三角函数定义及其三角函数公式大全

合集下载

三角函数定义及三角函数公式大全-三角函数公式定义

三角函数定义及三角函数公式大全-三角函数公式定义

三角函数定义及三角函数公式大全之相礼和热创作一:初中三角函数公式及其定理1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方. 222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、恣意锐角的正弦值等于它的余角的余弦值;恣意锐角的余弦值等于它的余角的正弦值. 4切值等于它的余角的正切值.5、0°、30°、45°、60°、90°特殊角的三角函数值(紧张)A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边CA 90B 90∠-︒=∠︒=∠+∠得由B A6、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小.7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小.1、解直角三角形的定义:已知边和角(两个,其中必有一边)→全部未知的边和角.根据:①边的关系:222cba=+;②角的关系:A+B=90°;③边角关系:三角函数的定义.(留意:尽量防止运用两头数据和除法)2、运用举例:(1)仰角:视野在程度线上方的角;俯角:视野在程度线下方的角.(2)坡面的铅直高度h和程度宽度l的比叫做坡度(坡比).用字母i暗示,即hil=.坡度一样平常写成1:m的方式,如1:5i=等.把坡面与程度面的夹角记作α(叫做坡角),那么tanhilα==.3、从某点的指北方向按顺时针转到目的方向的程度角,叫做方位角.如图3,OA、OB、OC、OD的方向角分别是:45°、135°、225°.4、指北或指北方向线与目的方向线所成的小于90°的程度角,叫做方向角.如图4,OA、OB、OC、OD的方向角分别是:北偏东30°(东北方向),南偏东45°(东北方向),南偏西60°(东北方向),北偏西60°(东北方向).二:三角函数公式大全半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—22α+βα-βsinα-sinβ=2cos—--·sin—-—22α+βα-βcosα+cosβ=2cos—--·cos—-—22α+βα-βcosα-cosβ=-2sin—--·sin—-—2 21sin α·cosβ=-[sin(α+β)+sin(α-β)] 21cos α·sinβ=-[sin(α+β)-sin(α-β)] 21cos α·cosβ=-[cos(α+β)+cos(α-β)] 21sin α·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的方式(辅助角的三角函数的公式)。

高一级数学:三角函数公式的整理

高一级数学:三角函数公式的整理

高一级数学:三角函数公式的整理1. 引言三角函数是高中数学中的重要组成部分,掌握三角函数的相关公式对于解决各类数学问题具有重要意义。

本文档将对高一级数学中的三角函数公式进行整理和总结,以帮助学生更好地理解和应用。

2. 基本三角函数公式以下为基本三角函数的定义和性质:2.1 正弦函数(sin)- 定义:直角三角形中,对边与斜边的比值为正弦值。

- 周期:2π- 奇偶性:奇函数2.2 余弦函数(cos)- 定义:直角三角形中,邻边与斜边的比值为余弦值。

- 周期:2π- 奇偶性:偶函数2.3 正切函数(tan)- 定义:直角三角形中,对边与邻边的比值为正切值。

- 周期:π- 奇偶性:奇函数3. 和差化积公式以下为三角函数的和差化积公式:3.1 正弦函数和差化积- sin(α ± β) = sinαcosβ ± cosαsinβ3.2 余弦函数和差化积- cos(α ± β) = cosαcosβ ∓ sinαsinβ3.3 正切函数和差化积- tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ) 4. 二倍角公式以下为三角函数的二倍角公式:4.1 正弦函数二倍角- sin2α = 2sinαcosα4.2 余弦函数二倍角- cos2α = cos²α - sin²α = 2cos²α - 1 = 1 - 2sin²α4.3 正切函数二倍角- tan2α = (2tanα) / (1 - tan²α)5. 半角公式以下为三角函数的半角公式:5.1 正弦函数半角- sinα/2 = ±√[(1 - cosα) / 2]5.2 余弦函数半角- cosα/2 = ±√[(1 + cos2α) / 2] = ±√[(2cos²α) / 2] = cosα/√2 5.3 正切函数半角- tanα/2 = ±√[(1 - cosα) / (1 + cosα)]6. 积化和差公式以下为三角函数的积化和差公式:6.1 正弦函数积化和差- sinαcosβ + cosαsinβ = sin(α + β)- sinαcosβ - cosαsinβ = sin(α - β)6.2 余弦函数积化和差- cosαcosβ + sinαsinβ = cos(α - β)- cosαcosβ - sinαsinβ = cos(α + β)6.3 正切函数积化和差- tanαtanβ = sinαsinβ / (cosαcosβ)7. 总结本文档对高一级数学中的三角函数公式进行了整理和总结,包括基本三角函数公式、和差化积公式、二倍角公式、半角公式以及积化和差公式。

