b 2)=0, 即[(a 2-b 2)t -a (a 2+b 2)](t -a )=0,得t =2222()a ab a b+-或a (舍),故直线l 的方程为x =2222()a ab a b+-;②当直线l 的斜率存在时,设l :y =kx +m ,代入22x a -22y b=1,得(b 2-k 2a 2)x 2-2kma 2x -a 2(m 2+b 2)=0,Δ=a 2b 2(m 2+b 2-k 2a 2)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=22222kma b k a -,x 1x 2=-222222()a mb b k a+-;因为AP ⊥AQ , 所以AP ꞏAQ=0,即(x 1-a ,y 1)ꞏ(x 2-a ,y 2)=0, 即x 1x 2-a (x 1+x 2)+a 2+y 1y 2=0,即x 1x 2-a (x 1+x 2)+a 2+(kx 1+m )(kx 2+m )=0, 即(km -a )(x 1+x 2)+(k 2+1)x 1x 2+m 2+a 2=0,即32222222242222kma k a b m a m b k a b k a ---+--=0,即a 2(a 2+b 2)k 2+2ma 3k +m 2(a 2-b 2)=0, 即[a (a 2+b 2)k +m (a 2-b 2)](ak +m )=0,所以k =-2222()()m a b a a b -+或k =-ma; 当k =-m a 时,直线l 的方程为y =-max +m ,此时经过A ,舍去;当k =-2222()()m a b a a b -+时,直线l 的方程为y =-2222()()m a b a a b -+ x +m , 恒过定点(2222()a ab a b +-,0),经检验满足题意;综上①②,直线l 过定点(2222()a ab a b+-,0).15.已知抛物线()2:20C y px p =>的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,当l x ⊥轴时,2AB =. (1)求抛物线C 的方程;(2)若直线l 交y 轴于点D ,过点D 且垂直于y 轴的直线交抛物线C 于点P ,直线PF 交抛物线C 于另一点Q .①是否存在定点M ,使得四边形AQBM 为平行四边形?若存在,求出定点M 的坐标;若不存在,请说明理由.②求证:QAF QBF S S ⋅△△为定值.【过程详解】(1)当l x ⊥轴时,易得2AB p =, 所以22p =,解得1p =, 所以抛物线C 的方程为22y x =;(2)①解:易知直线l 的斜率存在且不为0,设直线l 的方程为()102x my m =+≠, 代入抛物线C 的方程22y x =,并整理得2210y my --=,设()11,A x y ,()22,B x y ,由根与系数的关系得12=2y y m +,121y y =-.所以21212121222x x my my m ++++==,所以线段AB 的中点N 的坐标为221,2m m ⎛⎫+ ⎪⎝⎭,连接QM ,若四边形AQBM 为平行四边形,则N 是QM 的中点, 易知10,2D m ⎛⎫- ⎪⎝⎭,因此211,82P mm ⎛⎫- ⎪⎝⎭,设直线PQ 的方程为12x ty =+,代入抛物线C 的方程22y x =,整理得2210y ty --=,所以112P Q Q y y y m=-⋅=-, 故2Q y m =,因此()22,2Q m m ,故可得22212212M m x m +=⨯-=,220M y m m =-=,故点M 的坐标为()1,0M ,因此存在定点()1,0M ,使得四边形AQBM 为平行四边形;②证明:点()22,2Q m m 到直线1:2l x my =+的距离d == 由()11,A x y ,1,02F ⎛⎫ ⎪⎝⎭,可得1AF =, 因此11124QAF S AF d y =⋅=△, 同理可得214QBF S y = , 所以12111616QAF QBF S S y y ⋅== ,为定值.。

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =−+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.【解析】(1)设,sin )H θθ是椭圆上任意一点,(0,1)P ,222221144144||12cos (1sin )1311sin 2sin 11sin 111111PH θθθθθ⎛⎫=+−=−−=−+≤⎭+ ⎪⎝,当且仅当1sin 11θ=−时取等号,故PH(2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++−= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=−⎪+⎪⎪⎨⎪=−⎛⎫⎪+ ⎪⎪⎝⎭⎩, 因为直线111:1y PA y x x −=+与直线132y x =−+交于C , 则111114422(21)1C x x x x y k x ==+−+−,同理可得,222224422(21)1D x x x x y k x ==+−+−.则224||(21)1C D x CD x k x −=+−====≥=当且仅当316k=时取等号,故CD2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x yC a ba b−=>>的右焦点为(2,0)F,渐近线方程为y=.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点()()1122,,,P x y Q x y在C上,且1210,0x x y>>>.过P且斜率为Q M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ AB∥;③||||MA MB=.