三角形的内切圆

三角形的内切圆
三角形的内切圆

例 如图,△ABC 的内心为I ,外心为O ,且∠BIC=115°,求∠BOC 的度数. 解:∵I 为△ABC 的内心, ∴∠IBC=

21∠ABC ,∠ICB=2

1

∠ACB . ∴∠IBC+∠ICB=180°-∠BIC=180°-115°=65°.

∴∠ABC+∠ACB=130°. ∴∠A=180°-(∠ABC+∠ACB )=50°.

又O 是△ABC 的外心,∴∠BOC=2∠A=100°

说明:(1)此题为基本题型;(2)此题可得:∠BIC=90°+

2

1

∠A ;∠BOC=4∠BIC-360°. 例 已知,在Rt △ABC 中,∠C=90°,AB=5,AC=4,求直角三角形内切圆的半径的长. 分析:利用分割三角形,通过面积建立含内切圆半径的方程求解. 解:由勾股定理得:322=-=

AC AB BC

连结OA 、OB 、OC ,设⊙O 的半径为r ,则:

r CA BC AB S ABC )(21++=

△,又BC AC S ABC ?=21

△. ∴BC AC r CA BC AB ?=++2

1

)(21, ∴14353

4=++?=++?=CA BC AB BC AC r .

答:直角三角形内切圆的半径为1. 说明:(1)此题为基本题目;(2)三角形内切圆性质的应用,通过面积求线段的长度.

例 (陕西省,2001)如图,点I 是△ABC 的内心,AI 的延长线交边BC 于D ,交△ABC 的外接圆于点E .

(1)求证:IE=BE ;

(2)若IE=4,AE=8,求DE 的长. 证明:(1)连结BI ,

∵∠BIE=∠BAI+∠ABI=

21

(∠BAC+∠ABC ), ∠IBE=∠IBC+∠EBC=21∠ABC+∠EAC=2

1

(∠ABC+∠BAC ),

∴∠BIE=∠IBE

∴IE=BE 解:(2)∵I 是△ABC 的内心,∴∠BAE=∠CAE , 又∵∠DBE=∠CAE ,

∴∠BAE=∠DBE ,又∵∠E 为公共角, ∴△ABE ∽△BDE ,∴

DE

BE BE AE =,∴DE AE BE 2

?= ∴DE AE IE 2

?=,∴28

4AE IE DE 2

2===. 说明:(1)本题应用了三角形内心的性质、等腰三角形的性质及判定、圆周角定理的推

论、相似三角形等;(2)本题为教材117页12题和B 组第3题的变形与结合;(3

)本题为

A

B

C

D E

I

中档题.

填空题

1. 等边三角形的边长为4,则外接圆的半径为________,内切圆半径为______,内切圆半径:高:外接圆半径=__________.

2. ABC ?中,内切圆与AB ,BC ,CA 相切于F ,D ,E ,若?=∠40A ,则

______=∠EOF ,______=∠EDF ,______=∠BOC .

3. ABC ?的?=∠50A ,?=∠80B ,O 是ABC ?的内心,则______=∠AOB .

4. 内切圆的半径为r 的等边三角形的面积为_________

5. 在ABC ?中,若?=∠90C ,?=∠30A ,3=AC ,则内切圆的直径为________.

6.若ABC ?的BC 边上的高为AH ,BC 长为cm 30,直线BC DE //交AB 、AC 分别为D 、

E ,以DE 为直径的半圆与BC 切于

F ,若此半圆的面积是2c 18m π,则m AH c _____=.

7. 在ABC ?中,I 为内心,若?=∠70A ,则_______=∠BIC .

8. 已知:等边三角形的边长为4,则它的内切圆与外接圆组成的圆环面积是________. 答案: 1.

334,332,3:2:1 2. ?140,?170,?110 3. ?115 4. 233r 5. 33- 6. 10 7.?125 8. π4.

选择题

1、下列图形中,一定有内切圆的四边形是( )

(A )梯形 (B )菱形 (C )矩形 (D )平行四边形 2、 菱形ABCD 中,周长为40,∠ABC=120°,则内切圆的半径为( ) (A )

332 (B )232 (C )225 (D )32

5 3、如图,⊙O 是△ABC 的内切圆,D 、E 、F 是切点,∠A=50°,∠C=60°,则∠DOE=( )

(A )70° (B )110° (C )120° (D )130° 4、等边三角形的内切圆半径、外接圆的半径和高的比为( )

(A )1∶2∶3 (B )1∶2∶3 (C )1∶3∶2 (D )1∶2∶3 5、存在内切圆和外接圆的四边形一定是( )

(A )矩形 (B )菱形 (C )正方形 (D )平行四边形 参考答案:BDBDC

解答题

B

1. 画一个边长为3cm 的等边三角形,在画出它的内切圆.

2.(山西省,1998)如图,已知点I 为△ABC

的内心,射线AI 交△ABC 的外接圆于点D ,交BC 边于点E . (1)求证:ID=BD ;

(2)设△ABC 外接圆半径R=3,ID=2,AD=x ,DE=y ,当点A 在优弧

上运动时,求函数y 与自变量x 间的函数关系

式,并指出自变量的取值范围.

3.已知点I 为ABC ?的内心,如果?=∠+∠100ACB ABC ,求BIC ∠的度数。 4.已知:⊙O 的半径为R ,求它的外切等边三角形的周长和面积。

5.如图,ABC ?Rt 的内切圆⊙O 切斜边AB 于点D ,切BC 于点F ,BO 的延长线交AC 于点E ,求证:BE BD BC BO ?=?

