先进控制技术在流程工业中的应用

先进控制技术在流程工业中的应用
先进控制技术在流程工业中的应用

先进控制技术在流程工业中的应用

随着现代控制理论的迅速发展,各种先进控制策略、方法和技术已开始在流程工业中广泛应用。用先进控制改造传统的流程工业已成为现代工业企业提高经济效益的重要技术措施

所谓先进控制技术(Advanced Process Control,APC),是对那些不同于常规单回路控制,并比常规PID控制有更好控制效果的控制策略的统称。现代复杂的工业生产过程,通过实施先进控制,可以大大提高工业生产过程操作和控制的稳定性,改善工业生产过程的动态性能,减少关键变量的运行波动幅度,使其更接近于优化目标值,从而将工业生产过程推向更接近装置约束边界条件下运行,最终达到增强工业生产过程的稳定性和安全性,保证产品质量的均匀性,提高目标产品的收率,提高生产装置的处理能力,降低生产过程运行成本以及减少环境污染等目的。本文将简要介绍常用的行之有效的一些先进控制方法及其在流程工业中的应用。

模型预测控制

模型预测控制是一种基于模型的闭环优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程控制中得到广泛的应用。模型预测控制具有控制效果好、鲁棒性强等优点,可有效地克服过程的不确定性、非线性和关联性,并能方便处理过程被控变量和操纵变量中的各种约束。

预测控制算法种类较多,表现形式多种多样,但都可以用以下三条基本原理加以概括:①模型预测:预测控制的本质是在对过程的未来行为进行预测的基础上,对控制量加以优化,而预测是通过模型来完成的。②滚动优化:预测控制的优化,是在未来一段时刻内,通过某一性能指标的最优化来确定未来的控制作用,这一性能指标涉及到系统未来的行为,并且在下一时刻只施加当前时刻控制作用,它是在线反复进行的,而且优化是有别于传统意

义下的全局优化。③反馈校正:预测控制是一种闭环控制算法,用预测模型预测未来的输出时,预测值与真实值之间存在一定的偏差,只有充分利用实际输出误差进行反馈校正,才能得到良好的控制效果。

目前,预测控制的研究范围主要涉及到以下方面,(1)对现有基本算法作修正。如引入扰动观测器,采用变反馈校正系数等。(2)单变量到多变量的推广。把只适合于稳定对象的算法推广到非自衡系统,把预测控制的应用范围推广到非线性及分布参数系统。(3)优化目标函数的选取。如采用最小方差的目标函数、二范数的目标函数、无穷范数的目标函数等。(4)预测模型的选取。尤其是在非线性预测控制中,非线性预测控制要比线性预测控制复杂得多。因而,目前研究主要集中在特殊的非线性模型,如Wiener模型,Bilinear模型、广义Hammerstein模型、Volterra模型等。(5)引入大系统方法,实现递阶或分散的控制算法。(6)将基本控制算法与先进的控制思想与结构相结合,如自适应预测控制、模糊预测控制、鲁捧预测控制、神经网络预测控制等。

目前,预测控制的应用几乎遍及各个工业领域,如:炼油、石化、化工、造纸、天然气、矿冶、食品加工、炉窑、航空、汽车等。其中全世界采用了以预测控制为核心的先进控制算法已经超过5000多例。国外著名的控制工程公司都开发研制了各自的商品化软件。预测控制的软件产品至今已走过了三代。第一代产品主要以Adersa公司的IDCOM和Shell Oil公司的DMC为代表,可处理无约束的预测控制问题。第二代以Shell Oil公司的QDMC 为代表,它增加了处理输入输出有约束的多变量对象的技术。而目前的第三代产品,主要有Aspen公司的DMC plus和Honeywell公司的RMPCT,以及浙大中控软件公司的Adcon 等,都已在炼油、化工、石化等工业生产过程中应用。