注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)右焦点为(2,0)F,∴2c=,∵渐近线方程为y=,∴ba=∴b=,∴222244c a b a=+==,∴1a=,∴b=∴C的方程为:2213yx−=;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而12x x=,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为()2y k x=−,则条件①M在AB上,等价于()()2000022y k x ky k x=−⇔=−;两渐近线的方程合并为2230x y−=,联立消去y 并化简整理得:()22223440k x k x k −−+=设()()3344,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===−=−−, 设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y −+−=−+−, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤−−++−−+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x −⎡⎤⎡⎤−++−+=⎣⎦⎣⎦−,即()000N N x x k y y −+−=,即200283k x ky k +=−;由题意知直线PM的斜率为直线QM∴由))10102020,y y x x y y x x −=−−=−,∴)121202y y x x x −=+−, 所以直线PQ的斜率)1201212122x x x y y m x x x x +−−==−−,直线)00:PM y x x y =−+,即00y y =, 代入双曲线的方程22330x y −−=,即)3yy +−=中,得:()()00003y y ⎡⎤−=⎣⎦, 解得P的横坐标:100x y ⎛⎫+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎫−=++−=−−⎪−−⎭∴03x m y =, ∴条件②//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件①M 在AB 上,等价于()2002ky k x =−;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=−;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==−−,∴③成立; 选①③推②:由①③解得:20223k x k =−,20263k ky k =−,∴003ky x =,∴②成立; 选②③推①:由②③解得:20223k x k =−,20263k ky k =−,∴02623x k −=−,∴()2002ky k x =−,∴①成立.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ−取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为2px =−,当MD 与x 轴垂直时,点M 的横坐标为p , 此时=32pMF p +=,所以2p =, 所以抛物线C 的方程为24y x =;(2)[方法一]:【最优解】直线方程横截式设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my −−=,120,4y y ∆>=−,由斜率公式可得12221212444MN y y k y y y y −==+−,34223434444AB y y k y y y y −==+−, 直线112:2x MD x y y −=⋅+,代入抛物线方程可得()1214280x y y y −−⋅−=, 130,8y y ∆>=−,所以322y y =,同理可得412y y =,所以()34124422MN AB k k y y y y ===++ 又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===, 若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++, 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=, 34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x +. [方法二]:直线方程点斜式 由题可知,直线MN 的斜率存在.设()()()()11223344,,,,,,,M x y N x y A x y B x y ,直线():1MN y k x =− 由 2(1)4y k x y x=−⎧⎨=⎩得:()2222240k x k x k −++=,121x x =,同理,124y y =−.直线MD :11(2)2y y x x =−−,代入抛物线方程可得:134x x =,同理,244x x =. 代入抛物线方程可得:138y y =−,所以322y y =,同理可得412y y =,由斜率公式可得:()()21432143212121.22114AB MN y y y y y y k k x x x x x x −−−====−−⎛⎫− ⎪⎝⎭(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=,34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x =+. [方法三]:三点共线设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设(),0P t ,若 P 、M 、N 三点共线,由221212,,44y y t y t PM PN y ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,所以22122144y y t y t y ⎛⎫⎛⎫−=− ⎪ ⎪⎝⎭⎝⎭,化简得124y y t =-, 反之,若124y y t =-,可得MN 过定点(),0t 因此,由M 、N 、F 三点共线,得124y y =−,由M 、D 、A 三点共线,得138y y =−, 由N 、D 、B 三点共线,得248y y =−,则3412416y y y y ==−,AB 过定点(4,0)(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即2k =时,等号成立,所以当αβ−最大时,AB k =:4AB x =+. 