6.如图,在ABC ?中,BC AC =,E 是内心,AE 的延长线交ABC ?的外接圆于D ,求证:(1)AE BE =,(2)

ED

AE

AC AB =

答案: 1. 略

2. 提示:(1)与典型例题2一样;(2)由DE AD ID 2

?=,∴x

4

y =,∵BD

4.R 36,2

33R

5.连结OD ,OF 证BOD ?∽BEC ? 6.(1)证CBA CAB ∠=∠(2)证ABC ?∽EBD ?

问题:如图1,有一张四边形ABCD 纸片,且AB=AD=6cm ,CB=CD=8cm ,∠B=90°. (1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm );

(2)计算出最大的圆形纸片的半径(要求精确值).

A

B

C

D

E I

提示:(1)由条件可得AC 为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:

如图2,①以AC 为轴对折;②对折∠ABC ,折线交AC 于O ;③使折线过O ,且EB 与EA 边重合.则点O 为所求圆的圆心,OE 为半径.

(2)如图3,设内切圆的半径为r ,则通过面积可得:6r+8r=48,∴r=7

24.

A

B C

D A

C

A

C

(图1) (图2) (图3)

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角形内切圆半径公式_数学教案-三角形的内切圆

三角形内切圆半径公式_数学教案-三角形的内切圆 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一. 难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好. 2、教学建议 本节内容需要一个课时. (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质; (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学. 教学目标: 1、使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念; 2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力; 3、激发学生动手、动脑主动参与课堂教学活动. 教学重点: 三角形内切圆的作法和三角形的内心与性质. 教学难点: 三角形内切圆的作法和三角形的内心与性质. 教学活动设计 (一)提出问题 1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?

2、分析、研究问题: 让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义. 3、解决问题: 例1 作圆,使它和已知三角形的各边都相切. 引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法. 提出以下几个问题进行讨论: ①作圆的关键是什么? ②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件? ③这样的点I应在什么位置? ④圆心I确定后半径如何找. A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成. 完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个. (二)类比联想,学习新知识. 1、概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2、类比: 名称 确定方法 图形 性质 外心(三角形外接圆的圆心) 三角形三边中垂线的交点 (1)OA=OB=OC; (2)外心不一定在三角形的内部.

任意三角形的外接圆与内切圆半径的求法

任意三角形的外接圆与内切圆半径的求法 圆与三角形有着密不可分的关系,对于任意一个三角形来说,三角形是圆的内接三角形或是外切三角形。而对于圆来说,三角形必定有它的外接圆和内切圆。那么三角形的各边数量关系与其对应的圆的半径有着怎样的一种关系呢?下面就上述问题作一探索。 一、特殊三角形―――直角三角形的外接圆和内切圆半径的求法。 例1、已知R t △ABC 中,∠C =900,AB =13,AC =5,BC =12,求外接圆半径R 和内切圆半径r 值。 解:由题意得;2132==c R ;22 131252=-+=-+=c b a r 。 二、非特殊三角形的外接圆和内切圆半径的求法。 例2、已知△ABC 中,AB =13,AC =14,BC =15,求外接圆半径R 和内切圆半径r 值。 解:如图:作BC 边上的高线AD ;设BD =x ,则CD =15-x 。由勾股定理得:AD 2=AB 2-BD 2=AC 2-CD 2, 即:()2222151413x x --=-,得x=5 33; 再得:AD =5 56, 1、先求内切圆半径: 根据()r c b a s ABC ++= ?21 得:()r 1514132 15561521++=?? 得: r =4 ; 2、作△ABC 的外接圆⊙O ,连接AO 并延长交⊙O 于 E ,连接CE 。则△ABD ∽△AEC , 则AC AD AE AB = ,即14 556 213=R ,得R =865。 例3、已知△ABC 中,AB =13,AC =25,BC =17,求 外接圆半径R 和内切圆半径r 值。

解:如图:作BC 边上的高线AD ;设BD =x ,则CD =17-x 。由勾股定理得:AD 2=AB 2-BD 2=AC 2-CD 2, 即:()()2222172 513x x --=-,得x=12; 再得:AD =5, 1、先求内切圆半径: 根据()r c b a s ABC ++= ?21 得:()r 2517132151721++=?? 得: r =2 26- ; 2、作△ABC 的外接圆⊙O ,连接AO 并延长交⊙O 于E ,连接CE 。则△ABE ∽△ADC , 则AC AE AD AB = ,即252513R = ,得R =2 213。 三、小结 例2和例3中,求三角形内切圆半径是通过()r c b a s ABC ++= ?21公式,根据三角形的面积和周长来达到目的。 求三角形外接圆半径是通过三角形相似来计算的。它们有一共同的特征就是要求出一条边上的高线。 例2和例3中的三角形分别是锐角三角形和钝角三角形,为了避免在计算中分类的问题,可统一为选择最长的一边为底边,再计算这条边上的高线即可,这时就不需考虑这个三角形是锐角还是钝角三角形的问题。 2009-1-6