内模控制

内模控制(Internal Model Control, IMC)是一种基于过程数学模型进行控制器设计

的新型控制策略。它不仅是一种实用的先进控制算法,而且是研究预测控制等基于模型的控制算法的重要理论基础,以及提高常规控制系统设计水平的有力工具。

自面世以来,内模控制不仅在控制系统稳定性和鲁棒性理论分析方面发展迅速,而且在工业过程控制中也得到成功的应用。许多研究者讨论了内模控制与其他控制算法,如动态矩阵控制(DMC)、模型算法控制(MAC)、线性二次型最优控制(LQOC)等之间的内在关系,尤其是多变量内模控制可以直接调整闭环系统动态性能,并对模型误差具有良好的鲁棒性,因此IMC也是多变量过程控制系统分析与设计的一种重要方法。IMC是一种实用性很强的控制方法,其主要特点是结构简单、在线调节参数少,特别是对于鲁棒性及抗扰性的改善和大时滞系统的控制效果更为显著。因此它不仅在慢响应的过程控制中获得到大量应用,在快响应的电机控制中也取得了良好的效果。经过二十多年的发展,IMC方法不仅已扩展到了多变量和非线性系统,还产生了多种设计方法,主要有零极点对消法、预测控制法、针对PID控制器设计的IMC法、有限拍法等。IMC与其他控制方法的结合也比较多,如自适应IMC,采用模糊决策、仿人控制、神经网络的智能型IMC等。已经证明,各类预测控制算法本质上都属于IMC类,在其等效的IMC结构中只是其给定输入采用未来的超前值。这不仅从结构上说明预测控制为何具有良好的性能,而且为进一步的深入分析和改进提供了有力的工具。

模糊控制

1965年,Zadeh教授最早提出模糊集合的概念,从而突破了经典集合论中属于或不属于的绝对关系,标志着模糊数学的诞生。模糊控制是应用模糊数学理论,对一些无法构造数学模型的过程进行有效的控制。基本的模糊系统包括模糊化处理、模糊推理和非模糊化控制三个环节。在模糊推理面,Takagi和Subeno通过使用最小二乘法近似做出了贡献。在非模糊化方面,相继出现了最大隶属度值法、面积平均法、重心法、最大隶属度平均值法等

在应用方面,1974年,Mamdani首次将模糊控制应用到蒸汽机和锅炉的控制,取得了满意的效果。1980年,Holmblad和Ostergaard将模糊控制成功地安装到水泥窑炉上,并开发了第一个商品化模糊控制器。1985年,AT&T贝尔实验室的T ogai和Watanabe设计出第一块模糊逻辑芯片。1987年,Omron公司研制出第一代模糊微处理机。Yamakawa设计了高速模糊控制器硬件系统。进入90年代,日本推出了大量采用模糊控制的家用电器。不少仪表商已经将模糊控制作为DCS的一个模块。目前,美国国家航空与航天局正考虑将模糊控制技术应用到航空系统。国际原子能机构和工业应用系统机构也准备将模糊控制技术应用到大型系统高速推理上。

神经控制

神经控制以其独特的优点受到控制界的关注并得到了广泛的应用,这主要来自以下三方面的动力:①处理越来越复杂系统的需要;②实现越来越高设计目标的需要;③越来越不确定情况下进行控制的需要。20世纪80年代以来,人工神经网络又有了重大突破,人们提出了许多功能强大的神经元模型和各种有效的算法并促进了它的应用。目前,神经网络已经在对象建模、系统辨识、参数估计、自适应控制、预测控制、容错控制、故障诊断、数据处理等领域得到了广泛的应用。其中,神经网络与模糊逻辑、遗传算法、专家系统、小波分析结合、混沌神经网络、基于粗糙集的神经网络等方向已成为新的研究热点。

就目前神经网络在控制系统中的应用来说,它在控制系统的建模、辨识和控制中都获得了广泛的应用。主要有:①系统辨识:通过多层前馈网络能够提供非线性被控对象的直接逆向模型。②充当各类控制器:如监督控制、直接逆模控制、模型参考控制、内模控制、预测控制、自适应控制、非模型控制等。