【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线,MN AB的斜率关系,由基本不等式即可求出直线AB 的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;法二:常规设直线方程点斜式,解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系,快速找到直线AB 过定点,省去联立过程,也不失为一种简化运算的好方法.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛−−⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P −的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛−−⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B −−,所以2:23+=AB y x ,①若过点(1,2)P −的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =−,可得(3,T ,由MT TH =得到(5,H −.求得HN 方程:(22y x =−,过点(0,2)−. ②若过点(1,2)P −的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y −−+=. 联立22(2)0,134kx y k x y −−+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +−+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧−++=⎪+⎪⎨+−⎪=⎪+⎩,且1221224(*)34kx y x y k −+=+联立1,223y y y x =⎧⎪⎨=−⎪⎩可得111113(3,),(36,).2y T y H y x y ++− 可求得此时1222112:()36y y HN y y x x y x x −−=−+−−, 将(0,2)−,代入整理得12121221122()6()3120x x y y x y x y y y +−+++−−=, 将(*)代入,得222241296482448482436480,k k k k k k k +++−−−+−−= 显然成立,综上,可得直线HN 过定点(0,2).−5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,直线l 交C于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【解析】(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,所以224111a a −=−,解得22a =,即双曲线22:12x C y −=.易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y , 联立2212y kx m x y =+⎧⎪⎨−=⎪⎩可得,()222124220k x mkx m −−−−=, 所以,2121222422,2121mk m x x x x k k ++=−=−−,()()222222Δ16422210120m k m k m k =−+−>⇒−+>且≠k .所以由0AP AQk k +=可得,212111022y y x x −−+=−−, 即()()()()122121210x kx m x kx m −+−+−+−=, 即()()()1212212410kx x m k x x m +−−+−−=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+−−−−−= ⎪−−⎝⎭, 化简得,()2844410k k m k +−++=,即()()1210k k m +−+=,所以1k =−或12m k =−,当12m k =−时,直线():21l y kx m k x =+=−+过点()2,1A ,与题意不符,舍去, 故1k =−.(2)[方法一]:【最优解】常规转化不妨设直线,PA AQ 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP AQ k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+,解得tan α=(负值舍去) 此时P A 与双曲线的渐近线平行,与双曲线左支无交点,舍去; 当,A B 均在双曲线右支时,因为tan PAQ ∠=()tan βα−=tan 2α=−2tan 0αα−,解得tan α,于是,直线):21PA y x =−+,直线):21QA y x =−+,联立)222112y x x y ⎧=−+⎪⎨−=⎪⎩可得,)23241002x x ++−,因为方程有一个根为2,所以P x =,P y=,同理可得,103Q x +=,Q y=53−. 所以5:03PQ x y +−=,163PQ =,点A 到直线PQ的距离d = 故PAQ △的面积为11623⨯=. [方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan 2PAQ ∠由2PAQ απ+∠=,得tan AP k α=1112y x −−,联立1112y x −=−221112x y −=得1x1y ,同理,2x 2y =12203x x +=,12689x x =而1||2|AP x −,2||2|AQ x −,由tan PAQ ∠=sin PAQ ∠故12121||||sin 2()4|2PAQSAP AQ PAQ x x x x =∠=−++= 【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.。

