专题2:平面向量与解三角形

专题2:平面向量与解三角形
专题2:平面向量与解三角形

平面向量与解三角形

1.(2010·湖南卷·理科)在Rt ABC ?中,90C ∠=o

,4AC =,则AB AC ?u u u r u u u r

等于

A.16-

B.8-

C.8

D.16

2.(2015·湖北卷·文理)已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r ,则OA OB ?=u u u r u u u r

.

3.(2004·浙江卷·理科)已知平面上三点A ,B ,C ,满足3AB =u u u r ,4BC =u u u r

,5CA =u u u r

,则AB BC BC CA ?+?u u u r u u u r u u u r u u u r CA AB +?u u u r u u u r 的值等于 .

4.在ABC ?中,3AB =,2AC =,BC ==AB AC ?uu u r uuu r

A .23-

B .3

2- C .32 D .23

5.(2012·浙江卷·理科)在ABC ?中,M 是BC 的中点,3AM =,10BC =,

则AB AC ?=u u u r u u u r

.

6.(2012·湖南卷·理科)在ABC ?中,2AB =,3AC =,1AB BC ?=u u u r u u u r

,则BC =

C.

7.在ABC ?中,点D 在线段AB 上,满足AC CD ⊥,且2CD =u u u r

,AB =u u u r u u r ,则CB CD ?=u u u r u u u r

.

8.三角形ABC 的底边BC 长为6,BC 边上的中线AD 长度为5,则22

AB AC +=u u u r u u u r .

9.(2012·北京卷·理科)己知正方形ABCD 的边长为1,点E 是AB 边上的动

点.则DE CB ?u u u r u u u r

的值为 .

10.(2013·全国卷Ⅱ·文理)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?u u u r u u u r

= .

11.(2007·江西卷·文科)在平面直角坐标系中,正方形OABC 的对角线OB 的

两端点分别为(00)O ,

,(11)B ,,则AB AC ?=u u u r u u u r

. 12.(2015·四川卷·理科)设四边形ABCD 为平行四边形,6AB =uu u r ,4AD =uuu r

.若点M ,N 满足3BM MC =uuu r uuu r ,2DN NC =uuu r uuu r ,则AM NM ?=uuu r uuur

A.20

B.15

C.9

D.6

13.(2016·天津卷·理科)已知ABC ?是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则?的值为

A.85-

B.81

C.41

D.

811 14.已知点O 为ABC ?内的一点,120AOB ∠=o ,1OA =,2OB =,过O 作

OD AB ⊥,垂足为D ,点E 为线段OD 的中点,则OE EA ?=u u u r u u u r

A.

3

28

B.314

C.27

D.514

(提示:利用余弦定理及三角形面积公式算出OD )

15.在平行四边形ABCD 中,E 是CD 上的一点,且12

AE AB BC =+u u u r u u u r u u u r

,2AB BC =

4=,60BAD ∠=o

,则AC EB ?=u u u r u u u r

A.12

B.3

2

C.2

D.3 16.已知ABC ?的三个内角A ,B ,C 所对的边分别为a ,b ,

c .其满足22c b ==, 2cos cos cos 0b A a C c A ++=,其中点D 满足1233

AD AB AC =+u u u r u u u r u u u r

.

(Ⅰ)求a 及角A 的大小;

(Ⅱ)求AD u u u r

的值.

17.在ABC ?中,角A ,B ,

C 所对的边分别为a ,b ,c .且2sin 2cos a B b C =+, (Ⅰ)求cos B ;

(Ⅱ)若点D 为线段AC 的中点,BD =c =,求ABC ?的面积. 18.(2005·全国卷·理科)在ABC ?中,A ,B ,C 所对的边分别为a ,b ,c .

已知a ,b ,c 成等比数列,且3

cos 4B =.

(Ⅰ)求cot cot A C +的值;

(Ⅱ)设3

2

BA BC ?=u u u r u u u r ,求a c +的值.

19.(2019·天津卷·理科)在四边形ABCD 中,AD BC ∥,

30ABE ∠=o ,5AD =,30A ∠=o

,点E 在线段CB 的延长线上,且AE BE =,则BD AE ?=u u u r u u u r

.