工业过程监控

就工业过程的性能监控领域而言,当前提出的方法可分为三大类:基于数学模型的

方法、基于数据驱动的方法和基于知识的方法。基于模型的方法包括参数估计方法、观测器方法、对偶关系方法等。基于数据驱动的方法以采集的过程数据为基础,通过各种数据处理与分析方法挖掘隐含信息来指导工业生产。基于知识的方法是利用人工智能的方法构造某些系统功能以模仿和实现人类的思维和行为,完成整个检测和诊断过程。但从目前的理论水平和解决问题的角度来看,采用基于数据驱动的方法更适宜。在基于数据驱动的工业过程性能监控算法中,研究和应用最多的方法应属统计方法。单变量统计过程控制近十几年来又取得了新的进展,除早期的X控制图,还包括MA(Moving Average)控制图,CUSUM(Cumulative Sum)控制图和EWMA(Exponentially Weighted Moving Average)控制图。多变量统计过程控制(Multivariate Statistical Process Control, MSPC)最基本方法是主元分析和偏最小二乘法(Partial least square, PLS),但随着各种实际问题的出现,不少改进和扩展的统计方法又被提出,主要包括动态方面的改进、非线性方面的改进、自适应方法、多尺度的方法、层次和多块分析方法、间歇生产过程的监控方法、专家系统方法、动态趋势分析方法、神经网络方法等。目前,独立成分分析(Independent Component Analysis,ICA)作为一种新方法也得到了关注,ICA具有“去冗余”的特点,并能抑制高斯白色和有色噪声。工业生产过程运行性能和安全性的实时评估,已成为复杂大工业生产过程计算机控制的重要内容,也是工业企业实时管理与控制一体化的新技术。

自主访问控制综述

自主访问控制综述 摘要:访问控制是安全操作系统必备的功能之一,它的作用主要是决定谁能够访问系统,能访问系统的何种资源以及如何使用这些资源。而自主访问控制(Discretionary Access Control, DAC)则是最早的访问控制策略之一,至今已发展出多种改进的访问控制策略。本文首先从一般访问控制技术入手,介绍访问控制的基本要素和模型,以及自主访问控制的主要过程;然后介绍了包括传统DAC 策略在内的多种自主访问控制策略;接下来列举了四种自主访问控制的实现技术和他们的优劣之处;最后对自主访问控制的现状进行总结并简略介绍其发展趋势。 1自主访问控制基本概念 访问控制是指控制系统中主体(例如进程)对客体(例如文件目录等)的访问(例如读、写和执行等)。自主访问控制中主体对客体的访问权限是由客体的属主决定的,也就是说系统允许主体(客体的拥有者)可以按照自己的意愿去制定谁以何种访问模式去访问该客体。 1.1访问控制基本要素 访问控制由最基本的三要素组成: ●主体(Subject):可以对其他实体施加动作的主动实体,如用户、进程、 I/O设备等。 ●客体(Object):接受其他实体访问的被动实体,如文件、共享内存、管 道等。 ●控制策略(Control Strategy):主体对客体的操作行为集和约束条件集, 如访问矩阵、访问控制表等。 1.2访问控制基本模型 自从1969年,B. W. Lampson通过形式化表示方法运用主体、客体和访问矩阵(Access Matrix)的思想第一次对访问控制问题进行了抽象,经过多年的扩充和改造,现在已有多种访问控制模型及其变种。本文介绍的是访问控制研究中的两个基本理论模型:一是引用监控器,这是安全操作系统的基本模型,进而介绍了访问控制在安全操作系统中的地位及其与其他安全技术的关系;二是访问矩阵,这是访问控制技术最基本的抽象模型。

DCS中的先进控制技术

DCS中的先进控制技术 dcs在控制上的最大特点是依靠各种控制、运算模块的灵活组态,可实现多样化的控制策略以满足不同情况下的需要,使得在单元组合仪表实现起来相当繁琐与复杂的命题变得简单。随着企业提出的高柔性、高效益的要求,以经典控制理论为基础的控制方案已经不能适应,以多变量预测控制为代表的先进控制策略的提出和成功应用之后,先进过程控制受到了过程工业界的普遍关注。需要强调的是,广泛应用各种先进控制与优化技术是挖掘并提升DCS综合性能最有效、最直接、也是最具价值的发展方向。 在实际过程控制系统中,基于PID控制技术的系统占80%以上,PID回路运用优劣在实现装置平稳、高效、优质运行中起到举足轻重的作用,各DCS厂商都以此作为抢占市场的有力竞争砝码,开发出各自的PID自整定软件。另外,根据DCS的控制功能,在基本的PID算法基础上,可以开发各种改进算法,以满足实际工业控制现场的各种需要,诸如带死区的PID控制、积分分离的PID控制、微分先行的PID控制、不完全微分的PID控制、具有逻辑选择功能的PID 控制等等。 与传统的PID控制不同,基于非参数模型的预测控制算