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

圆锥曲线压轴题含答案

1. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12PP 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN2. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点.(1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.x3. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方 程;(2)求证:A M B 、、三点共线.4. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且P 在直线l 的左上方.(1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.AxyOPB5. 如图,椭圆22122:1(0)x y C a b a b +=>>的离心率为2,x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E . ①证明:MD ME ⊥;②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =?请说明理由.6. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .7. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b -=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.8.已知以原点O为中心,F 为右焦点的双曲线C的离心率e =(1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.1.解:(1)由已知得,则直线的方程为:,令得,即,设,则,即代入得:,即P的轨迹E的方程为。

高考数学压轴题突破训练——圆锥曲线(含详解)

14. 已知双曲线 的左右两个焦点分别为 ,点P在双曲线右支上.
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①


由方程①知 > <
, < < , .
7.解:解:令
则 即

又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为

∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考数学经典习题】圆锥曲线压轴题(含答案)8未命名一、解答题1.(题文)已知离心率为的椭圆C:经过点(0,-1),且F1、F2分别是椭圆C的左、右焦点,不经过F1的斜率为k的直线l与椭圆C相交于A、B两点. (Ⅰ)求椭圆C的方程;(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.2.(题文)已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)直线与椭圆交于两点,以为直径的圆与轴正半轴交于点.是否存在实数,使得的内切圆的圆心在轴上?若存在,求出的值;若不存在,请说明理由.3.在直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的左焦点为F,A是C上的动点,且满足AF的最小值为2.(1)求椭圆C的标准方程;(2)在椭圆C上任取一点B,使OA OB⊥,求证:点O到直线AB的距离为定值. 4.已知抛物线的顶点在原点,准线方程为,是焦点,过点的直线与抛物线交于两点,直线分别交抛物线于点.(1)求抛物线的方程及的值;(2)记直线的斜率分别为,证明:为定值.5.(题文)(题文)已知椭圆:,斜率为的动直线与椭圆交于不同的两点、.(1)设为弦的中点,求动点的轨迹方程;(2)设、为椭圆的左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值. 6.动点在抛物线上,过点作垂直于轴,垂足为,设.(I )求点的轨迹的方程;(II )设点,过点的直线交轨迹于两点,设直线的斜率分别为,求的最小值.7.给定椭圆2222:1(0)x y C a b a b+=>>.称圆心在原点O圆C 的“准圆”.若椭圆C 的一个焦点为F ,其短轴上的一个端点到F . (1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,试判断12,l l 是否垂直?并说明理由. 8.已知椭圆的离心率为,以原点为圆心,以椭圆的半长轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆上运动,与关于原点对称,且,当的面积最小时,求直线的方程.9.(题文)已知点是圆上的任意一点,点为圆的圆心,点与点关于原点对称,线段的垂直平分线与线段交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设点,若直线轴,且与曲线交于另一点,直线与直线交于点.