三角函数的基本定义

三角函数的基本定义

正弦:sine(简写sin)[sain]余弦:cosine(简写cos)[kəusain]正切:tangent(简写tan)['tændʒənt]余切:cotangent(简写cot)['kəu'tændʒənt]正割:secant(简写sec)['si:kənt]余割:cosecant(简写csc)['kau'si:kənt]三角函数最一开始是用来表示角度和直角三角形三边边长关系的式子,直角三角形中的sin x和cos x可由毕氏定理给出它的定义:若一个直角三角形,它的一个锐角角度为x,此角的对边为a,另一股为b,斜边为c(如图所示),则:csc 就是 1/sin 也就是斜边比对边 c/asec 就是 1/cos 也就是斜边比邻边 c/b因此得到正弦函数sin x和余弦函数cos x的定义三角函数的广义定义是定义在单位圆(如图二所示)上的,不管角度为何,广义的定义皆为其斜边与X轴的夹角来取其值,且若其斜边和单位圆的交点为(x,y)(如图三所示),则:因此可推出:,,,,,,,,一个角度制数值所对应的弧度制数值等于单位圆中圆心角角度与该角度制数值相同时该圆心角所对应的弧长。

用rad表示弧度制数值,用deg表示角度制数值,二者转换关系为:常用的弧度转换公式:主要的公式和角公式倍角公式& 半角公式2倍角公式:sin2θ = 2sinθcosθcos2θ = cos2θ−sin2θ = 2cos2θ− 1 = 1 − 2sin2θ3倍角公式:cos3θ = 4cos3θ− 3cosθsin3θ = − 4sin3θ + 3sinθ半角公式:和差化积和积化和差积化和差:和差化积:其他公式万能公式:平方差公式:降次升角公式辅助角公式正弦定理:若为任意三角形的三边,A,B,C分别为a,b,c的对角,R为此三角形的外接圆半径,则存有以下关系式:由勾股定理得sin2θ + cos2θ = 1当θ的终边与坐标轴重合时,这个公式也成立。

三角函数公式大全及其推导方法

三角函数公式大全及其推导方法

三角函数公式大全及其推导1. 三角函数的定义由此,我们定义:如Figure I, 在ΔABC 中sin () cos () tan ()11 cot ()tan 11 sec ()cos 11 csc ()sin bca cb a a b b ac a a c c b b c θθθθθθθθθθθθθθθ∠=∠=∠=∠===∠===∠===对边的正弦值:斜边邻边的余弦值:斜边对边的正切值:邻边邻边的余切值:对边斜边的正割值:邻边斜边的余割值:对边备注:当用一个字母或希腊字母表示角时,可略写∠符号,但用三个子母表A c b θ Figure I示时,不能省略。

在本文中,我们只研究sin 、cos 、tan 。

2. 额外的定义222222sin (sin )cos (cos )tan (tan )θθθθθθ===3. 简便计算公式22sin cos cos(90)cos sin sin(90)111tan tan tan(90)sin cos 1b A cc A b b a a A bθθθθθθθθ===-∠===-∠====-∠+= 证明: 2222222222901sin sin 1sin cos 1ABC ABC a b c a b c cB A θθ∆∠=∴+=∴+=∴+=∴+=在中,证完222222sin tan cos sin cos 1tan 1cos cos cos bb c a a cθθθθθθθθθ===+=+= 4. 任意三角形的面积公式如Figure II , C a b hFigure II121sin 21sin ()2ABC S ah ab C ac B ∆===两边和其夹角正弦的乘积 5. 余弦定理:任意三角形一角的余弦等于两邻边的平方和减对边的平方之差与两邻边积的两倍之比。