AutoCAD绘制三角形的内切圆

绘制三角形的内切圆 一、教学目标 1.掌握直线段的基本绘制方法。 2.掌握圆的绘制方法。 3.掌握对象捕捉的设置。 二、任务分析 每一张机械图样都是由简单的基本图形元素组成的,包括直线、圆、圆弧、矩形等,在AutoCAD 2007中掌握这些基本图形的画法是整个CAD绘图的基础。本任务将通过绘制如图2-1所示的“三角形内切圆”介绍在AutoCAD 2007中直线和圆的绘制方法以及精确捕捉绘图辅助工具的使用。 图2-1 三角形内切圆 三、实践操作 1.选择下拉菜单“文件”|“新建”命令,新建一个“无样板公制”(acadiso)文件。 2.绘制任意三角形 (1)单击“绘图”工具栏的按钮,启动直线命令绘制第一条直线,命令行的显示操作如下: 命令: _line 指定第一点: // 移动鼠标光标在绘图区适当位置单击鼠标左 键拾取一点,作为直线的起点指定下一点或[放弃(U)]: // 移动鼠标光标在绘图区适当位置单击鼠标 左键拾取一点,作为直线的终点指定下一点或[放弃(U)]: // 按下回车键。结束操作,绘制结果如图2-2所示。

图2-2 第一条直线 (2)设置对象捕捉 “对象捕捉”功能是专用于精确捕捉图形对象特征点的工具,具体设置步骤如下: 1)移动鼠标光标到“状态栏”的按钮上,单击鼠标右键,系统弹出如图2-3所示下拉菜单。 图2-3 设置菜单 2)单击“设置”选项,系统会弹出“草图设置”对话框,此时系统在“对象捕捉”状态下。 3)在对话框上分别单击特征点选项前面的小方格,使系统默认的对象特征点“中点”“圆心”“延伸”“最近点”处于未选中状态(方格为是选中状态)。设置结果如图2-4所示。

三角形的内切圆——与内切圆半径有关的计算

B 三角形的内切圆 ——与内切圆半径有关的计算 【学习目标】 1.理解三角形内切圆的有关概念。 2.掌握三角形的内心的位置、数量特征。 3.会求三角形的内切圆半径,会利用内心的相关性质解决计算问题。 【预备知识】 1.内切圆的有关概念 _________________________叫做三角形的内切圆,圆心叫做三角形的内心,三角形的内心是__________________________的交点。 2.内切圆的性质 (Ⅰ)内心的性质:_____________________________的距离相等。 (Ⅱ) 设S 是△ABC 面积,a, b ,c 是三角形三边长,r 为三角形 内切圆半径,则三角形面积与其内切圆半径的关系为:S=______________ 3. 切线长定理 这一点和切点之间的线段长叫做这点到圆的切线长。从圆外一 ________________________________。 C

【中考衔接】 (天津中考)已知Rt △ABC 中,∠ACB =90°,AC =6,BC =8。 (Ⅰ)如图①,若半径为r 1的⊙O 1是Rt △ABC 的内切圆,求r 1; (Ⅱ)如图②,若半径为r 2的两个等圆⊙O 1、⊙O 2外切,且⊙O 1与AC 、AB 相切,⊙O 2与BC 、AB 相切,求r 2; (Ⅲ)如图③,当n 大于2的正整数时,若半径r n 的n 个等圆⊙O 1、⊙O 2、…、⊙O n 依次外切,且⊙O 1与AC 、BC 相切,⊙O n 与BC 、AB 相切,⊙O 1、⊙O 2、⊙O 3、…、⊙O n -1均与AB 边相切,求r n . 拓展路径1: C B A C B A C B A 拓展路径2: C B A C B A C B A 小结: 类比,由特殊到一般,等面积转化。

三角形的内切圆(教学设计)

C B C B 4.7三角形的内切圆 【教师寄语】真正的聪明是能够忍辱负重。真正的智慧是懂得蓄势待发。真正的成功是最后掌声四起。真 正的阶梯是永远拼搏! 【学习目标】 1.理解三角形内切圆的概念,掌握三角形内切圆的性质,能准确辨析内心和外心的不同 2.掌握画三角形的内切圆的方法,能借助三角形内切圆的性质解决有关几何问题。 3.应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;通过获得成功的经验和克服困难的经历,增进学生数学学习的信心。 【学习过程】 一、情境创设 试一试: 一张三角形铁皮,如何在它上面截一个面积最大的圆形铁皮。 分析:①让学生展开讨论,教师指导学生发现,实际上是作一个圆,使它和已 知三角形铁皮的各边都相切. ②让学生展开充分的讨论,如何确定这个圆的圆心及半径? ③在此基础上,由学生形成作图题的完整过程。 二、探求新知 ⒈本课知识点: ⑴和三角形各边都相切的圆叫做 , 叫做三角形的内心,这个三角形叫做 . ⑵分别画出直角三角形和钝角三角形的内切圆. 小结:①一个三角形的内切圆是唯一的; ②内心与外心类比: 例1、如图,△ABC 中,内切圆I 和边BC 、CA 、AB 分别相 切于点D 、E 、F,∠B=60°,∠C=70°.求∠EDF 的度数。

C 三.再攀高峰 探究活动一 问题:如图,有一张三角形纸片,其中BC=6cm ,AC=8cm ,∠C =90°.今需在△ABC 中剪出一个半圆,使得此半圆直径在三角形一边上,并且与另两边都相切,请设计出所有可能方案,并通过计算说明如何设计使得此半圆面积最大,最大为多少? 探究活动二问题:如图1,有一张四边形ABCD 纸片,且AB=AD=6cm ,CB=CD=8cm ,∠B=90°. (1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径; (2)计算出最大的圆形纸片的半径(要求精确值). 四、达标测试 1.如图1,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,?连结OE ,OF ,DE ,DF ,那么 ∠EDF 等于( ) A .40° B .55° C . 65° D . 70° 图1 图2 图3 2.如图2,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A=50°,∠C=60°则∠DOE=( ) A .70° B .110° C .120° D .130° 3.如图3,△ABC 中,∠A=45°,I 是内心,则∠BIC=( ) A .112.5° B .112° C .125° D .55° 4.下列命题正确的是( ) A .三角形的内心到三角形三个顶点的距离相等 B .三角形的内心不一定在三角形的内部