(1)证明:点恒在曲线上;(2)求面积的最大值. 10.双曲线的一条渐近线方程是:,且曲线过点.(1)求双曲线的方程; (2)设曲线的左、右顶点分别是、,为曲线上任意一点,、分别与直线交于、,求的最小值.11.(题文)已知双曲线的一条渐近线方程为 ,焦距为 .(1)求双曲线 的方程;(2)若直线 与双曲线 交于 两点,且点 在第一象限,过点 作 轴的垂线,交 轴于点 ,交双曲线 于另一点 ,连结 交双曲线 于点 ,求证: .12.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为())12,F F ,直线0x =与椭圆C 的—个交点为(),点A 是椭圆C 上的任意—点,延长1AF 交椭圆C 于点B ,连接22,BF AF . (1)求椭圆C 的方程;(2)求2ABF ∆的内切圆的最大周长.13.已知椭圆( )经过点 ,且其离心率为, 、分别为椭圆 的左、右焦点.设直线 与椭圆 相交于 , 两点, 为坐标原点.(I )求椭圆 的标准方程;(II )当 时,求 的面积的最大值;(III )以线段 , 为邻边作平行四边形 ,若点 在椭圆 上,且满足 ,求实数 的取值范围. 14.已知椭圆的两个焦点为 ,其短轴长是 ,原点 到过点 和 两点的直线的距离为.(1)求椭圆 的方程;(2)若点 是定直线 上的两个动点,且 ,证明:以 为直径的圆过定点,并求 定点的坐标. 15.已知椭圆的左、右焦点分别为,为该椭圆上任意一点,且的最大值为.(I)求椭圆的离心率;(II)已知椭圆的上顶点为,动直线与椭圆交于不同的两点,且,证明:动直线过定点,并求出该定点坐标.16.椭圆M:的焦距为,点关于直线的对称点在椭圆上.(1)求椭圆M的方程;(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线与椭圆M相交于两个不同的点C,D.①求的取值范围;②当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.17.如图所示,如图所示,已知椭圆,⊙,点是椭圆的左顶点直线与⊙相切于点.(1)求椭圆的方程;(2)若⊙的切线与椭圆相交于两点,求面积的取值范围. 18.已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点且斜率为的直线与椭圆相交于两点,直线分别交直线于两点,线段的中点为. 记直线的斜率为,求证:为定值.19.如图,抛物线的焦点为,取垂直于轴的直线于抛物线交于不同的两点,,过,作圆心为的圆,使抛物线上其余点均在圆外,且.(1)求抛物线和圆的方程;(2)过点作倾斜角为的直线,且直线与抛物线和圆依次交于,求的最小值.20.已知椭圆(),其离心率与双曲线的离心率互为倒数,而直线过椭圆的一个焦点.(I)求椭圆的方程;(II)如图,以椭圆的左顶点为圆心作圆,设圆与椭圆交于两点,,求的最小值,并求出此时圆的方程.21.已知椭圆的离心率,一个焦点为.(1)求椭圆的方程;(2)设是椭圆与轴负半轴的交点,过点作椭圆的两条弦和,且. (i)直线是否过定点,如果是求出该点坐标,如果不是请说明理由;(ii)若是等腰直角三角形,求直线的方程.22.已知抛物线的焦点为,直线与轴的交点为,与的交点为 ,且.(1)求 的方程;(2)设 ,动点 在曲线 上,曲线 在点 处的切线为 .问:是否存在定点 ,使得 与 都相交,交点分别为 ,且 与 的面积之比是常数?若存在,求 的值;若不存在,说明理由.23.如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为,点(2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .24.设顶点在原点,焦点在x 轴上的拋物线过点()2,4P ,过P 作抛物线的动弦PB PA ,,并设它们的斜率分别为DC . (1)求拋物线的方程;(2)若0=+PB PA k k ,求证:直线AB 的斜率为定值,并求出其值; (3)若1PA PB k k =,求证:直线AB 恒过定点,并求出其坐标.25.如图,已知椭圆()222210x y a b a b+=>>的左、右焦点为()()121,0,1,0,F F P -为椭圆上一点,Q 为椭圆上顶点,M 在1PF 上,122,0F M MP PO F M =⋅=.(1)求当离心率12e =时的椭圆方程; (2)求满足题设要求的椭圆离心率的取值范围;(3)当椭圆离心率最小时,若过0,7⎛- ⎝⎭的直线l 与椭圆交于,A B (不同于点Q )两点,试问:AQB ∠是否为定值?并给出证明. 26.已知椭圆的方程为,它的一个顶点为 ,离心率为. (1)求椭圆的方程;(2)设直线 与椭圆交于 两点,坐标原点 到直线 的距离为,求 面积的最大值.27.在平面直角坐标系 中,已知椭圆的左顶点为 ,右焦点为 ,为椭圆 上两点,圆 .(1)若 轴,且满足直线 与圆 相切,求圆 的方程;(2)若圆 的半径为 ,点 满足,求直线 被圆 截得弦长的最大值.28.如图,在平面直角坐标系 中,已知椭圆的离心率为,长轴长为4,过椭圆的左顶点 作直线 ,分别交椭圆和圆 于相异两点 .(1)若直线 的斜率为 ,求的值; (2)若,求实数 的取值范围.29.在平面直角坐标系 中,已知抛物线 上一点到准线的距离与到原点 的距离相等,抛物线的焦点为 . (1)求抛物线的方程;(2)若 为抛物线上一点(异于原点 ),点 处的切线交 轴于点 ,过 作准线的垂线,垂足为点 .试判断四边形 的形状,并证明你的结论.30.在平面直角坐标系xOy 中,已知点3(1,)2P 在椭圆2222:1(0)x y C a b a b+=>>上,P到椭圆C 的两个焦点的距离之和为4. (1)求椭圆C 的方程;(2)若点,M N 是椭圆C 上的两点,且四边形POMN 是平行四边形,求点,M N 的坐标.31.已知两点 ,直线 、 相交于点 ,且这两条直线的斜率之积为.