证明:如Figure II, 2222222222222222222222(cos )(sin )2cos cos sin =2cos (cos sin )2cos cos 22b d h a c B c B a ac B c B c Ba ac B c B B a c ac Bb ac a c b B ac ac=+=-+=-++-++=+---+-⇒==-证完6. 海伦公式证明:如Figure II ,1sin 212121212ABC S ab C∆=========2ABC a b cs S ∆===++=设: 7. 正弦定理如 Figure III ,c 为ΔABC 外接圆的直径,sin 2 sin a A c ac r r ABC A =∴==∆(为的外接圆半径)同理:, sin sin 2sin sin sin b c c c B C a b c r A B C ==∴===8. 加法定理(1) 两角差的余弦如 Figure IV , AOC BOC AOB αβαβ∠=∠∠=∠∠=∠-∠令AO=BO=r点A 的横坐标为cos A x r α=点A 的纵坐标为sin A y r α=点B 的横坐标为cos B x r β=Figure IV点B 的纵坐标为sin B y r β=()()()()()()22222222222222222222222222sin sin cos cos sin sin 2sin sin cos cos 2cos cos sin sin 2sin sin cos cos 2cos cos sin cos sin cos 2sin sin 2cos cos 112s A B A B AB y y x x r r r r r r r r r r r r r αββααβαβαβαβαβαβαβαβααββαβαβ=-+-=-+-=+-++-=+-++-=+++--=+-()()()22in sin cos cos 22sin sin cos cos 21sin sin cos cos r r αβαβαβαβαβαβ+⎡⎤⎣⎦=-+⎡⎤⎣⎦=-+⎡⎤⎣⎦由余弦公式可得:()()()()2222222222cos 2cos 22cos 22cos 21cos AB AC BC AC BC ACBr r r r r r r r αβαβαβαβ=+-⋅∠=++⋅-=+-=--⎡⎤⎣⎦=--⎡⎤⎣⎦综上得:()cos sin sin cos cos αβαβαβ-=+(2) 两角和的余弦()()()()cos cos sin sin cos cos sin sin cos cos cos cos sin sin αβαβαβαβαβαβαβαβ+=--⎡⎤⎣⎦=-+-=-+=-(3) 两角和的正弦()()()()()sin cos 90cos 90sin 90sin cos 90cos cos sin sin cos αβαβαβαβαβαβαβ+=︒-+⎡⎤⎣⎦=︒--⎡⎤⎣⎦=︒-+︒-=+(4) 两角差的正弦()()()()sin sin cos sin sin cos cos sin sin cos sin cos cos sin αβαβαβαβαβαβαβαβ-=+-⎡⎤⎣⎦=-+-=-+=-(5) 两角和的正切()()()sin tan cos cos sin sin cos cos cos sin sin cos sin sin cos cos cos cos cos sin sin cos cos sin sin cos cos sin sin 1cos cos tan tan 1tan tan αβαβαβαβαβαβαβαβαβαβαβαβαββαβααβαβαβαβ++=++=-+=-+=-+=-(6) 两角差的正切()()()()tan tan tan tan 1tan tan tan tan 1tan tan αβαβαβαβαβαβ-=+-⎡⎤⎣⎦+-=---=+ 9. 两倍角公式()()()()()()()222222222222sin 2sin sin cos sin cos 2sin cos cos 2cos cos cos sin sin cos sin 12sin 2cos 1sin 2tan 2cos 22sin cos cos sin 2sin cos cos cos sin cos 2sin cos sin 1cos 2tan 1ta αααααααααααααααααααααααααααααααααααααα=+=+==+=-=-=-=-==-=-=-=-2n α10. 积化和差公式()()()()1sin cos 2sin cos 21sin cos sin cos cos sin cos sin 21sin sin 2αβαβαβαβαβαβαβαβ==++-=++-⎡⎤⎣⎦()()()()()()()()1cos cos 2cos cos 21cos cos cos cos sin sin sin sin 21cos cos 21sin sin 2sin sin 21sin sin sin sin cos cos cos cos 21cos cos 2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ==++-=++-⎡⎤⎣⎦==++-=+--⎡⎤⎣⎦ 11. 和差化积公式 (1)设:A=α+β, B=α-β,()()()()sin sin sin sin sin cos cos sin sin cos cos sin 2sin cos 2sin cos 222sin cos 22sin sin sin sin sin cos cos sin sin cos cos sin 2cos si A B A B A B A B αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβα+=++-=++-=++-+--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭-=+--=+-+=n 2cos sin 222cos sin 22A B A B βαβαβαβαβ++-+-+⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(2)设:cos sin αα==∵22cos sin 1αα+=()()sin sin coscos sin sin cossinsin baθθθθαθαθαθ+=+=+=+12.其他常用公式()()()()()()()()()()()()()()000sin 360sin cos 360cos tan 360tan sin 90cos cos 90sin 1tan 90tan sin 90cos cos 90sin 1tan 90tan sin 90cos cos 90sin 1tan 90tan sin 180sin cos 180cos n n n θθθθθθθθθθθθθθθθθθθθθθθθθθθ+⨯=+⨯=+⨯=︒-=︒-=︒-=︒+=︒+=-︒+=--︒=--︒=-︒=-︒-=︒-=-()()()()()()()()tan 180tan sin 180sin cos 180cos tan 180tan sin sin cos cos tan tan tan 2190 1cos 1cos 11sin 1sin 1n θθθθθθθθθθθθθθθθθθθ︒-=-±︒=-±︒=-±︒=-=--=-=-+⨯︒⎡⎤⎣⎦-≤≤⇒≤-≤≤⇒≤不存在13. 特殊的三角函数值14. 关于机器算法在计算机中,三角函数的算法是这样的,其中x 用弧度计算()()1357210246sin 1!3!5!7!21!cos 0!2!4!6!2!n n nn x x x x x x n x x x x x x n +=∞=∞=-+-+=+=-+-+=∑∑推导公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R为外接圆半径) 由正弦定理有a/sinA=b/sinB=c/sinC=2R所以a=2R*sinAb=2R*sinBc=2R*sinC加起来a+b+c=2R*(sinA+sinB+sinC)带入(a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R 两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式Sin2A=2SinA?CosA对数的性质及推导用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)] 由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]} 又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)] 由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]} 又因为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=a^[log(a)(N)]a=b^[log(b)(a)]综合两式可得N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n)/ln(b^n)由基本性质4可得log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB) 平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*( n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

