农杆菌介导法讲解

合集下载

农杆菌及其瞬时转化技术

农杆菌及其瞬时转化技术

具体流程简介
• 首先获得目的基因序列,将目的基因插入到表达载体中, 如pBIl2l、pMOG800等,再转化到农杆菌细胞中。目前常 用于介导转化植物的农杆菌有LBA4404、EHAl05、Gv3101、 AGLl等菌株。
• 其次,将含表达载体的农杆菌转接于液体培养基培养至对 数生长期,离心收集菌体,加入浸润缓冲液,重悬至 OD600值约为0.1~1.5,室温静置2~3 h后用于浸润。
农杆菌介导法的优缺点
• 具有操作简单、转化效率较高、重复性好、单拷贝整合、 基因沉默现象少、转育周期短、转化片段较大且插入片段 明显及实验费用低等优点。
• 农杆菌介导法也存在一些问题。首先,在自然条件下,农 杆菌只侵染双子叶植物。对于单子叶植物,虽然可以采用 人工添加酚类物质的方法,诱导农杆菌完成侵染过程,但 是单子叶植物的组织培养有一定的难度。目前,只发现20 多种单子叶植物能被农杆菌侵染。其次,植物细胞壁对农 杆菌介导转化效果有一定影响。再次,影响农杆菌转化效 率的因素较多。在设计农杆菌介导实验时,研究者要考虑 农杆菌菌株类型、质粒载体类型及两者间的匹配情况;外 植体的基因型、来源和发育状态;培养基成分及某些诱导 条件如是否加入酚类物质等。
农杆菌瞬时表达技术的原理
• 将目的基因插入载体中,转化到根癌农杆菌中,后者 经酚类化合物(如乙酰丁香酮)诱导处理,在转录水平 激活Vir区基因,真空渗透或注射使农杆菌与植株叶片 细胞接触,从而实现T-DNA转移进入植物细胞核。大 部分T- DNA 并未整合入植物基因组而是暂时存在于 核内并在植物细胞转录、翻译成分的协助下瞬时表达 T- DNA 基因, 通常在数小时后即可检测到外源基因的 表达, 并在1~2 d 内达到最高值。而少量整合进植物 染色体的T-DNA在瞬时表达中不起作用或极为微弱。

20 【终版】农杆菌介导的烟草转gfp基因(叶盘法)

20 【终版】农杆菌介导的烟草转gfp基因(叶盘法)

1 实验背景什么是“植物转基因技术”“转基因植物”?植物转基因技术:把从动物、植物或微生物中分离获得的目的基因,或者经过修饰的目的基因,通过各种方法转移重组到植物基因组内,使之稳定遗传并赋予植物新的遗传性状的方法。

转基因植物:通过植物转基因技术获得的、整合有外源基因的植物个体。

1 实验背景为什么要进行植物转基因?优势:◆农业:生产抗逆、高产、优质、抗病虫、除草剂、营养品质改良等优良性状的作物;遗传育种等。

◆制药、化工等:可作为生物反应器,生产药用蛋白和有用次生代谢物,或生产某些有机化合物等。

◆园艺:美化生活等,如蓝玫瑰等。

◆科学研究:生物学、遗传学等多领域基础研究等。

1 实验背景怎样将外源基因转入植物?间接转化法(载体介导)病毒介导法农杆菌介导法(双子叶/单子叶)种质系统介导法胚囊和子房注射法生殖细胞侵染法花粉管通道法直接转化法物理法化学法基因枪法(单子叶植物)显微注射法电击法超声波法PEG 法脂质体法1 实验背景各种转基因方法的区别是什么?(引自崔广荣,2003)1 实验背景针对不同植物,怎样选择转基因方法?目前转基因植株中,约80%以上通过“农杆菌介导转化法”获得。