(1)求点 的轨迹方程;(2)记点 的轨迹为曲线 ,曲线 上在第一象限的点 的横坐标为1,直线 、 与圆相切于点 、 ,又 、 与曲线 的另一交点分别为 , ,求 的面积的最大值(其中点 为坐标原点).32.如图,设抛物线 的准线与 轴交于 ,焦点为 ;以 为焦点,离心率的椭圆 与抛物线 在 轴上方的交点为 ,延长 交抛物线于点 是抛物线 上一动点,且 在 与 之间运动.(1)当 时,求椭圆 的方程;(2)当 的边长恰好是三个连续的自然数时,求 面积的最大值. 33.已知A 为椭圆上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有.(Ⅰ)求椭圆离心率;(Ⅱ)设,试判断是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.34.设抛物线的准线与轴交于点,焦点;椭圆以和为焦点,离心率.设是与的一个交点.(1)椭圆的方程;(2)直线过的右焦点,交于两点,且等于的周长,求的方程.35.已知椭圆的离心率为,其短轴的下端点在抛物线的准线上.(1)求椭圆的方程;(2)设为坐标原点,是直线上的动点,为椭圆的右焦点,过点作的垂线与以为直径的圆相交于两点,与椭圆相交于两点,如图所示.①若,求圆的方程;②设与四边形的面积分别为,若,求的取值范围.36.已知抛物线 上一点 到焦点F 距离是.(1)求抛物线C 的方程;(2)过F 的直线与抛物线C 交于A 、B 两点,是否存在一个定圆恒以AB 为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由. 37.已知椭圆C:的离心率为,直线 与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设 是椭圆的上顶点,过点 分别作直线 交椭圆于 , 两点,设两直线的斜率分别为,,且 , 证明:直线 过定点(,-l).38.已知椭圆C :2222by a x +=1(a>0,b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线一1=0与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(I)求椭圆C 的方程;(Ⅱ)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. (i)求k 1k 2的值: (ii)求OB 2+ OC 2的值. 39.设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形. (1)求椭圆的方程和“相关圆”的方程; (2)过“相关圆”上任意一点作相关圆”的切线与椭圆交于两点,为坐标原点.若,证明原点到直线的距离是定值,并求的取值范围.40.已知抛物线方程为22(0)x py p =>,其焦点为F ,点O 为坐标原点,过焦点F 作斜率为(0)k k ≠的直线与抛物线交于,A B 两点,过,A B 两点分别作抛物线的两条切线,设两条切线交于点M .(1)求OA OB ⋅;(2)设直线MF 与抛物线交于,C D 两点,且四边形ACBD 的面积为2323p ,求直线AB 的斜率k .41.已知椭圆 : 的焦距为4,设右焦点为 ,过原点 的直线 与椭圆 交于 , 两点,线段 的中点为 ,线段 的中点为 ,且. (1)求弦 的长;(2)若直线 的斜率为 ,且,求椭圆 的长轴长的取值范围. 42.已知过抛物线的焦点,斜率为的直线交抛物线于()11,,A x y ()22,B x y (12x x <)两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值43.已知椭圆的离心率为,点在椭圆上.(I )求椭圆C 的方程; (II )设椭圆的左右顶点分别是A 、B ,过点的动直线与椭圆交于M ,N 两点,连接AN 、BM 相交于G 点,试求点G 的横坐标的值.44.如图椭圆的离心率为,其左顶点在圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆的另一个交点为,与圆的另一个交点为.(i)当时,求直线的斜率;(ii)是否存在直线,使得? 若存在,求出直线的斜率;若不存在,说明理由.45.已知椭圆:的焦距为4,设右焦点为,过原点的直线与椭圆交于,两点,线段的中点为,线段的中点为,且.(1)若离心率,求椭圆的方程;(2)求椭圆的长轴长的取值范围.46.已知为圆上的动点,点,线段的垂直平分线与半径相交于点,记点的轨迹为.(1)求曲线的方程;(2)当点在第一象限,且时,求点的坐标.47.已知焦点在轴上的椭圆的中心是原点,离心率等于,以椭圆的长轴和短轴为对角线的四边形的周长为,直线与轴交于点,与椭圆交于、两个相异点,且.(Ⅰ) 求椭圆的方程;(Ⅱ)若,求的取值范围.48.已知椭圆的离心率为,右顶点为.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线交椭圆于两点,设直线的斜率为,直线斜率为.求证:为定值,并求此定值.49.已知椭圆C:的离心率为,且点在C上.(1)求椭圆C的方程;(2)直线l经过点,且与椭圆C有两个交点A、B,是否存在直线l0:x = x0(其中x0> 2),使得A、B到l0的距离d A、d B满足恒成立?若存在,求x0的值;若不存在,请说明理由.50.已知椭圆的右焦点为,短轴长为2,点为椭圆上一个动点,且的最大值为.(1)求椭圆的方程;(2)设不在坐标轴上的点的坐标为,点为椭圆上异于点的不同两点,且直线平分,试用表示直线的斜率.参考答案1.(Ⅰ);(Ⅱ),直线过定点.【解析】试题分析:(Ⅰ)根据条件,和椭圆的性质,得到椭圆的标准方程;(Ⅱ)设直线的方程:,和椭圆方程联立,得到根与系数的关系,并且,用坐标表示,结合根与系数的关系,得到,最后代入得到的取值范围;根据以上所求关系得到线段的中点,并且设出直线AB 的方程,经过整理得到,得到定点.试题解析:(Ⅰ)由条件知(),且b=1,解得a2=2,椭圆C的方程为.(Ⅱ)令直线l的方程为,代入椭圆方程得:.