常用的三角函数公式大全

常用的三角函数公式大全

常用的三角函数公式大全三角函数是数学中的重要概念,它们在几何、物理和工程等领域中起到重要的作用。

本文将为你介绍一些常用的三角函数公式,这些公式包括正弦函数、余弦函数和正切函数的基本性质及其应用。

1. 正弦函数(Sine Function):正弦函数是指在直角三角形中,对于给定角度的正弦值定义的函数。

其公式为:sinθ = 对边 / 斜边其中,θ为角度,对边是指与角θ相对的那条边,斜边是指斜线,即斜边为直角三角形斜边的长度。

正弦函数的重要性质有:- 周期性:sin(θ + 2π) = sinθ- 奇偶性:sin(-θ) = -sinθ- 行为:-1 ≤ sinθ ≤ 12. 余弦函数(Cosine Function):余弦函数是指在直角三角形中,对于给定角度的余弦值定义的函数。

其公式为:cosθ = 邻边 / 斜边其中,θ为角度,邻边是指与角θ相邻的那条边。

余弦函数的重要性质有:- 周期性:cos(θ + 2π) = cosθ- 奇偶性:cos(-θ) = cosθ- 行为:-1 ≤ cosθ ≤ 13. 正切函数(Tangent Function):正切函数是指在直角三角形中,对于给定角度的正切值定义的函数。

其公式为:tanθ = 对边 / 邻边其中,θ为角度,邻边是指与角θ相邻的那条边。

正切函数的重要性质有:- 周期性:tan(θ + π) = tanθ- 奇偶性:tan(-θ) = -tanθ- 行为:正切函数在某些特殊角度处无定义,即在π/2、3π/2、5π/2等处无解。

4. 反三角函数(Inverse Trigonometric Functions):反三角函数是指通过三角函数的值计算对应角度的函数,常用的反三角函数有反正弦函数(arcsin)、反余弦函数(arccos)和反正切函数(arctan)。

他们的公式为:- 反正弦函数:θ = arcsin(x) ⇒ sin(θ) = x- 反余弦函数:θ = arccos(x) ⇒ cos(θ) = x- 反正切函数:θ = arctan(x) ⇒ tan(θ) = x这些反三角函数的应用十分广泛,可以帮助我们求解三角函数的角度。