20.在ABC ?中,60BAC ∠=o

,3AB =,4AC =,点M 满足2BM MC =u u u u r u u u u r ,则

AB AM ?=u u u r u u u u r

A.10

B.9

C.8

D.7

21.(2019·天津卷·文科)如图,在ABC ?中,AD AB ⊥

,BC =u u u r u u r ,1AD =u u u r

则AC AD ?=u u u r u u u r

.

A

.2 C

.3

D

A

B

C

D

平面向量与解三角形

第八单元平面向量与解三角形 (120分钟150分) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.锐角△ABC的三内角A、B、C所对边的长分别为a、b、c,若2c sin B=b,则角C的大小为 A.B.C.D. 解析:由正弦定理得2sin B==,∴sin C=,∴C=. 答案:A 2.若向量u=(3,-6),v=(4,2),w=(-12,-6),则下列结论中错误的是 A.u⊥v B.v∥w C.w=u-3v D.对任一向量,存在实数a,b,使=a u+b v 解析:因为u·v=0,所以u⊥v,显然w∥v,因为u与v不共线,所以对任意向量,存在实数a,b,使=a u+b v. 答案:C 3.在△ABC中,B=,三边长a,b,c成等差数列,且ac=6,则b的值是 A.B.C.D. 解析:因为2b=a+c,由余弦定理得b2=a2+c2-2ac cos B=(a+c)2-3ac,化简得b=. 答案:D 4.在△ABC中,AB=4,∠ABC=30°,D是边BC上的一点,且·=·,则·等于 A.—4 B.0 C.4 D.8 解析:由·=·,得·(-)=·=0,即⊥,所以||=2,∠BAD=60°,所以 ·=4×2×=4. 答案:C 5.在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为 A.B.C.D.-

解析:cos C==≥=,当且仅当a=b时等号成立. 答案:C 6.设A(a,1),B(2,b),C(4,3)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则 a与b满足的关系式为 A.5a-4b=3 B.4a-3b=5 C.4a+5b=14 D.5a+4b=14 解析:由与在方向上的投影相同,可得·=·?(a,1)·(4,3)=(2,b)·(4,3),即4a+3=8+3b,4a-3b=5. 答案:B 7.在△ABC内,角A,B,C的对边分别是a,b,c,若b sin B+a sin A=c sin C,c2+b2-a2=bc,则B等于 A.B.C.D. 解析:因为c2+b2-a2=bc,所以cos A==,所以cos A=,A=, 因为b sin B+a sin A=c sin C,所以b2+a2=c2,所以C=,B=. 答案:A 8.已知向量a=(x-1,2),b=(4,y),其中x>1,y>0,若a∥b,则log2(x-1)+log2y等于 A.1 B.2 C.3 D.4 解析:∵a∥b,则=,∴(x-1)y=8,∴log2(x-1)+log2y=log2(x-1)y=log28=3. 答案:C 9.在△ABC中,若(a+b+c)(a+b-c)=3ab且sin C=2sin A cos B,则△ABC是 A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.直角三角形 解析:因为(a+b+c)(a+b-c)=3ab,所以a2+b2-c2=ab,cos C==,所以C=,因为sin C=2sin A cos B,所 以c=2a·,得a=b,所以△ABC是等边三角形. 答案:B 10.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是

中考专题复习解三角形

1.(10分) 我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC ∥AD ,斜坡AB=40米,坡角∠BAD=600 ,为防夏季因瀑雨引发山体滑坡,保障安全,学校决 定对山坡进行改造,经地质人员勘测,当坡角不超过450 时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)? 2. 如图,山顶建有一座铁塔,塔高CD =20m ,某人在点A 处,测得塔底C 的仰角为45o ,塔顶D 的仰角为60o ,求山高BC (精确到1m ,参考数据:2 1.41,3 1.73≈≈) 3.(10分)如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD= 60,坡长AB=m 320,为加强水 坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据: 414.12≈,732.13≈). D A B C E F G (22题图)

4.(8分)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m , ∠ABC=45o ,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使0 30=∠ADC (如图所示). (1)求调整后楼梯AD 的长; (2)求BD 的长. (结果保留根号) 5.(8分)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道AB. 如图,在山外一点C 测得BC 距离为20m ,∠,540=CAB ∠,300=CBA 求隧道AB 的长.(参考 数据: ,73.13,38.154tan ,59.054cos ,81.054sin 000≈≈≈≈精确到个位) 6.(8分)(2013?恩施州)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A 处测得“香顶”N 的仰角为45°,此时,他们刚好与“香底”D 在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110米,到达B 处,测得“香顶”N 的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:, ).