法是通过预测模型预估系统的未来输出的状态,采用滚动优化策略计算当前控制器的输出。根据实施方案的不同,有各种算法,例如,内模控制、模型算法控制、动态矩阵控制等。目前,实用预测控制算法已引入DCS,例如IDCOM控制算法软件包已广泛应用于加氢裂化、催化裂化、常压蒸馏、石脑油催化重整等实际工业过程。此外,还有霍尼韦尔公司的HPC,横河公司的PREDICTROL,山武霍尼韦尔公司在TDC-3000LCN系统中开发的基于卡尔曼滤波器的预测控制器等等。这类预测控制器不是单纯把卡尔曼滤波器置于以往预测控制之前进行噪声滤波,而是把卡尔曼滤波器作为最优状态推测器,同时进行最优状态推测和噪声滤波。 先进控制算法还有很多。目前,国内、外许多控制软件公司和DCS厂商都在竞相开发先进控制和优化控制的工程软件包,希望在组态软件中嵌入先进控制和优化控制策略。

先进制造技术知识点总结

概述第一章先进制造技术的特点:先进性、广泛性、实用性、集成性、系统性、动态性。1、先进制造技术分为三个技术群:主体技术群、支撑技术群、制造技术环境。2、主体技术:面向制造的设计技术群(1)产品、工艺设计、 3 (2)快速成形技术(3)并行工程 制造工艺技术群:(1)材料生产工艺(2)加工工艺(3)连接与装配 (4)测试和检测(5)环保技术(6)维修技术(7)其他 支撑技术:(1)信息技术(2)标准和框架(3)机床和工具技术 (4)传感器和控制技术 4、先进制造技术研究的四大领域: (1)现代设计技术 (2)先进制造工艺技术 (3)制造自动化技术 (4)系统管理技术 4、美国的先进制造技术发展概况P10 美国先进制造技术发展概况:美国政府在20 世纪90 年代初提出了一系列制造业的振兴计划,其中包括“先进制造技术计划”和“制造技术中心计划”。

先进制造技术计划 美国的发展目标: 1、为美国人创造更过高技术、高工资的就业机会,促进美国经济增长。 不断提高能源效益,减少污染,创造更加清洁的环境。、2. 3、使美国的私人制造业在世界市场上更具有竞争力,保持美国的竞争地位。 4、使教育系统对每位学生进行更有挑战性的教育。 5、鼓励科技界把确保国家安全以及提高全民生活质量作为核心目标 三个重点领域的研究: 1、成为下一代的“智能”制造系统 2、为产品、工艺过程和整个企业的设计提供集成的工具 3、基础设施建设 第二章柔性制造系统(FMS)技术 1、柔性制造系统(FMS)的特点: (1)主要特点:柔性和自动化 (2)设备利用率高,占地面积小 (3)减少直接劳动工人数 (4)产品质量高而稳定