植株特点首选方法备注对农杆菌敏感农杆菌介导法效率高,方法成熟,转基因植株遗传稳定。

原生质体培养容易直接转化法(如PEG 法)转化率高,可克服转基因植株嵌合体的难题。

多胚珠花粉管通道法提高转化率子房中有较大单胚珠植物(如核果类)显微注射法提高转化率转化难度大的植物基因枪法其它方法不可行时的备选放射性农杆菌发根农杆菌Agrobacterium rhizogenes根瘤农杆菌Agrobacterium tumefaciens旋钩子农杆菌1 实验背景农杆菌为什么能够介导基因转入植物?土壤农杆菌革兰氏阴性菌RiTi 质粒(tumor inducing plasmid )约150~200 kb向植物细胞传递外源基因Ti1 实验背景农杆菌为什么能够介导基因转入植物?Vir 区:毒性区,包含多个致病基因,能激活T-DNA 的加工、剪切、复制及转入植物细胞,并使农杆菌表现出毒性。

农杆菌转化法基本操作与理论

农杆菌转化法基本操作与理论

精选课件
2
二、原理
农杆菌主要有两种:根癌农杆菌和发根农杆菌。
根癌农杆菌能在自然条件下趋化性地感染140多种双子叶 植物或裸子植物的受伤部位,并诱导产生冠瘿瘤。引发冠瘿瘤 的原因是,Ti质粒上的T-DNA上有8个左右的基因在植物细胞内 表达,指导合成一种非常寻常的化合物冠瘿碱,进而引起转化 细胞癌变。而发根农杆菌则诱导产生发状根,其特征是大量增 生高度分支的根系。根癌农杆菌的Ti质粒和发根农杆菌的Ri质 粒上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可 将T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植 物遗传转化体系,被誉为“自然界最小的遗传工程师”。可以 通过将目的基因插入到经过改造的T-DNA区,借助农杆菌的感 染实现外源基因向植物细胞的转移和整合,然后通过细胞和组 织培养技术,得到转基因植物。
农杆菌介导转化法
生物技术08பைடு நூலகம்1 梁荣洪
精选课件
1
一、简介
农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌, 它能在自然条件下趋化性地感染大多数双子叶植物的受伤 部位,并诱导产生冠痪瘤或发状根。根想农杆菌和发根农 杆菌细胞中分别含有Ti质粒和Ri质粒,其上有一段T—DNA, 农杆菌通过侵染植物伤口进入细胞后,可将T—DNA插入 到植物基因组中。因此,农杆菌是一种天然的植物遗传转 化体系。人们将目的基因插入到经过改造的T—DNA区, 借助农杆菌的感染实现外源基因向植物细胞的转移与整合, 然后通过细胞和组织培养技术,再生出转基因植株。农杆 菌介导法起初只被用于双子叶植物中,近年来,农杆菌介 导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应 用。
精选课件
3
三、操作方法
1、获取目的基因。用限制酶切割下目的基因。 2、基因表达载体的构建。将目的基因与载体(大多 数选用质粒)用DNA连接酶连接起来。 3、将目的基因导入受体细胞。将含目的基因的重组 质粒导入农杆菌(农杆菌为受体细胞)。 4、目的基因的检测与鉴定。用DNA分子杂交技术/分 子杂交技术/抗原-抗体杂交/个体生物学 几种方法 进行检验(根据要求选取不同方法)。 5、最后将成功表达的细胞导入植物体内,对植物体 进行个体生物学水平鉴定。

农杆菌介导法

农杆菌介导法

农杆菌介导的高效水稻遗传转化体系的研究A Highly Efficient Agrobacterium - mediated Rice Transformation Method水稻是基因组研究的模式植物 ,近年来水稻基因组研究取得了很大进展 ,构建了遗传图谱和物理图谱 ,完成了籼稻和粳稻的全基因组草图测2 - 3序 ,以及第 1 号和第 4 号染色体的精细测4 - 5序 ,并对第 10 号染色体的结构进行了详细分析。