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高考解三角形专题(一)及答案

解三角形专题 1.在ABC ?中,角,,A B C 的对边分别是,,a b c ,若1,3 a b B π ===,则A = ( ) A. 12π B. 6π C. 3π D. 2 π 2.在ABC ?中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC ?的面积,若 () 2 2214 S b c a = +-,则A ∠=( ) A. 90? B. 60? C. 45? D. 30? 3.在ABC ?中,若sin 2sin cos A B C =,且 ()()3b c a b c a bc +-++=,则该三角形的形状是( ) A. 直角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等边三角形 4. 在 中,内角为钝角, , , ,则 ( ) A. B. C. D. 5.在中,若,,则的周长为( )C A . B . C. D . 6. 在锐角中,角、、所对的边分别为,且、、成等差数列, 则面积的取值范围是 7.已知锐角的内角 的对边分别为 ,且 ,则 的最大值为 __________. 8.在中,角,,所对的边分别为,,,且,,则的最小值为 . 9.在 中,内角,,所对的边分别为,,,已知 . (1)求角的大小; (2)若的面积,为边的中点,,求. ABC △23 C π = 3AB =ABC △6sin 33A π?? + + ?? ?6sin 36A π??++ ???33A π??++ ???36A π? ?++ ?? ?ABC ?A B C ,,a b c A B C b =ABC ?ABC ?A B C a b c 2sin cos 2sin sin C B A B =+3c ab =ab

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

专题1-2解三角形重难点、易错点突破(含答案)

专题1-2 解三角形重难点、易错点突破 (建议用时:60分钟) 三角形定“形”记 根据边角关系判断三角形的形状是一类热点问题.解答此类问题,一般需先运用正弦、余弦定理转化已知的边角关系,再进一步判断三角形的形状,这种转化一般有两个通道,即化角为边或化边为角.下面例析这两个通道的应用. 1.通过角之间的关系定“形” 例1 在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 2.通过边之间的关系定“形” 例2 在△ABC 中,若sin A +sin C sin B =b +c a ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .等腰三角形或直角三角形 细说三角形中解的个数 解三角形时,处理“已知两边及其一边的对角,求第三边和其他两角”问题需判断解的个数,这是一个比较棘手的问题.下面对这一问题进行深入探讨. 1.出现问题的根源 我们作图来直观地观察一下.不妨设已知△ABC 的两边a ,b 和角A ,作图步骤如下:①先做出已知角A ,

把未知边c 画为水平的,角A 的另一条边为已知边b ;②以边b 的不是A 点的另外一个端点为圆心,边a 为半径作圆C ;③观察圆C 与边c 交点的个数,便可得此三角形解的个数. 显然,当A 为锐角时,有如图所示的四种情 况: 当A 为钝角或直角时,有如图所示的两种情况: 根据上面的分析可知,由于a ,b 长度关系的不同,导致了问题有不同个数的解.若A 为锐角,只有当 a 不小于 b sin A 时才有解,随着a 的增大得到的解的个数也是不相同的.当A 为钝角时,只有当a 大于b 时才有解. 2.解决问题的策略 (1)正弦定理法 已知△ABC 的两边a ,b 和角A ,求B . 根据正弦定理a sin A =b sin B ,可得sin B = b sin A a . 若sin B >1,三角形无解;若sin B =1,三角形有且只有一解;若0

较为全面的解三角形专题高考题附答案

.. 这是经过我整理的一些解三角形的题目,部分题目没有答案,自己去问老师同学,针 对高考数学第一道大题,一定不要失分。——(下载之后删掉我) 1、在b 、c ,向量m2sinB,3, 2 B nB ,且m//n 。 cos2,2cos1 2 (I )求锐角B 的大小;(II )如果b2,求ABC 的面积S ABC 的最大值。 (1)解:m ∥n2sinB(2cos2 B -1)=-3cos2B 2 2sinBcosB =-3cos2Btan2B =-3??4分 2π π ∵0<2B <π,∴2B = 3,∴锐角B = 3 ??2分 (2)由tan2B =-3B = 5π π 或 36 π ①当B = 3 时,已知b =2,由余弦定理,得: 4=a2+c2-ac ≥2ac -ac =ac(当且仅当a =c =2时等号成立)??3分 1 2 ∵△ABC 的面积S △ABC = acsinB = 3 ac ≤3 4 ∴△ABC 的面积最大值为3??1分 5π ②当B =时,已知b =2,由余弦定理,得: 6 4=a2+c2+3ac ≥2ac +3ac =(2+3)ac(当且仅当a =c =6-2时等号成立) ∴ac ≤4(2-3)??1分 1 2 1 acsinB =ac ≤2-3 4