先进过程控制及其应用期末课程总结论文

先进控制技术及其应用 随着工业生产过程控制系统日趋复杂化和大型化,以及对生产过程的产品质量、生产效率、安全性等的控制要求越来越严格,常规的PID控制已经很难解决这些具有多变量、强非线性、高耦合性、时变和大时滞等特性的复杂生产过程的控制问题[]。 自上世纪50年代逐渐发展起来的先进控制技术解决了常规PID控制效果不佳或无法控制的复杂工业过程的控制问题。它的设计思想是以多变量预估为核心,采用过程模型预测未来时刻的输出,用实际对象输出与模型预测输出的差值来修正过程模型,从而把若干个控制变量控制在期望的工控点上,使系统达到最佳运行状态。目前先进控制技术不但在理论上不断创新,在实际生产中也取得了令人瞩目的成就。下面就软测量技术、内模控制和预测控制做简要阐述。 1.软测量技术 在生产过程中,为了确保生产装置安全、高效的运行,需要对与系统的稳定及产品质量密切相关的重要过程变量进行实时控制。然而在许多生产过程中,出于技术或经济上的原因,存在着很多无法通过传感器测量的变量,如石油产品中的组分、聚合反应中分子量和熔融指数、化学反应器反应物浓度以及结晶过程中晶体粒直径等。 在实际生产过程中,为了对这类变了进行实施监控,通常运用两种方法: 1).质量指标控制方法:对与质量变量相关的其他可测的变量进行控制,以达到间接控制质量的目的,但是控制精度很难保证。 2).直接测量法:利用在线分析仪表直接测量所需要的参数并对其进行控制。缺点是在线仪表价格昂贵,维护成本高,测量延迟大,从而使得调节品质不理想。 软测量的提出正是为了解决上述矛盾。 软测量技术的理论根源是20世纪70年代Brosilow提出的推断控制,其基本思想是采集过程中比较容易测量的辅助变量(也称二次变量),通过构造推断器来估计并克服扰动和测量噪声对主导过程主导变量的影响。因此,推断估计器的设计是设计整个控制系统的关键。 软测量器的设计主要包括以下几个方面: 1)机理分析和辅助变量的选择。 首先是明确软测量的任务,确定主导变量。在此基础上深入了解和熟悉软测量对象及有关装置的工艺流程,通过分析确定辅助变量。 2)数据采集和预处理 采集被估计变量和原始辅助变量的历史数据包含了工业对象的大量相关信息,因此数据采集越多越好。但是为了保证软测量精度和数据的正确性以及可靠性,采集的数据必须进行处理,包括显著误差检测和数据协调,及时剔除无效的数据。 3)软测量建模 软测量模型是建立是软测量技术的核心。软测量建模的方法多种多样,一般可分为:机理建模、回归分析、状态估计、模式识别、人工神经网络、模糊数学和现代非线性系统信息处理技术等。 此外还有混合模型,如图1所示的软测量模型就是结合了BP网络、RBF网络和部分最小二乘法建立的混合模型[5]。 4)软测量模型的在线校正 图1 软测量模型

先进制造技术论文

先进制造技术论文 学院:xxx 班级:xxx 姓名:xxx 学号:xxx 目录 ? ? ? ? ? ? ? 概述 摘要:随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。介绍了先进制造技术和先进制造模式的内容和发展情况,从两种角度解释其结构特征和关系,并从各种不同角度展望先进制造技术和先进生产模式的发展前景及其趋势特征。 先进制造技术AMT(AdvancedManufacturingTecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。 当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。 可基本归纳为以下五个方面:

一、先进的工程设计技术 二、先进制造工艺技术 三、制造自动化技术 四、先进生产管理技术、制造哲理与生产模式 五、发展。 一、先进的工程设计技术 先进的工程设计技术包括众多的现代设计理论与方法。包括CAD、CAE、CAPP、CAT、PDM、模块化设计、DFX、优化设计、三次设计与健壮设计、创新设计、反向工程、协同产品商务、虚拟现实技术、虚拟样机技术、并行工程等。 (1)产品(投放市场的产品和制造产品的工艺装备(夹具、刀具、量检具等))设计现代化。以CAD为基础(造型,工程分析计算、自动绘图并提供产品数字化信息等),全面应用先进的设计方法和理念。如虚拟设计、优化设计、模块化设计、有限元分析,动态设计、人机工程设计、美学设计、绿色设计等等; (2)先进的工艺规程设计技术与生产技术准备手段。在信息集成环境下,采用计算机辅助工艺规程设计、即CAPP,数控机床、工业机器人、三坐标测量机等各种计算机自动控制设备设备的计算机辅助工作程序设计即CAM等。 二、先进制造工艺技术 (1)高效精密、超精密加工技术,包括精密、超精密磨削、车削,细微加工技术,纳米加工技术。超高速切削。精密加工一般指加工精度在10~μm(相当于IT5级精度和IT5级以上精度),表面粗糙度Ra值在μm以下的加工方法,如金刚车、金刚镗、研磨、珩磨、超精研、砂带磨、镜面磨削和冷压加工等。用于精密机床、精密测量仪器等制造业中的关键零件加工,如精密丝杠、精密齿轮、精密蜗轮、精密导轨、精密滚动轴承等,在当前制造工业中占有极重要的地位。 超精密加工是指被加工零件的尺寸公差为~μm数量级,表面粗糙度Ra值为μm 数量级的加工方法。此外,精密加工与特种加工一般都是计算机控制的自动化加工。 (2)精密成型制造技术,包括高效、精密、洁净铸造、锻造、冲压、焊接及热处理与表面处理技术。 (3)现代特种加工技术,包括高能束流(主要是激光束、以及电子束、离子束等)加工,电解加工与电火花(成型与线切割)加工、超声波加工、高压水加工等。电火花加工(Electricaldischargemachining(EDM)电火花加工electricsparkmachining)是指在一定介质中,通过工具电极和工件电极之间脉冲放电的电蚀作用对工件进行的加工。能对任何导电材料加工而不受被加工材料强度和硬度的限制。可分为电火花成型加工(EDM)和电火花线切割加工(电火花线切割加工electricaldischargewire–cutting--EDW) 两大类。一般都采用CNC控制。 (4)快速成型制造(RPM).快速成形技术是在计算机控制下,基于离散堆积原理采用不同方法堆积材料最终完成零件的成型与制造的技术。从成型角度看,零件可视为“点”或“面”的叠加而成。从CAD电子模型中离散得到点、面的几何信息,再与成型工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 (5)先进制造工艺发展趋势 1)采用模拟技术,优化工艺设计; 2)成形精度向近无余量方向发展; 3)成形质量向近无“缺陷”方向发展; 4)机械加工向超精密、超高速方向发展; 5)采用新型能源及复合加工,解决新型材料的加工和表面改性难题; 6)采用自动化技术,实现工艺过程的优化控制;