在此基础上 ,各实验室大规模地 ,系统地进行水稻功能基因研究 ,普遍采用的研究手段是基因标签技术。

基因标签技术包括 T - DNA 和转座子标签 ,创建大量的基因标签体是功能基因研究的材料平台。

而根癌农杆菌介导的水稻遗传转化是水稻基因标签技术中的重要步骤之一。

本研究完善了根癌农杆菌介导的水稻转化方法 ,以期为水稻功能基因研究提供丰富材料 , 为水稻重要农艺性状的改良开辟途径。

1材料以水稻品种日本晴(Oryza sativa L. ssp.japonica)为试验材料。

菌株类型为 EHA105 超毒力菌株 ,载体为增强子捕获载体 pFX- E24. 2 - 15R(见图 1) ,载体上带有 GUS报告基因、35 S的 CaMV 启动子序列和潮霉素选择标记基因(HYG) 。

农杆菌菌株为EHA105。

2方法2.1水稻愈伤组织的诱导诱导方法参照 HIEI7等。

将日本晴水稻种子去壳 ,用 75 %乙醇灭菌 5min ,再用2. 5 %的次氯酸钠灭菌处理不同时间(40min ,37 min ,30 min 和 25 min) ,以确定最佳灭菌时间 ,灭菌后用无菌水冲洗 6~8 次 ,于 MS 固体培养基上28 ℃避光培养 ,30 d 后 ,将愈伤组织进行继代培养 ,得到胚性愈伤组织。

2.2农杆菌转化愈伤组织用 AB 固体培养基+氯霉素 25 mg/L + 利福平 20 mg/L + AS 20 mg/L培养农杆菌 ,在20 ℃下培养5~6 d。

农杆菌转化原理及技术

农杆菌转化原理及技术

农杆菌侵染过程
❖ 损伤的植物细胞产生植物酚类作为农杆菌的侵染信号;
❖ 这些化学诱导物透过农杆菌的细胞膜,活化virA和 virG 基因,再诱导Vir区的其他基因;
❖ Vir基因的活化,作用于T-DNA的加工及T-DNA的转移; ❖ T-DNA进入植物细胞后整合到核DNA上; ❖ T-DNA在植物细胞中表达产生冠瘿碱及植物激素; ❖ 农杆菌Ti质粒上有专一性的冠瘿碱分解酶基因(ocs),该基
❖ 5.愈伤组织的筛选
❖ 将愈伤转移至选择培养基筛选抗性愈伤,每两周转 接1次。
抗性愈伤
非抗性愈伤
❖ 6.抗性愈伤组织的继代与植株的再生
❖ 每两周将愈伤转移至新选择培养基上,约需三周即 可见瘤状鲜黄色抗性愈伤从褐化干瘪的愈伤中长出。 待愈伤长大后挑选抗性愈伤的一部分转移至分化培 养基上。2周后愈伤开始转绿,3周后即可长出幼芽, 随后根也长出。将幼苗移至生根培养基上,每培养 瓶1个克隆。待幼苗生根长成后,移出培养瓶,洗 净根上的培养基后,移至温室盆栽。
❖ 1.诱导培养基:NB+2,4-D2 mg·L-1 ;pH 5.8-5.9。 ❖ 2.预培养培养基:NB+2,4-D2 mg·L-1 ;pH 5.8-5.9。 ❖ 3.共培养培养基:NB+2,4-D2 mg·L-1 +AS100 µM·L-1 ;pH 5.2。 ❖ 4.选择培养基:NB+2,4-D 2mg·L-1 + 羧苄青霉素 250mg·L-1 + Hyg
+ cytokinin
This procedure is easy for dicotyledone plants
(legumes etc)
Agrobacterium tum efaciens

农杆菌介导转基因的原理

农杆菌介导转基因的原理

农杆菌介导转基因的原理?转基因技术的飞速发展为生物定向改良和分子育种提供了一种较佳的方法,并使其成为基因工程和育种的最有效途径,目前应用较广泛的转基因技术有农杆菌介导法、花粉通道法、显微注射法、基因枪法、离子束介导法等等,其中农杆菌介导法以其费用低、拷贝数低、重复性好、基因沉默现象少、转育周期短及能转化较大片段等独特优点而备受科学工作者的青睐。