∵△ABC的面积S△ABC= 2-3??1分∴△ABC的面积最大值为

.. 5、在△ABC中,角A,B,C的对边分别 为a,b,c,且bcosC3acosBccosB. (I)求cosB的值;(II)若BABC2,且b22,求a和c b的值. 解:(I)由正弦定理得a2RsinA,b2RsinB,c2RsinC, 则 2RsinBcosC6RsinAcosB2RsinCcosB, 故sinBcosC3sinAcosBsinCcosB, 可得sinBcosCsinCcosB3sinAcosB, 即sin(BC)3sinAcosB, 可得sinA3sinAcosB.sinA0, 又 因此cosB 1 3 . ????6分 (II)解:由BABC2,可得acosB2,又cosB 1 3 ,故ac 6, 2 由b 2 a 2 c2accosB, 2 可得a 2 c 12, 2 所以(ac)0,ac, 即所以a=c=6 6、在ABC中,cos 5 A, 5 cos 10 B. 10 (Ⅰ)求角C;(Ⅱ)设A B2,求ABC的面积 . cosA 5 5 , cos B 10 10 ,得 A、B0, 2 (Ⅰ)解:由,所以 23 sinA,sinB. 510 ??3分 cosCcos[(A B)]cos(AB)cosAcosBsinAsinB 因为 2 2 ?6分 C. 且0C故 4

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

2015届高考数学(理)二轮练习:三角函数、解三角形、平面向量(含答案)

三角函数、解三角形、平面向量 1.α终边与θ终边相同(α的终边在θ终边所在的射线上)?α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等. 任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=y x (x ≠0),三角函数值只与 角的大小有关,而与终边上点P 的位置无关. [问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. 答案 -1 5 2.同角三角函数的基本关系式及诱导公式 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin α cos α . (3)诱导公式记忆口诀:奇变偶不变、符号看象限 [问题2] cos 9π 4 +tan ???-7π6+sin 21π的值为___________________________. 答案 22-3 3 3.三角函数的图象与性质 (1)五点法作图; (2)对称轴:y =sin x ,x =k π+π 2 ,k ∈Z ;y =cos x ,x =k π,k ∈Z ; 对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,????k π+π2,0,k ∈Z ;y =tan x ,????k π 2,0,k ∈Z . (3)单调区间: y =sin x 的增区间:????-π2+2k π,π 2+2k π (k ∈Z ), 减区间:??? ?π2+2k π,3π 2+2k π (k ∈Z );

北京高三理科解三角形大题专题带答案

实用文档 解三角形大题专题 20141513 分)(.(本小题满分石景山一模)B,Ca,b,cA,ABCca?b?Asin2b3a?中, 角.,的对边分别为,且在△B的大小;(Ⅰ)求角c ABC2a?7?b的面积.,求边的长和△(Ⅱ)若, 13201415分)(.(本小题满分西城一模)222 aBACbcABC bca?b?c?.在△中,角,,所对的边分别为.已知,,A的大小;(Ⅰ)求6b?2?Bcos ABC 的面积.,(Ⅱ)如果,求△3 标准文案. 实用文档 (2014海淀二模)15.(本小题满分13分)

A7sina?2ABC?b?21. 且在锐角中,B的大小;(Ⅰ)求c c3a?的值(Ⅱ)若. ,求 20151513 分)西城二模)(.(本小题满分 b 3 a C ABC AB ab c 7,,=,所对的边分别为=在锐角△中,角,,,,已知 .A 的大小;(Ⅰ)求角ABC 的面积.(Ⅱ)求△ 标准文案. 实用文档 (2013丰台二模)15.(13分) 2(B?C)?32sinsin2A.的三个内角分别为已知A,B,C,且ABC?(Ⅰ)求A的度数; BC?7,AC?5,求(Ⅱ)若的面积S. ABC?