任意三角形外接圆半径、内切圆半径的求法及通用公式

一、任意三角形外接圆半径 设三角形各边边长分别为a,b,c 外接圆半径为R ,(如右图所示) 则βαβαβαsin sin cos cos 2)cos(2 22-=-+= +ab c b a (余弦定理) 而R b R b 22cos ==α,R b R 4sin 22 - = α R a R a 22cos ==β,R a R 4sin 2 2 - = β 即有:=-+ab c b a 2222R a R R b R R a R b 442222 22 - ? --? 即有:2 22222222) 4)(4(R a R b R ab ab c b a ---= -+ 所以:)4)(4()( 222222 222 a R b R ab c b a R ab --=-+- 即有:2222242 2224 2 2 2 2 2 )(416)( 4)(4)(b a R b a R ab c b a R c b a R ab ++-=-++-+- 所以:])( 4[2 2222 2 ab c b a R c -+-=,即:])(4[2222222222c b a b a R c b a -+-= 所以:) )()()((a c b b c a c b a c b a abc R -+-+-+++= 而三角形面积: ))()()((4a c b b c a c b a c b a S -+-+-+++= (海伦公式) 所以,有:S abc R 4= ※ 另一求法,可用正弦定理,即:R A a 2sin =,而bc a c b A 2cos 222-+= 所以: 2 222222 2222)(4) 2(12) (cos 12sin 2a c b c b abc bc a c b a A a A a R -+-= -+-= -==

三角形外接圆与内切圆半径求法

三角形的外接圆与内切圆半径的求法 江苏省海安县曲塘镇花庄初中(226661)马金全 一、求三角形的外接圆的半径 1、直角三角形 如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边. 例1已知:在△ABC 中,AB =13,BC =12,AC =5 求△ABC 的外接圆的半径. 解:∵AB =13,BC =12,AC =5, ∴AB 2=BC 2+AC 2 , ∴∠C =90°, ∴AB 为△ABC 的外接圆的直径, ∴△ABC 的外接圆的半径为6.5. 2、一般三角形 ①已知一角和它的对边 例2如图,在△ABC 中,AB =10,∠C =100°, 求△ABC 外接圆⊙O 的半径.(用三角函数表示) 分析:利用直径构造含已知边AB 的直角三角形. 解:作直径BD ,连结AD. 则∠D =180°-∠C =80°,∠BAD =90° ∴BD = D sin AB =? 80sin 10 ∴△ABC 外接圆⊙O 的半径为 ? 80sin 5 . 注:已知两边和其中一边的对角,以及已知两角和一边,都可以利用本题的方法求出三角形的外接圆的半径. 例3如图,已知,在△ABC 中,AB =10,∠A =70°,∠B =50° 求△ABC 外接圆⊙O 的半径. 分析:可转化为①的情形解题. 解:作直径AD ,连结BD. 则∠D =∠C =180°-∠CAB -∠BAC =60°,∠DBA =90° ∴AD = D sin AB =?60sin 10=33 20 ∴△ABC 外接圆⊙O 的半径为 33 10 . ②已知两边夹一角 例4如图,已知,在△ABC 中,AC =2,BC =3,∠C =60° 求△ABC 外接圆⊙O 的半径. 分析:考虑求出AB ,然后转化为①的情形解题. 解:作直径AD ,连结BD.作AE ⊥BC ,垂足为E. 则∠DBA =90°,∠D =∠C =60°,CE =2 1 AC =1,AE =3, BE =BC -CE =2,AB =22BE AE +=7 A B C O A B C O D A B C O D A B C O D E

三角形的内切圆

例 如图,△ABC 的内心为I ,外心为O ,且∠BIC=115°,求∠BOC 的度数. 解:∵I 为△ABC 的内心, ∴∠IBC= 21∠ABC ,∠ICB=2 1 ∠ACB . ∴∠IBC+∠ICB=180°-∠BIC=180°-115°=65°. ∴∠ABC+∠ACB=130°. ∴∠A=180°-(∠ABC+∠ACB )=50°. 又O 是△ABC 的外心,∴∠BOC=2∠A=100° 说明:(1)此题为基本题型;(2)此题可得:∠BIC=90°+ 2 1 ∠A ;∠BOC=4∠BIC-360°. 例 已知,在Rt △ABC 中,∠C=90°,AB=5,AC=4,求直角三角形内切圆的半径的长. 分析:利用分割三角形,通过面积建立含内切圆半径的方程求解. 解:由勾股定理得:322=-= AC AB BC 连结OA 、OB 、OC ,设⊙O 的半径为r ,则: r CA BC AB S ABC )(21++= △,又BC AC S ABC ?=2 1 △. ∴ BC AC r CA BC AB ?=++2 1 )(21, ∴14 353 4=++?=++?= CA BC AB BC AC r . 答:直角三角形内切圆的半径为1. 说明:(1)此题为基本题目;(2)三角形内切圆性质的应用,通过面积求线段的长度. 例 (陕西省,2001)如图,点I 是△ABC 的内心,AI 的延长线交边BC 于D ,交△ABC 的外接圆于点E . (1)求证:IE=BE ; (2)若IE=4,AE=8,求DE 的长. 证明:(1)连结BI ,