农杆菌介导法主要以植物的分生组织和生殖器官作为外源基因导入的受体,通过真空渗透法、浸蘸法及注射法等方法使农杆菌与受体材料接触,以完成可遗传细胞的转化,然后利用组织培养的方法培育出转基因植株,并通过抗生素筛选和分子检测鉴定转基因植株后代。

农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。

根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。

因此,农杆菌是一种天然的植物遗传转化体系。

人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。

农杆菌转化的详细机理已有大量综述, 并介绍新进展. 野生型根癌农杆菌能够将自身的一段DNA转入植物细胞. 因为转入的这一段DNA含有一些激素合成基因, 因而导致转化细胞自身激素的不平衡从而产生冠瘿瘤. 这些致瘤菌株都含有一个约200 kb的环状质粒, 被称为Ti(tumor inducing)质粒, 包括毒性区(Vir 区)、接合转移区(Con区)、复制起始区(Ori区)和T-DNA区4部分. 其中与冠瘿瘤生成有关的是Vir区和T-DNA区. 前者大小为30 kb, 分virA~J等至少10个操纵子, 决定了T-DNA的加工和转移过程. T-DNA可以将携带的任何基因整合到植物基因组中, 但这些基因本身与T-DNA的转移与整合无关, 仅左右两端各25 bp的同向重复序列为其加工所必需, 其中14 bp是完全保守的, 分10和4 bp不连续的两组. 两边界中以右边界更为重要.VirA作为受体蛋白接受损伤植物细胞分泌物的诱导, 自身磷酸化后进一步磷酸化激活VirG蛋白; 后者是一种DNA 转录活化因子, 被激活后可以特异性结合到其他vir基因启动子区上游的一个叫vir框(vir box)的序列, 启动这些基因的转录. 其中, virD基因产物对T-DNA进行剪切, 产生T-DNA单链. 然后以类似于细菌接合转移过程的方式将T-DNA与VirD2组成的复合物转入植物细胞], 在那里与许多VirE2蛋白分子(为DNA单链结合蛋白)相结合, 形成T链复合物(T-complex). 在此过程中VirE1作为VirE2的一个特殊的分子伴侣具有协助VirE2转运和阻止它与T-DNA链结合的功能. 实验表明, 转基因植物产生的VirE2蛋白分子也能在植物细胞内与VirD2-T-DNA形成T链复合物. 之后, 这一复合物在VirD2和VirE2核定位信号(NLS)引导下以VirD2为先导被转运进入细胞核. 转入细胞核的T-DNA以单或多拷贝的形式随机整合到植物染色体上. 研究表明T-DNA优先整合到转录活跃区, 而且在T-DNA的同源区与DNA的高度重复区T-DNA的整合频率也比较高. 整合进植物基因组的T-DNA也有一定程度的缺失、重复、填充和超界等现象发生, 例如在用真空渗透法转化的拟南芥中有66%出现超界现象, 甚至有整个Ti质粒整合进植物基因组的报道, T-DNA超界转移现象的机理尚不完全清楚, 可能与其左边界周边序列有关.现在, 对农杆菌感染过程中其本身因子的转录与调控已研究得相当深入, 但是对被感染植物细胞中有关的分子过程以及作用机理知之甚少, 尽管已经有许多工作表明农杆菌的侵染与植物的基因型有关. 最近人们用拟南芥菜(Arabidopsis)研究这一问题, 取得了可喜的成就. 利用T-DNA插入突变, 有人分离出一些农杆菌感染缺陷的拟南芥菜突变体. 在这些突变体中, 农杆菌感染的阻断有的发生在感染早期, 表现为农杆菌向根部附着的频率降低, 有的则发生在随后T-DNA向植物细胞核转运和整合的过程中. 对这些突变体做进一步的研究, 无疑对弄清植物细胞在农杆菌侵染过程中所参与的因子有很大的帮助. 利用酵母双杂交系统(yeast two hybrid system), 研究者从拟南芥菜cDNA文库中分离出了和VirD2和VirE2特异互作的蛋白质, 如AtKAPa 和VirD2的核定位信号(NLS)特异结合, 转运T-链复合物到细胞核中; 另有几种被称为亲环素(cyclophlins), 能和VirD2和VirE2的非NLS结合, 详细功能尚不十分清楚. 关于T-DNA向基因组的整合, 虽然拟南芥菜uvh1基因一度被认为与此有关, 但是近来Preuss等人[22]证明, uvh1突变体在T-DNA的整合上与野生型农杆菌没有什么区别; 需要注意的是前者使用根为外植体, 而后者在拟南芥菜开花期使用真空渗透法, 被感染的是生殖细胞, 因此它们之间很可能并非是简单的否定关系, 而仅仅反映了有关的基因产物具有组织表达的特异性. 由这些结果看来, 不少植物因子直接参与了T-DNA在植物细胞中的转移和整合过程. 由于农杆菌在转化很不相同生物(真菌、裸子植物和单、双子叶被子植物)时自身内的转录调控过程基本相同, 因此发生在被感染细胞中的分子过程就成为决定农杆菌转化能否成功的最终因素, 所以对其进行研究对扩大农杆菌宿主范围具有重要意义.根癌农杆菌的Ti质粒上有一段转移DNA(T-DNA),具有向植物细胞传递外源基因的能力,而细菌本身并不进入受体细胞。