20141513 分)(.(本小题满分延庆一模)?3c,a,b,AB,C?C?Bcos2ABCa?.在三角形中,角,且所对的边分别为,,45Asin的值;(Ⅰ)求ABC?的面积.(Ⅱ)求 标准文案. 实用文档 (2015顺义一模)15.(本小题满分13分) ?6ABC??32,sinBb?B?A?c,a,bA,B,C. 在已知,中角,所对的边分别为, 32a; (I)求的值Ccos. 的值(II)求

专题复习解三角形与平面向量

专题复习 解三角形与平面向量 1.三角形的有关公式: (1)在△ABC 中:sin(A +B )= ,sin A +B 2 = (2)正弦定理: (3)余弦定理: _____________________________________________________________________ (4)面积公式:S =12ah a =12ab sin C =1 2 r (a +b +c )(其中r 为三角形内切圆半径). 2.平面向量的数量积 a · b = .特别地,a 2=a·a =|a|2,|a|=a 2.当θ为锐角时,a ·b >0,且a·b >0是θ为锐角的必要非充分条件;当θ为钝角时,a·b <0,且a·b <0是θ为钝角的必要非充分条件. 3.b 在a 上的射影为|b |cos_θ. 4.平面向量坐标运算 设a =(x 1,y 1),b =(x 2,y 2),且a≠0,b≠0,则:(1)a·b = ;(2)|a |= ,a 2=|a |2= ; (3)a ∥b ?a =λb ? =0;(4)a ⊥b ?a ·b =0?|a +b |=|a -b |? =0. (5)若a 、b 的夹角为θ,则cos θ= = . 5.△ABC 中向量常用结论 (1)PA →+PB →+PC →=0?P 为△ABC 的 ; (2)PA →·PB →=PB →·PC →=PC →·PA → ?P 为△ABC 的 ; (3)向量λ? ?? ???AB →|AB → |+AC →|AC →|(λ≠0)所在直线过△ABC 的 ;(4)|PA →|=|PB →|=|PC →|?P 为△ABC 的 . 考点一 解三角形 例 1-1设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3,C =π 4,则△ABC 的面积为( )A .1 + 33 +1 C .1-3 3 -1 例 1-2△ABC 中,已知3b =23a sin B ,角A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 例 1-3若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形 D .可能是锐角三角形,也可能是钝角三角形 变式训练【1-1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A = 3 2 ,且b

解三角形大题专项训练

标准文档 1.在△ABC中,内角A,B,C的对边分别为a,b,c,已知. (Ⅰ)求cosA的值; (Ⅱ)的值. 2.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值; (2)若cosB=,△ABC的周长为5,求b的长. 3.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求; (Ⅱ)若C2=b2+a2,求B.

4.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值 (2)若a=1,,求边c的值. 5.在△ABC中,角A、B、C的对边分别为a,b,c (1)若,求A的值; (2)若,求sinC的值. 6.△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC= (I)求△ABC的周长; (II)求cos(A﹣C)的值.

7.在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=. (I)求sinC的值; (Ⅱ)当a=2,2sinA=sinC时,求b及c的长. 8.设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2﹣3a2=4bc. (Ⅰ)求sinA的值; (Ⅱ)求的值. 9.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小; (Ⅱ)求sinB+sinC的最大值.

10.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且.(1)确定角C的大小; (2)若,且△ABC的面积为,求a+b的值. 11.在△ABC中,角A,B,C的对边分别为,. (Ⅰ)求sinC的值; (Ⅱ)求△ABC的面积. 12.设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)的值; (Ⅱ)cotB+cot C的值.

高考真题_三角函数与解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析 三角函数 一、三角恒等变换(3题) 1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A ) (B (C )12- (D )12 【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=1 2 ,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 2.(2016年3卷)(5)若3 tan 4 α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625 【解析】由3tan 4α=,得34sin ,cos 55αα==或34 sin ,cos 55αα=-=-,所以 2161264 cos 2sin 24252525 αα+=+?=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. 3.(2016年2卷9)若π3 cos 45α??-= ???,则sin 2α= (A ) 7 25 (B )15 (C )1 5 - (D )725 - 【解析】∵3cos 45πα??-= ???,2ππ 7sin 2cos 22cos 12425ααα????=-=--= ? ????? ,故选D . 二、三角函数性质(5题) 4.(2017年3卷6)设函数π ()cos()3 f x x =+,则下列结论错误的是() A .()f x 的一个周期为2π- B .()y f x =的图像关于直线8π 3 x =对称 C .()f x π+的一个零点为π6x = D .()f x 在π (,π)2 单调递减 【解析】函数()πcos 3f x x ? ?=+ ?? ?的图象可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2?? ??? 上先递减后递增,D 选项错误,故选D.