由得,解之得.令A(x1,y1),B(x2,y2),则.由条件得,即.因为,,即.将代入中,得..由上知,,于是得AB中点坐标为,中垂线方程为:.将代入得:,整理得:.故AB的中垂线过定点.考点:1.椭圆方程;2.直线与椭圆的位置关系.【思路点睛】本题第二问考察是否过定点问题,一般考察直线过定点问题,首先是设直线,斜率存在时设,然后通过方程发现的等量关系,代入后即得到直线所过定点,或是通过特殊情况先发现定点,然后通过条件证明点和定点,三点共线;而本题所采用就是第一种方法,根据直线方程与椭圆方程联立,得到根与系数的关系,和将本题所给的三个斜率成等差数列的等式转化为坐标的关系,就会得到的等量关系和中点坐标,最后代入中垂线方程,问题就迎刃而解了.2.(1);(2)或.【解析】试题分析:(1)由椭圆:的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为,求出,由此能求出椭圆方程;(2)依题意知,设,,,则,由此能求出存在满足条件的值.试题解析:(1)设焦点,则,从而,由题意有,即,解得,又由,于是,解得,椭圆的方程为.(2)依题意可知,且,于是直线的斜率为,直线的斜率为,则,,,,相加得.联立消去,整理得,,.把两边同时平方,可得,代入可得,化简可得,或,解得,或,即存在满足条件的值,,或.考点:椭圆的简单性质.【方法点晴】本题考查椭圆方程的求法,考查满足条件的直线的斜率的求法,是中档题,解题时要认真审题,在第一问中利用离心率以及过焦点且与轴垂直的弦长求出椭圆的方程,也是在高考中常见的表达形式;在第二问中利用设而不求的思想设出三点的坐标,先利用内切圆的圆心在轴上,即等价于直角的角平分线轴上,得,转化为斜率,联立直线的方程与椭圆的方程结合维达定理,代入求解.3.(1)2214xy+=;(2)证明见解析.【解析】试题分析: (1)由AF 的最小值为23-可得23a c -=-,由离心率为3可知,再由的关系最后可求得的值,得到椭圆的标准方程;(2)当AB 的斜率不存在时很容易求得O 到AB 的距离,当AB 的斜率存在时可设直线方程的斜截式y kx m =+,联立椭圆方程,由根与系数的关系得122841km x x k +=-+,21224441m x x k -=+,再由OA OB ⊥可建立等式,求得224(1)5m k =+,代入点到直线的距离公式可得距离为定值. 试题解析:(1)解:根据题意有2{a c c a -==, 解方程组得:2,a c ==∴21b =,∴椭圆C 的标准方程为2214x y +=. (2)证明:当AB 的斜率不存在时,AB 的方程为x =±O 到AB 的距离为d =; 当AB 的斜率存在时,可设AB 的方程为y kx m =+,1122(,),(,)A x y B x y ,由22{14y kx mx y =++=,得222(41)8440k x kmx m +++-=, ∵22222(8)4(41)(44)16(14)0km k m k m ∆=-+-=-->,∴122841km x x k +=-+,21224441m x x k -=+, ∴2212121212()()()y y kx m kx m k x x km x x m =++=+++,222222224484414141m km m k k km m k k k --=⋅-⋅+=+++, ∵OA OB ⊥,∴22112212122544(,)(,)041m k OA OB x y x y x x y y k --⋅==+==+, ∴224(1)5m k =+, ∴点O 到直线AB :0kx y m -+=的距离5d ===, 故O 到AB 的距离为定值.考点:椭圆的性质、直线与椭圆的位置关系.4.(1) ;(2)证明见解析.【解析】试题分析:(1)根据抛物线的定义即可得出抛物线方程,再联立 的方程,消去 ,由韦达定理可得 的值;(2)设出 的坐标,由斜率公式表示出 ,消去变量即可得出的定值.试题解析:(1)依题意,设抛物线方程为y 2=-2px(p>0),由准线x = =1,得p =2, 所以抛物线方程为y 2=-4x ,设直线PQ 的方程为x =my -2,代入y 2=-4x ,消去x ,整理得y 2+4my -8=0, 从而y 1y 2=-8.(2)证明 设M(x 3,y 3),N(x 4,y 4),则. 设直线PM 的方程为x =ny -1,代入y 2=-4x ,消去x ,整理得y 2+4ny -4=0,所以y 1y 3=-4,同理y 2y 4=-4.故,为定值. 考点:1、抛物线的标准方程;2、抛物的几何性质;3、斜率公式;4、直线方程. 5.(1)();(2).【解析】试题分析:(1)设,,,两式相减结合,可求得;(2)由求出点坐标,设直线的方程为,面积用表示,最后用基本不等式求最值.试题解析:(1)设,①②①-②得:,,即,又由中点在椭圆内部得,所以点的轨迹方程为,(2)由,得点坐标为,设直线的方程为,代入椭圆方程中整理得:,由得,则,,,所以,当时,.考点:1、点差法求轨迹方程;2、利用基本不等式求解析几何中的最值.【方法点睛】本题主要考查“点差法”求轨迹方程以及利用基本不等式求解析几何中的最值,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.本题(1)就是利用“点差法”求解的.6.(I);(II).【解析】试题分析:(I)设点,,则由,得,因为点在抛物线上,∴;(II)联立,利用根与系数关系得到,下面分情况讨论.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,,直线不经过点即且时,,化简得故.试题解析:(I)设点,,则由,得,因为点在抛物线上,∴.(II)方法一:由已知,直线的斜率一定存在,设点,,则联立,得,,由韦达定理,得.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,直线不经过点即且时,∵,,故,所以的最小值为1.方法二:同上,,所以的最小值为1.方法三:设点,,由直线过交轨迹于两点得:,化简整理得:令则,.