三角函数公式大全及其推导方法

三角函数公式大全及其推导方法

三角函数公式大全及其推导方法1.基本关系:三角函数的定义是将角的信息转化为边长比值的函数。

主要有正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。

2.三角函数的和差公式:(1)正弦函数的和差公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)(2)余弦函数的和差公式:cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)(3)正切函数的和差公式:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))(4)余切函数的和差公式:cot(a ± b) = (cot(a)cot(b) ∓ 1) / (cot(b) ± cot(a))3.三角函数的倍角公式:(1)正弦函数的倍角公式:sin(2a) = 2sin(a)cos(a)(2)余弦函数的倍角公式:cos(2a) = cos^2(a) - sin^2(a) = 2cos^2(a) - 1 = 1 - 2sin^2(a)tan(2a) = 2tan(a) / (1 - tan^2(a))(4)余切函数的倍角公式:cot(2a) = (cot^2(a) - 1) / (2cot(a))4.三角函数的半角公式:(1)正弦函数的半角公式:sin(a/2) = ± √((1 - cos(a)) / 2)(2)余弦函数的半角公式:cos(a/2) = ± √((1 + cos(a)) / 2)(3)正切函数的半角公式:tan(a/2) = ± √((1 - cos(a)) / (1 + cos(a)))5.诱导公式:(1)正切函数的诱导公式:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))(2)余切函数的诱导公式:cot(a ± b) = (cot(a)cot(b) ∓ 1) / (cot(b) ± cot(a))6.三角函数的倒角公式:(1)正弦函数的倒角公式:sin(a/2) = ± √((1 - cos(a)) / 2)cos(a/2) = ± √((1 + cos(a)) / 2)(3)正切函数的倒角公式:tan(a/2) = ± √((1 - cos(a)) / (1 + cos(a)))这些都是三角函数的重要公式。

三角函数总结大全(整理好的)

三角函数(一)任意角的三角函数及诱导公式1.任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。

旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。

为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。

如果一条射线没有做任何旋转,我们称它形成了一个零角。

2.象限角、终边相同的角、区间角角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。

要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。

终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2k π(k ∈Z),即β∈{β|β=2k π+α,k ∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。

区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。

3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。

角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。

角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。

角度制与弧度制的换算主要抓住180rad π︒=。

弧度与角度互换公式:1rad =π180°≈57.30°=57°18ˊ;1°=180π≈0.01745(rad )。

弧长公式:r l ||α=(α是圆心角的弧度数); 扇形面积公式:2||2121r r l S α==。

4 三角函数的定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P到原点的距离记为(0)r r ==>,那么sin y r α=; cos x r α=; tan y x α=; (cot x y α=; sec rxα=; csc r y α=)利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=;(3)yx叫做α的正切,记做tan α,即tan (0)y x x α=≠。

任意角的三角函数及基本公式

任意角的三角函数及基本公式三角函数是数学中的一个重要概念,它们描述了角度与三角比之间的关系。

任意角的三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。

下面将详细介绍这些函数的定义、基本公式以及它们之间的关系。

1. 正弦函数(sine function):在单位圆上,从x轴正向到射线与单位圆的交点之间的弧度即为角的弧度。

正弦函数将给定角度的正弦值映射到数轴上。

其定义如下:sin(θ) = y/r其中θ为角度,y为对边,r为斜边。

2. 余弦函数(cosine function):余弦函数表示角的余弦值在数轴上的投影长度。

其定义如下:cos(θ) = x/r其中θ为角度,x为邻边,r为斜边。

3. 正切函数(tangent function):正切函数表示角的正切值在数轴上的投影比。

其定义如下:tan(θ) = y/x其中θ为角度,y为对边,x为邻边。

4. 余切函数(cotangent function):余切函数表示角的余切值在数轴上的投影比。

其定义如下:cot(θ) = x/y其中θ为角度,y为对边,x为邻边。

5. 正割函数(secant function):正割函数表示角的正割值在数轴上的投影长度。

其定义如下:sec(θ) = r/x其中θ为角度,x为邻边,r为斜边。

6. 余割函数(cosecant function):余割函数表示角的余割值在数轴上的投影长度。

其定义如下:csc(θ) = r/y其中θ为角度,y为对边,r为斜边。

这些函数在不同的角度上有不同的值,可以通过查表或计算器得到具体数值。

同时,它们之间存在一些基本公式和关系,如下:1. 互余关系(co-function identities):sin(θ) = cos(90° - θ)cos(θ) = sin(90° - θ)tan(θ) = cot(90° - θ)cot(θ) = tan(90° - θ)sec(θ) = csc(90° - θ)csc(θ) = sec(90° - θ)2.三角函数的平方和差:sin²(θ) + cos²(θ) = 1tan²(θ) + 1 = sec²(θ)cot²(θ) + 1 = csc²(θ)3.三角函数的倒数:sec(θ) = 1/cos(θ)csc(θ) = 1/sin(θ)cot(θ) = 1/tan(θ)4.符号关系:根据角度的位置和象限,三角函数的值可能为正或负。