用平面向量解三角形问题

第五编 平面向量、解三角形 §5.1 平面向量的概念及线性运算 基础自测 1.下列等式正确的是 (填序号). ①a +0=a ②a +b =b +a ③+≠0 ④=++ 答案 ①②④ 2.如图所示,在平行四边行ABCD 中,下列结论中正确的是 . ①= ②+= ③-= ④+=0 答案 ①②④ 3.(20082广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则= . 答案 3 2a +31b 4.若ABCD 是正方形,E 是DC 边的中点,且AB =a ,AD =b ,则= . 答案 b -2 1a 5.设四边形ABCD 中,有=2 1 ,且||=||,则这个四边形是 . 答案 等腰梯形 例1 给出下列命题 ①向量的长度与向量的长度相等; ②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③两个有共同起点并且相等的向量,其终点必相同; ④两个有共同终点的向量,一定是共线向量; ⑤向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上; ⑥有向线段就是向量,向量就是有向线段. 其中假命题的个数为 . 答案 4 例2 如图所示,若四边形ABCD 是一个等腰梯形, AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知=a , =b , =c ,试用 a 、 b 、 c 表示,, +. C D

∵MN =MD ++AN , ∴=-21,=-,=2 1 , ∴MN = 21a -b -2 1c . +CN =+MN +CM +MN =2MN =a -2b -c . 例3 设两个非零向量a 与b 不共线, (1)若=a +b ,=2a +8b ,=3(a -b ), 求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵=a +b ,=2a +8b ,=3(a -b ), ∴=+=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5. ∴、共线, 又∵它们有公共点B , ∴A 、B 、D 三点共线. (2)解 ∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b . ∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2 -1=0. ∴k =±1. 例4 (14分)如图所示,在△ABO 中,=4 1 , = 2 1 ,AD 与BC 相交于点M ,设=a ,=b .试 用a 和b 表示向量. 解 设OM =m a +n b , 则=-=m a +n b -a =(m -1)a +n b . =-= 21-=-a +2 1b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t ,使得=t , 即(m -1)a +n b =t (-a +2 1 b ). 4分 ∴(m -1)a +n b =-t a + 2 1 t b . ?? ???=-=-21t n t m ,消去t 得:m -1=-2n . 即m +2n =1. ① 6分 ∴

2019-2020学年高三数学总复习 专题二 第2讲 三角变换、解三角形(1)教学案.doc

2019-2020学年高三数学总复习 专题二 第2讲 三角变换、解三角形(1)教学 案 教学内容:三角变换、解三角形(1) 教学目标: 1三角变换与求值; 2.三角形中的三角函数 教学重点: 灵活运用三角变换公式解决三角函数问题; 教学难点: 在三角形中灵活运用三角变换公式解决三角函数问题; 教学过程: 一、知识点复习 1.必记的概念与定理 (1) 两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β. ②cos(α±β)=cos αcos β?sin αsin β. ③tan(α±β)=tan α±tan β1?tan αtan β . (2)倍角公式 ①sin 2α=2sin αcos α; ②cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; ③tan 2α=2tan α1-tan2α . 2.记住几个常用的公式与结论 (1)si n2α+cos2α=1的变形: 1=sin2α+cos2α;sin2α=1-cos2α; cos2α=1-sin2α;sin α=±1-cos2α;cos α =±1-sin2α. (2)升(降)幂公式: sin2α=1-cos 2α2、cos2α=1+cos 2α2 、 sin αcos α=12s in 2α; (3)辅助角公式: asin α+bcos α=a2+b2sin(α+φ)(φ由a ,b 具体的值确定); (4)正切公式的变形: tan α+tan β=tan(α+β)(1-tan α·tan β). (5)正弦定理的各种形式: 形式一:a sin A =b sin B =c sin C =2R ; 形式二:sin A =a 2R ;sin B =b 2R ;sin C =c 2R ;(角到边的转换) 形式三:a =2R·sin A ,b =2R·sin B ,c =2R·sin C ;(边到角的转换) 复备栏

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

相关文档
最新文档