农杆菌介导的大豆的转化

农杆菌介导的大豆的转化

将预培养 的外植体 放入菌液 中浸染
100rpm, 30min
(5)共培养
❖ 浸染结束后,使用无菌滤纸清除外植体表面多余菌 液,将外植体子叶内面向下平放在表面附有灭菌滤 纸的共培养培养基中进行培养,用 Parafilm 封口, 置于培养室中,温度 24℃,光照时间18小时,共培 养 5天。
共培养培养基
首先获得愈伤组织并诱导成苗,得到再生植株
具体操作步骤
(1)大豆种子的消毒
选取种皮光滑无病斑、无裂痕、无霉变的成熟大豆种子,采 用氯气熏蒸法进行消毒。 ❖ 1. 将种子放入培养皿,将培养皿放入通风橱的干燥器中; ❖ 2. 在干燥器的烧杯中加入100mL
次氯酸钠溶液; ❖ 3. 沿烧杯壁加入4mL浓度
取出外植体
在无菌滤纸 上吸干菌液
Co-culture
(6)生芽诱导
❖ 使用丛生芽诱导液体培养基(含抑菌抗生素)清洗共培养后 的外植体,浸泡 30分钟后,用滤纸吸取表面多余液体培养 基,将子叶内面向上倾斜 30-45度角插入芽诱导培养基 (Shoot Induction Medium I, SIM-I)中,每皿8-10个外植体。 将培养皿置于温度25℃,光照18h的培养室中,培养两周。 将外植体取出,用刀片除去顶芽,保留丛生芽,在下胚轴包 埋面下方进行切面处理,露出新鲜的组织。将外植体插入芽 诱导培养基(Shoot Induction Medium II, SIM-II)中,每皿 8-10个外植体。将培养皿置于温度25℃,光照时数18h培养 室,培养两周。
autoclaving. Pour into sterile 150x25 mm vial (10 ml/vial).
Rooting
(三)转基因植物的检测鉴定方法

农杆菌介导的植物转基因技术

农杆菌介导的植物转基因技术

农杆菌介导的植物转基因技术
农杆菌介导的植物转基因技术(Agrobacterium-mediated plant transformation)是一种常用的植物遗传转化技术。