∵∠BIE=∠BAI+∠ABI= 2 1 (∠BAC+∠ABC ), ∠IBE=∠IBC+∠EBC= 21∠ABC+∠EAC=2 1 (∠ABC+∠BAC ), ∴∠BIE=∠IBE ∴IE=BE 解:(2)∵I 是△ABC 的内心,∴∠BAE=∠CAE , 又∵∠DBE=∠CAE , ∴∠BAE=∠DBE ,又∵∠E 为公共角, ∴△ABE ∽△BDE ,∴ DE BE BE AE = ,∴DE AE B E 2?= ∴DE AE IE 2 ?=,∴28 4AE IE DE 2 2=== . 说明:(1)本题应用了三角形内心的性质、等腰三角形的性质及判定、圆周角定理的推论、相似三角形等;(2)本题为教材117页12题和B 组第3题的变形与结合;(3)本题为中档题. 典型例题四 已知:如图,设ABC ?为?Rt ,?=∠90C ,以AC 为直径作⊙O 交AB 与D ,设E 是BC 的中点,连结OD 、OE ,求证:OD DE ⊥. 证明 连结 CD . A B C D E I

三角形的外接圆与内切圆半径的求法

三角形的外接圆与内切圆半径的求法 一、求三角形的外接圆的半径 1、直角三角形 如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边. 例1已知:在△ABC 中,AB =13,BC =12,AC =5 求△ABC 的外接圆的半径. 解:∵AB =13,BC =12,AC =5, ∴AB 2=BC 2+AC 2 , ∴∠C =90°, ∴AB 为△ABC 的外接圆的直径, ∴△ABC 的外接圆的半径为6.5. 2、一般三角形 ①已知一角和它的对边 例2如图,在△ABC 中,AB =10,∠C =100°, 求△ABC 外接圆⊙O 的半径.(用三角函数表示) 分析:利用直径构造含已知边AB 的直角三角形. 解:作直径BD ,连结AD. 则∠D =180°-∠C =80°,∠BAD =90° ∴BD = D sin AB =? 80sin 10 ∴△ABC 外接圆⊙O 的半径为 ? 80sin 5 . 注:已知两边和其中一边的对角,以及已知两角和一边,都可以利用本题的方法求出三角形的外接圆的半径. 例3如图,已知,在△ABC 中,AB =10,∠A =70°,∠B =50° 求△ABC 外接圆⊙O 的半径. 分析:可转化为①的情形解题. 解:作直径AD ,连结BD. 则∠D =∠C =180°-∠CAB -∠BAC =60°,∠DBA =90° ∴AD = D sin AB =?60sin 10= 33 20 ∴△ABC 外接圆⊙O 的半径为 33 10 . ②已知两边夹一角 例4如图,已知,在△ABC 中,AC =2,BC =3,∠C =60° 求△ABC 外接圆⊙O 的半径. 分析:考虑求出AB ,然后转化为①的情形解题. 解:作直径AD ,连结BD.作AE ⊥BC ,垂足为E. 则∠DBA =90°,∠D =∠C =60°,CE =2 1 AC =1,AE =3, BE =BC -CE =2,AB =22BE AE +=7

三角形的内切圆经典练习

例:如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC 边的长为6,则△ADE的周长为(B) A.15 B.9C.7.5 D.7 如图,在△ABC中,AB=10,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=2. 如图,O是△ABC的内心,过点O作EF∥AB,与AC、BC分别交E、F,则(C) A.E F>AE+BF B.E F<AE+BF C.E F=AE+BF D.E F≤AE+BF 如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧(不包括端点D,E)上任一点P 作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为(C) A.r B. r C.2r D. r 如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=(C) A.B.C.D. 如图,O是△ABC内一点,且O到△ABC三边AB、BC、CA的距离相等,若∠BAC=70°,则∠BOC=125度.

如图,点O是△ABC的内切圆的圆心,∠BAC=80°,求∠BOC的度数. 如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为 如图,⊙I是△ABC的内切圆,D,E,F为三个切点,若∠DEF=52°,则∠A的度数为(A) A.76°B.68°C.52°D.38° 如图,已知E是△ABC的内心,∠BAC的平分线交BC于点F,且与△ABC的外接圆相交于点D.(1)求证:∠DBE=∠DEB; (2)若AD=8cm,DF:FA=1:3.求DE的长.