而.考点:1.直线与圆锥曲线的位置关系;2.根与系数关系.【方法点晴】圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟与系数的关系是解这类题目的必备工具,另外题目运算量较大,需要一定的运算能力.7.(Ⅰ)2213xy+=,224x y+=;(Ⅱ)垂直.【解析】试题分析:(1)由“椭圆C的一个焦点为F,其短轴上的一个端点到F”知:12c a b====⇒=从而可得椭圆的标准方程和“准圆”的方程;(2)分两种情况讨论:①12,l l当中有一条直线斜率不存在;②直线12,l l斜率都存在.对于①可直接求出直线12,l l的方程并判断其是不互相垂直;对于②设经过准圆上点()00,,P x y与椭圆只有一个公共点的直线为()00y t x x y=-+与椭圆方程联立组成方程组()0022{13y tx y txxy=+-+=消去y得到关于x的方程:()()()2220000136330t x t y tx x y tx++-+--=由0∆=化简整理得:()22200003210x t x y t y-++-=22004x y+=→()()22300003230x t x y t x-+--=而直线12,l l的斜率正是方程的两个根12,t t,从而121t t⋅=-12l l⇒⊥(1)2,1c a b==∴=∴椭圆方程为2213xy+=准圆方程为224x y+=(2)①12,l l当中有一条无斜率时,不妨设1l无斜率,因为1l与椭圆只有一个共公点,则其方程为x=当1l方程为x1l与准圆交于点)),1-此时经过点)(或)1-)且与椭圆只有一个公共眯的直线是1y=(或1y=-)即2l为1y=(或1y=-),显然直线12,l l垂直;同理可证1l方程为x =12,l l 也垂直.②当12,l l 都有斜率时,设点()00,,P x y 其中22004x y +=设经过点()00,,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+则由()0022{13y tx y tx x y =+-+=消去y ,得()()()2220000136330t x t y tx x y tx ++-+--=由0∆=化简整理得:()22200003210x t x y t y -++-=因为22004x y +=,所以有()()22300003230x t x y t x -+--=设12,l l 的斜率分别为12,t t ,因为12,l l 与椭圆只有一个公共点 所以12,t t 满足上述方程()()22300003230x t x y t x -+--= 所以121t t ⋅=-,即12,l l 垂直, 综合①②知,12,l l 垂直.考点:1、椭圆的标准方程;2、直线与圆锥曲线的综合问题. 8.(Ⅰ);(Ⅱ),或.【解析】试题分析:(Ⅰ)根据离心率可以得到 的一个关系,再由椭圆与直线相切可以得到 的一个关系,再联立 即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时地特殊情况,并求出其面积;其次当直线的斜率 存在并且不为零时,用 表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.试题解析:(Ⅰ)以原点为圆心,以椭圆的半长轴长为半径的圆的方程为,因为该圆与直线相切,所以有,解得.又,所以,故.所以椭圆的方程为.(Ⅱ)当为长轴(或短轴)时,依题意知,点是椭圆的上顶点或下顶点(左顶点或右顶点),此时.当直线的斜率存在且不为时,设直线的斜率为,,,则直线的方程为,由,解得所以由知,为等腰三角形,为线段的中点,,所以直线的方程为,由,解得.当且仅当,即时,上式中的等号成立,此时的面积的最小值为,因为,所以的面积的最小值为,此时直线的方程为,或.考点:1、椭圆;2、基本不等式;3、三角形的面积.【思路点晴】本题是一个关于圆锥曲线方面的综合性问题,属于难题.解决本题的基本思路是:(Ⅰ)根据离心率可以得到的一个关系,再由椭圆与直线相切可以得到的一个关系,再联立即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时的特殊情况,并求出其面积;其次当直线的斜率存在并且不为零时,用表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.9.(Ⅰ);(Ⅱ)(1)证明见解析;(2).【解析】试题分析:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.试题解析:(Ⅰ)由题设得圆的圆心为,半径为,,又,所以,由椭圆的定义知,动点的轨迹是以为焦点,以为长轴长的椭圆.设此椭圆方程为,且焦距为,则即所以动点的轨迹的方程为.(Ⅱ)(1)设,则,且,所以直线,即①.直线,即.②联立①②,解得,所以点的坐标是.则所以点恒在椭圆上.(2)设直线,,则由消去,并整理得,.因为恒成立,所以.所以.令,设,因为,所以函数在上单调递增,故.所以,即当时,的面积取得最大值,且最大值为. 考点:1、椭圆;2、导数在函数(三角形的面积)研究中的应用.【方法点晴】本题是一个关于椭圆的概念以及直线与其位置关系方面的综合性问题,属于难题.解决本题的基本思路及切入点是:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.10.(1);(2).【解析】试题分析:(1)由渐近线方程可先设出双曲线的方程,再把点的坐标代入即可求得双曲线的方程;(2)可设出、的斜率,并表示出点、的坐标,进而表示出的长,再结合基本不等式即可求得的最小值.试题解析:(1)由渐近线方程可知,双曲线的方程为,把代入可得,所以双曲线方程为.(2)由双曲线的对称性可知,在右支上时,取最小值.由上可得,,根据双曲线方程可得,所以设直线、的斜率分别为,则.的方程为,令,解得,的方程为,令,解得,所以.当且仅当,即时等号成立.考点:1、双曲线;2、基本不等式.11.(1);(2)证明见解析.。

相关文档
最新文档