该技术利用农杆菌(Agrobacterium tumefaciens)作为载体,将外源基因
导入目标植物细胞,使其产生转基因植物。

农杆菌天然具有植物细胞转化的能力。

当农杆菌感染植物时,其携带的质粒(T质粒)能够在植物细胞中插入外源基因,并
将其转化为转座子形式,随后将其整合入宿主植物基因组中。

转座子通常包含目标基因、转座酶和调控序列,它们共同确保外源基因正确表达。

T质粒还携带有自身所需的发育激素和植
物生长调节物质,以维持转化后细胞的生存和分裂。

农杆菌介导的植物转基因技术具有许多优点。

首先,它可以用于许多不同植物物种的基因转化。

其次,该技术可以实现整株或局部的基因转化,包括细胞、组织、器官或整个植株。

此外,农杆菌介导的转基因技术可实现稳定遗传转化,外源基因可以遗传到植物后代中。

最后,该技术对植物基因组中的特定位点插入外源基因,使得外源基因可以与内源基因进行正常结合。

随着转基因技术的不断发展,农杆菌介导的植物转基因技术仍然广泛应用于研究和农业生产领域。

它为植物功能研究、抗病虫害、提高产量和改善品质等方面提供了有效手段。

然而,农杆菌介导的转基因技术也面临着一些挑战,如转化效率低、插入位点随机性以及响应植物抗性等问题。

因此,研究人员不断探索新的转基因技术和改进农杆菌介导的植物转基因技术的方法,以改善转基因植物的性状和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因此,农杆菌是一种天然的植物遗传转化体系。人 们将目的基因插入到经过改造的T-DNA区,借助农杆菌的 感染实现外源基因向植物细胞的转移与整合,然后通过 细胞和组织培养技术,再生出转基因植株。
农杆菌介导法起初只被用于双子叶植物中,近年来, 农杆菌介导转化在一些单子叶植物(尤其是水稻)中也 得到了广泛应用。
长度:160-250 kb 6大功能区: 1)致癌区,这个区主要合成植物
生长素和细胞分裂素; 2)冠瘿碱合成区; 3)冠瘿碱分解区; 4)Ti质粒接合转移区(tra); 5)毒性区(Vir); 6)DNA复制区(Rep)。
T-DNA
在致癌区和冠瘿碱合成区的两侧 存在着一个24 bp直接重复序列, 由这三部分所构成的DNA区域叫 做T-DNA, 插入植物染色体中的Ti质粒片段 只有T-DNA。 由于T-DNA插入植物细胞染色体 中的位置不相同的,因此植物染 色体上可能并没有可供T-DNA插 入的专一性DNA序列。
农杆菌介导转化法
农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌, 它能在自然条件下趋化性地感染大多数双子叶植物的受伤 部位,并诱导产生冠瘿瘤或发状根。
农杆菌 感染柳树
产生 冠瘿瘤
原理: 根癌农杆菌和发根农杆菌细胞中分别含有Ti质粒和
Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口 进入细胞后,可将T-DNA插入到植物基因组中。
1974年,Zaenen et al, Schell, Van Larebeke et al. 从致瘤农杆菌中分离出一类巨大的质粒 (tumor inducing plasmid),称为Ti质粒。 Ti=TIP
1977年,Chilton et al.分子杂交技术证实肿瘤细胞中存 在外源的DNA ,与Ti质粒的DNA有同源性,是整 合到了植物染色体的农杆菌质粒DNA片段, T- DNA (transferred DNA),其内有致瘤和冠瘿 碱合成酶等基因。
DNA 区 左 侧 , 包 含 义 个 毒 性 遗 传 点 ( virA 、 vir B 、 virC、 virD、virE和virG)。
vir基因的控制着T-DNA的转移。