三角形内切圆知识点总结

知识点:三角形内切圆 和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的 . 例1.(2009湖北省荆门市)Rt △ABC 中,9068C AC BC °,,.则△ABC 的内切 圆半径r ______. 例2. △ABC 中,AB =AC =5,BC =6,求△ABC 的内切圆的半径长。 例3.任意△ABC 中内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,求证:△DEF 是锐角三 角形。 同步测试1:(2009年宁夏自治区)如图,⊙O 是边长为2的等边三角形ABC 的内切圆,则图中阴影部分的面积为. 同步测试2:如图 7-255,在矩形ABCD 中,AB=6,BC=8,连结 AC ,△ABC 和△ADC 的内切圆分别为⊙O 1和⊙O 2,与AC 的切点分别为E 、F ,则EF 的长是( ). (A)2 (B)7.5 (C)13 (D)15 ◆随堂检测 1.已知⊙O 的半径为5㎝,点P 到圆心O 的距离为6㎝,那么点P 的位置( )

A.一定在⊙O的内部 B.一定在⊙O的外部 C.一定在⊙O的上 D.不能确定 2.如图,AB是圆O的直径,AC是圆O的切线,A为切点,连结BC交圆O于点D,连结AD,若∠ABC=45°,则下列结论正确的是() A. 1 2 AD BC B. 1 2 AD AC C.AC AB D.AD DC 3.一个钢管放在V形架内,右图是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,∠MPN=60,则OP=( ) A.50 cm B.253cm C. 33 50 cm D.503cm 4.⊙O的半径为4㎝,若线段OA的长为10㎝,则OA的中点B在⊙O的____;若线段OA的长为7㎝,则OA的中点B在⊙O的____. 5.如图,等边三角形ABC的内切圆半径为3,则ABC △的周长为. 6.如图,∠ABC=90°,O为射线BC上一点,以点O为圆心、 2 1BO长为半径作⊙O,当射线BA绕点B按顺时针方向旋转度时与⊙0相切.

三角形内切圆几个公式的应用

三角形内切圆几个公式的应用 公式1 . △ABC ,∠C =90°,BC =a ,AC =b ,AB =c 为r ,则r = 1 2 (a+b-c)。 证明: 如图1,⊙O 内切于 △ABC ,D 、E 、F 为切点, 由切线长定理知:AF=AE ,CE=CD ,BF=BD 。 ∴a+b-c=(BD+DC )+(AE+EC )-(AF+BF )=2CE =2r 。∴r =12 (a+b-c)。 点评 :此公式只适用于直角三角形。 公式2 . 若O 为 △ABC 的内心,则∠AOB=90°+ 1 2 ∠ACB 。 证明:如图2,∴⊙O 为 △ABC 的内切圆, ∴∠1= 12∠CAB ,∠2= 1 2 ∠ABC , ∴∠AOB=180°-(∠1+∠2)=180° - 12(∠CAB+∠ABC )=180°- 1 2 (180°- ∠ACB )=90°+ 1 2 ∠ACB 。 公式3 .如图3,在△ABC 中,内切圆O 和BC 、AC 、AB 分别相切于点E 、F 、D ,则∠FDE=90°-12 ∠ACB 。 证明:连结OE 、OF ,则OF ⊥AC ,OE ⊥BC , 四边形CFOE 内角和为360°,∴∠FOE+∠C =180°,又因为∠FDE= 1 2 ∠FOE ,∴∠FDE= 90°- 1 2 ∠ACB 。 点评 :由在同一个圆中,同弧所对的圆周角相等可知,即使D 点不为切点,只要∠FDE 所对的弧为EF ,都有∠FDE=90°- 1 2 ∠A C B D E 图1 A B C 图2 A B C D 图3

ACB。 公式4 . △ABC的三边长分别为a、b、c,其面积为S,,内切圆半径为r,则r = 2s a b c ++ 。 证明:如图4,⊙I内切于△ABC,连结IA,IB,IC, S=S △AIB+S △AIC+S △BIC=1 2AB·r+ 1 2 AC·r+ 1 2 CB = 1 2cr+ 1 2 ar+ 1 2 br= 1 2 (a+ b+c)r ∴r = 2s a b c ++ 。 点评:⑴. 三角形的面积等于周长与内切圆半径的乘积的一半, 即S= 1 2 p·r(p表示周长,r表示内切圆半径),这是一个很有用的结论,在解题时可以直接引用。 ⑵. 若∠C=90°,则有r = ab a b c ++ 。 应用以上我们所总结的几个公式去解答某些有关三角形内切圆的问题时,能让我们快速的找到准确答案。 【练习:】⑴.在△ABC中,BC=12,AC=13,AB=5,则此三角形的内切圆的半径r=______. ⑵.若O为△ABC的内心,∠ACB=80°,则∠AOB=_______. ⑶.在△ABC中,内切圆O和BC、AC、AB分别相切于点E、F、D,若∠ACB=70°,则∠FDE=______. ⑷.△ABC中,AC=AB=5,BC=6,求△ABC的半径长。 ⑸.已知△ABC为等腰直角三角形,其腰长为1,那么它的内切圆的半径r=______. 【附答案:】⑴. 2 ⑵. 130°⑶. 55°⑷. 3 2A C 图4

三角形的内切圆(教学设计)

C B C B D C 4.7三角形的内切圆 【教师寄语】真正的聪明是能够忍辱负重。真正的智慧是懂得蓄势待发。真正的成功是最后掌声四起。真 正的阶梯是永远拼搏! 【学习目标】 1.理解三角形内切圆的概念,掌握三角形内切圆的性质,能准确辨析内心和外心的不同 2.掌握画三角形的内切圆的方法,能借助三角形内切圆的性质解决有关几何问题。 3.应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;通过获得成功的经验和克服困难的经历,增进学生数学学习的信心。 【学习过程】 一、情境创设 试一试: 一张三角形铁皮,如何在它上面截一个面积最大的圆形铁皮。 分析:①让学生展开讨论,教师指导学生发现,实际上是作一个圆,使它和已知三角形铁皮的各边都相切. ②让学生展开充分的讨论,如何确定这个圆的圆心及半径? ③在此基础上,由学生形成作图题的完整过程。 二、探求新知 ⒈本课知识点: ⑴和三角形各边都相切的圆叫做 , 叫做三角形的内心,这个三角形叫做 . ⑵分别画出直角三角形和钝角三角形的内切圆. 小结:①一个三角形的内切圆是唯一的; 例1、如图,△ABC 中,内切圆I 和边BC 、CA 、AB 分别相 切于点D 、E 、F,∠B=60°,∠C=70°.求∠EDF 的度数。