大学用三角函数公式大全

大学用三角函数公式大全1. 三角函数定义:正弦函数:sin(θ) = 对边/斜边余弦函数:cos(θ) = 邻边/斜边正切函数:tan(θ) = 对边/邻边2. 三角恒等式:sin²(θ) + cos²(θ) = 11 + tan²(θ) = sec²(θ)1 + cot²(θ) = csc²(θ)3. 角度转换公式:弧度转角度:角度 = 弧度× (180°/π)角度转弧度:弧度 = 角度× (π/180°)4. 和差公式:sin(α + β) = sin(α)cos(β) + cos(α)sin(β)sin(α β) = sin(α)cos(β) cos(α)sin(β)cos(α + β) = cos(α)cos(β) sin(α)sin(β)cos(α β) = cos(α)cos(β) + sin(α)sin(β)tan(α + β) = (tan(α) + tan(β)) / (1tan(α)tan(β))tan(α β) = (tan(α) tan(β)) / (1 +tan(α)tan(β))5. 倍角公式:sin(2θ) = 2sin(θ)cos(θ)cos(2θ) = cos²(θ) sin²(θ) = 2cos²(θ) 1 = 1 2sin²(θ)tan(2θ) = 2tan(θ) / (1 tan²(θ))6. 半角公式:sin(θ/2) = ±√((1 cos(θ))/2)cos(θ/2) = ±√((1 + cos(θ))/2)tan(θ/2)= ±√((1 cos(θ))/(1 + cos(θ))) = sin(θ)/(1 + cos(θ)) = (1 cos(θ))/sin(θ)7. 反三角函数公式:sin⁻¹(x) = θ,其中π/2 ≤ θ ≤ π/2cos⁻¹(x) = θ,其中0 ≤ θ ≤ πtan⁻¹(x) = θ,其中π/2 < θ < π/28. 三角函数的周期性:sin(θ + 2πk) = sin(θ),其中 k 是任意整数cos(θ + 2πk) = cos(θ),其中 k 是任意整数tan(θ + πk) = tan(θ),其中 k 是任意整数9. 三角函数的奇偶性:sin(θ) = sin(θ)cos(θ) = cos(θ)tan(θ) = tan(θ)10. 三角函数的导数:d/dθ(sin(θ)) = cos(θ)d/dθ(cos(θ)) = sin(θ)d/dθ(tan(θ)) = sec²(θ)这些公式是大学数学中三角函数的基础,掌握它们将有助于你在解决数学问题时更加得心应手。

三角函数公式表

三角函数公式表三角函数定义公式如下:公式为sinA=a/c,cosA=b/c,tanA=a/b。

三角函数的必背公式包括半角公式,倍角公式,两角和与差公式,积化和差公式,和差化积公式。

sin(A/2)=±√((1-cosA)/2),cos(A/2)=±√((1+co。

三角函数公式表02 三角函数的诱导公式(六公式)公式一:sin(α+k*2π)=sinα cos(α+k*2π)=cosαtan(α+k*2π)=tanα 公式二:sin(π+α) = -。

三角函数的公式大全三角函数公式有积化和差公式、和差化积公式、三倍角公式、正弦二倍角公式、余弦二倍角公式、余弦定理等。

1积化和差公式。

sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)];cosα·sinβ=(1/2)*[sin(α+β)-。

三角函数基本公式有哪些?常用三角函数公式如下:(^表示乘方,例如^2表示平方)。

正弦函数sinθ=y/r。

余弦函数cosθ=x/r。

正切函数tanθ=y/x。

余切函数cotθ=x/y。

正割函数secθ=r/x。

余割函数cscθ=r/y。

积的关系:sinα = tanα。

三角函数的所有公式三角函数常用公式。

strong>两角和公式,sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA。

倍角公式,tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga。

半角公式,sin(A/2)=√((1-cosA)/2)sin(A/2)=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档