virE virD virC virG virB virA
植物细胞受伤后,细胞壁破 裂,分泌物中含有高浓度的 创伤诱导分子(酚类化合 物):如乙酰丁酮 (acetosyringone,AS)和 α-羟基酰丁香酮(αhydroxacetosyringone,OHAS)。 根癌农杆菌对这一类物质具 有趋化性,在植物细胞表面 附着后,受这些创伤诱导分
1981年,Ooms et al.发现Ti质粒上有致瘤区(virulence region),Vir区。
Ti质粒
Ti质粒是根癌农杆菌 细胞核外存在的一种 环状双链DNA分子,长 度约200kb,平均周长 54.1-75 .4 um,分 子质量为(90-150) ×106 Da。在温度低 于30℃的 条件下,Ti 质粒可稳定地存在于 根癌农杆菌细胞内。
T-DNA 区域中的这些基 因 只 有 在 T-DNA 插 入 到 植物基因组后才能激活 表达. 植物生长素和细胞分裂 素,可调节植物细胞的 生长和发育,它们的过 量表达刺激植物细胞大 量快速增长而形成冠瘿。
冠瘿碱也是在细胞内合 并成分泌出来的,构成 根癌农杆菌生长所须的 碳源和氮源.
Vir区
Vir区(Vir-region),即毒性区,其长度约为35kb。 它们控制根癌农杆菌附着于植物细胞和Ti质粒进入细 胞 有 关 部 位 , 与 感 染 后 冠 瘿 形 成 有 关 。 Vir 区 位 于 T-
脂碱型根癌农杆菌Ti质粒中 T-DNA的左右两侧是一段24bp 的重复序列,构成T-DNA的边 界序列(border sequence), 分别称为左边界(left border,LB)和右边界(right border,RB).在某些章鱼碱型 根癌农根癌农杆菌Ti质粒中 T-DNA是以两个分开的独立片 段形式存在,即T-DNA左边区 段和T-DNA右边区段。研究表 明,插入在T-DNA边界序列之 间的任何DNA都可被转到植物 染色体中。因此Ti质粒可用 做外源目的基因的载体。
Story 冠瘿瘤病:双子叶植物经常发生,因肿瘤着生地面在近地面
的根茎交界处,形似帽状而得名。 1907年, Smith & Townsent 农杆菌诱发冠瘿瘤病。 1947年, Braun et al. 证实俩者的关系,但发现有的菌株不
致病。提出了假说:tumour-inducing principle,TIP.肿瘤 诱导因子 。 60’s , 肿瘤组织中含高浓度的氨基酸(octopine , nopaline) 总称冠瘿碱(opine) 。 Petit et al.证实肿瘤组织 合成的冠瘿碱取决于菌株,而且菌株能专一地利用 冠瘿碱作为菌株生存的唯一的碳源和氮源。(证实了TIP)
的冠瘿碱类型分为三类:章鱼碱(octopine)类 胭脂碱(nopaline)类 农杆碱(agropine) 类。
Ti质粒携带着既能分解又能合成这些化合物的酶类和相应 基因,然而冠瘿碱合成基因却不能在根癌农杆菌中表达, 它们只有进入植物细胞后才能表达,Ti质粒上的冠瘿碱分 解基因产物却能分解冠瘿碱,为宿主细胞提供能源、氮源 和碳源。
子的刺激,Ti质粒vir区毒性
基因被激活和表达。
目前已经发现9种信号因子,均为水溶性酚类化合物。 其中乙酰丁香酮(acetosyringone,AS)和羟基乙酰丁 香酮(OH-AS)的作用较强,儿茶酚、原儿茶酚、没食 子酸、焦性没食子酸、二羟基苯甲酸、质粒除上述上述诱导受侵染的植物组织产生冠瘿瘤 外, 还具有以下几种重要功能:
赋予根癌农杆菌附着于植物细胞的能力; 赋予根癌农杆菌分解代谢冠瘿碱的能力; 根癌农杆菌的寄主植物范围; 决定所诱导的冠瘿形态和冠瘿碱的成分; 参与寄主细胞合成植物激素吲哚乙酸和一些细胞分裂素 的代谢活.
1) Ti质粒的结构 来自于不同野生型根癌农杆菌的Ti质粒可根据其产生
相关文档
最新文档