C 三.再攀高峰 探究活动一 问题:如图,有一张三角形纸片,其中BC=6cm ,AC=8cm ,∠C =90°.今需在△ABC 中剪出一个半圆,使得此半圆直径在三角形一边上,并且与另两边都相切,请设计出所有可能方案,并通过计算说明如何设计使得此半圆面积最大,最大为多少? 探究活动二问题:如图1,有一张四边形ABCD 纸片,且AB=AD=6cm ,CB=CD=8cm ,∠B=90°. (1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径; (2)计算出最大的圆形纸片的半径(要求精确值). 四、达标测试 1.如图1,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,?连结OE ,OF ,DE ,DF ,那么 ∠EDF 等于( ) A .40° B .55° C . 65 ° D .70° 图1 图2 图3 2.如图2,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A=50°,∠C=60°则∠DOE=( ) A .70° B .110° C .120° D .130° 3.如图3,△ABC 中,∠A=45°,I 是内心,则∠BIC=( ) A .112.5° B .112° C .125° D .55° 4.下列命题正确的是( ) A .三角形的内心到三角形三个顶点的距离相等 B .三角形的内心不一定在三角形的内部

三角形的内切圆(1)

三角形的内切圆 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一. 难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好. 2、教学建议 本节内容需要一个课时. (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质; (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学. 教学目标: 1、使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念; 2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力; 3、激发学生动手、动脑主动参与课堂教学活动. 教学重点: 三角形内切圆的作法和三角形的内心与性质. 教学难点: 三角形内切圆的作法和三角形的内心与性质.

教学活动设计 (一)提出问题 1、提出问题:如图,你能否在△ABC中画出一个圆? 画出一个最大的圆?想一想,怎样画? 2、分析、研究问题: 让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义. 3、解决问题: 例1作圆,使它和已知三角形的各边都相切. 引导学生结合图,写出已知、求作,然后师生共同分 析,寻找作法. 提出以下几个问题进行讨论: ①作圆的关键是什么? ②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件? ③这样的点I应在什么位置? ④圆心I确定后半径如何找. A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成. 完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个. (二)类比联想,学习新知识. 1、概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2、类比: 名称确定方法图形性质

任意三角形外接圆半径内切圆半径的求法及通用公式

任意三角形外接圆半径内切圆半径的求法及通 用公式 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

一、任意三角形外接圆半径 设三角形各边边长分别为a,b,c 外接圆半径为R ,(如右图所示) 则βαβαβαsin sin cos cos 2)cos(2 2 2 -=-+= +ab c b a (余弦定理) 而R b R b 22cos ==α,R b R 4sin 22 - = α R a R a 22cos ==β,R a R 4sin 2 2 - = β 即有:=-+ab c b a 2222R a R R b R R a R b 442222 22 - ?-- ? 即有:2 22222222) 4)(4(R a R b R ab ab c b a ---=-+ 所以:)4)(4()( 222222 222 a R b R ab c b a R ab --=-+- 即有: 2222242 2224 2 2 2 2 2 )(416)(4)(4)(b a R b a R ab c b a R c b a R ab ++-=-++-+- 所以:])( 4[2 2222 2 ab c b a R c -+-=,即:])(4[2222222222c b a b a R c b a -+-= 所以:) )()()((a c b b c a c b a c b a abc R -+-+-+++= 而三角形面积: ))()()((4a c b b c a c b a c b a S -+-+-+++= (海伦公式) 所以,有:S abc R 4= ※ 另一求法,可用正弦定理,即:R A a 2sin =,而bc a c b A 2cos 222-+= 所以:

由三角形内切圆导出的一个三角形的面积公式应用

由“三角形内切圆”引出的2个中考命题 我们知道:和三角形各边都相切的圆叫三角形的内切圆,内切圆的圆心叫三角形的内心,它是三角形3条内角平分线的交点,它到三角形三边的距离相等,这个距离就是三角形的内切圆的半径(如图甲).观察图形3个角平分线将三角形分成3个三角形,而每个三角形的高均为内切圆的半径,底为三角形的三边长.所以 S △ABC =S △OAB +S △OBC +S △OCA =r AB ?21+ r BC ?21+ r CA ?21 = r BC AC AB ?++)(2 1(r 为内切圆的半径) 从上述三角形面积的探究过程中隐含了一种重要的数学思维方法,有些图形的面积可以通过适当的分割,分割为若干个可求图形的面积,利用整体等于各个部分面积之和从而获得上面的结论. 我们知道三角形是多边形中最简单的多边形,而且任意的三角形都存在唯一的内切圆,但四边形不一定存在内切圆,假若四边形存在一个内切圆上述结论成立吗?对于任意的n 边形呢?请欣赏如下的江苏省淮安市06年的一道中考题: 例1、阅读材料:如图(一),△ABC 的周长为l ,内切圆O 的半径为r,连结OA 、OB 、OC ,△ABC 被划分为三个小三角形,用S △ABC 表示△ABC 的面积 ∵ S △ABC =S △OAB +S △OBC +S △OCA 又∵S △OAB =r AB ?2 1,S △OBC = r BC ?2 1,S △OCA =r CA ?21 ∴S △ABC =r AB ?2 1+r BC ?2 1+r CA ?21= r l ?2 1 (可作为三角形内切圆半径 公式) (1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径; (2)类比与推理:若四边形ABCD 存在内切圆(与各边都相切的圆,如图(二))且面积为S ,各边长分别为a 、b 、c 、d ,试推导四边形的内切圆半径公式; (3)拓展与延伸:若一个n 边形(n 为不小于3的整数)存在内切圆,且面积为S ,各边长分别为a 1、a 2、a 3、…、a n ,合理猜想其内切圆半径公式(不需说明理由). 分析:本题创设了一个以“阅读材料—三角形的面积与内切圆半径及周长之间关系”的问题背景,通过阅读使读者体会到“同一个图形分割后整体的面积等于各个部分之和”,其中的巧妙之处在于分割后3个三角形的高均为内切圆的半径,因而三角形的面积等于三角形的周长之半与内切圆半径之积. (1)首先根据三边之间关系判定是直角三角形,即52+122=132由勾股定理的逆定理可知:边长分为5、12、13的三角形,所以S △ABC = 1252 1??=30,设内切圆半径为 r ,则有30= r )13125(2 1?++,所以r=2 (2)设四边形内切圆的圆心为点O ,分别连接OA 、OB 、OC 、OD ,将四 边形ABCD 分割为4个三角形△AOB 、△BOC 、△COD 、△DOA ,它们的高视为四边形ABCD 的内 O

三角形的内切圆教案

《三角形的内切圆》教案教学目标一、知识与技能1.使学生了解尺规作三角 形的内切圆的方法;2.理解三角形和多边形的内切圆、圆的外切三角形的概念;二、过程与方法通过作图操作,让学生经历三角形内切圆的产生过程1.;2.应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;三、情感态度和价值观;1.通过获得成功的经验和克服困难的经历,增进学生数学学习的信心;2.通过观察、推断可以获得教学猜想,体验数学活动充满着探索性和创造性教学重点;三角形内切圆的概念和画法教学难点;三角形内切圆有关性质的应用教学方法引导发现法、启发猜想、讲练结合法 课前准备 教师准备 课件、多媒体; 学生准备 三角板,圆规,练习本; 课时安排 1课时 教学过程 一、导入新课 如图是一块三角形木料,木工师傅要从中裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢? 二、新课学习 作圆,使它和已知三角形的各边都相切. 已知:△ABC(如图). 求作:和△ABC的各边都相切的圆. 作法: 1.作∠ABC,∠ACB的平分线BM和CN,交点为I. 2.过点I作ID⊥BC,垂足为D. 3.以I为圆心,ID为半径作⊙I, ⊙I就是所求的圆. 三角形与圆的位置关系 这样的圆可以作出几个?为什么? ∵直线BE和CF只有一个交点I,并且点I到△ABC三边的距离相等(为什么?), .

并且只能作一个,三边都相切的圆可以作出一个ABC∴因此和△. 与三角形各边都相切的圆叫做三角形的内切圆. 内切圆的圆心叫做三角形的内心. 这个三角形叫做圆的外切三角形. 三角形内心的性质: 1、三角形的内心是三角形的三条角平分线的交点。 2、三角形的内心到三角形各边的距离相等; 例1:如图,在△ABC中,∠A=68°,点I是内心, 求∠BIC的度数 三、结论总结 通过本节课的内容,你有哪些收获?

三角形内切圆几个公式的应用

三角形内切圆几个公式的应用 公式1 .△ABC,∠C=90°,BC=a,AC=b,AB=c,内切圆半径为r,则r =1 2 (a+b-c)。 证明:如图1,⊙O内切于△ABC,D、E、F为切点,由切线长定理知:AF=AE,CE=CD,BF=BD。 ∴a+b-c=(BD+DC)+(AE+EC)-(AF+BF)=2CE =2r。∴r=1 2 (a+b-c)。 点评:此公式只适用于直角三角形。 公式2 . 若O为△ABC的内心,则∠AOB=90°+ 1 2 ∠ACB。 证明:如图2,∴⊙O为△ABC的内切圆, ∴∠1= 1 2 ∠CAB,∠2= 1 2 ∠ABC, ∴∠AOB=180°-(∠1+∠2)=180° - 1 2 (∠CAB+∠ABC)=180°- 1 2 (180°- ∠ACB)=90°+ 1 2 ∠ACB。 公式3 .如图3,在△ABC中,内切圆O和BC、AC、AB分别相切于点E、F、 D,则∠FDE=90°-1 2 ∠ACB。 证明:连结OE、OF,则OF⊥AC,OE⊥BC,四边形CFOE内角和为360°,∴∠FOE+∠C =180°,又因为∠FDE= 1 2 ∠FOE, ∴∠FDE=90°- 1 2 ∠ACB。 点评:由在同一个圆中,同弧所对的圆周角相等可知,即使D点不为切点, 只要∠FDE所对的弧为EF,都有∠FDE=90°- 1 2 ∠ACB 公式4 . △ABC的三边长分别为a、b、c,其面积为S, 内切圆半径为r,则r = 2s a b c ++ 。 证明:如图4,⊙I内切于△ABC,连结IA,IB,IC, A C B D E 图1 A B C 图2 A B C D 图3 A C 图4

相关文档
最新文档