自动化在日常生活中的应用与展望

自动化在日常生活中的应用与展望 一、摘要:本文简要介绍自动化技术的基本概念、发展、应用和未来展望。随着信息技术的发展,特别是网络技术的发展,正在改变着人类若干世纪以来形成的信息传递及生活方式,是现代人们的生活得到了很大的便利。而且我相信,随着我们勤劳智慧的地球人的不断努力和奋斗,自动化控制技术在不久的将来将会得到更加广泛的应用。 二、关键词:自动化控制技术概念现代应用未来发展 三、内容: 1、概念:所谓自动化(Automation),是指机器或装置在无人干预的情况下,按规定的程序或指令自动的进行操作或运行。广义地讲,自动化还包括模拟或在现人的智力活动。自动化主要是人造系统的问题,如工厂中的机床、飞行器的飞行姿态控制等。而相比之下自动控制的概念就要广泛一些,它不仅设计人造系统问题,还涉及社会的方方面面,如环境的控制、人口的控制、经济的控制。以上是对自动化及自动化控制技术的简单认识。 2、应用:自动化技术的发展历史,大致可以划分为自动化技术的形成、局部自动化和综合自动化三个时期。 1788年英国机械师J.瓦特发明离心式调速器(又称飞球调速器),代表着自动化技术的形成时期。第二次世界大战时期的经典控制理论对战后发展局部自动化起了重要的促进作用。而20世纪50年代末空间技术迅速发展,迫切需要解决多变量系统的最优控制问题,于是综合自动化技术应运而生。 现在自动化技术应用于很多方面,例如,机械加工、采矿冶炼、交通系统、军事技术、航空航天、农业生产、环境保护、科学研究、办公服务等领域。其中汽车工业的工厂自动化控制,采用一贯作业的生产方式,借着整条生产线的分工装配,没几分钟即可生产一部汽车。纺织工业的工厂自动化控制,亦采用一贯作业的生产方,没几分钟即可高速生产一批布料。塑料工业的工厂自动化控制,亦采用一贯作业的生产方式,产出塑料原料后,在经过射出成型机器,产出各种所料模型。机械制造的工厂自动化控制,通过柔性制造系统,是一台机器能生产符合要求的不同的零件,由数控机床、材料和工具自动运输设备产品,自动检测等实验设备真正实现“无人工厂”。 不仅在机械生产中,自动控制系统还大量出现在飞行器和交通设备的控制上,如导弹、航天飞机、火车等。由于技术的发展,如今飞行器的速度已远远不能靠人类的大脑反应来控制,这就需要自动控制系统。 在工业上,计算机集成制造系统使自动化无人工厂成为现实。 自动化正在与其它学科相互交融,朝着更多的应用领域延伸,例如:经济控制论的形成直接推动了国民经济的发展;人口控制论的研究,为计划生育工作决策起到很大作用;环境系统工程已经成为世界性的大课题,人类为了生存与发展,必须采取各种措施来改变环境,自动化理论与技术在这方面大有作为;另外在国际关系领域、军事领域以及社会治安综合治理等领域,均离不开自动化学科的介入及其研究成果的应用。 3、展望:自动化技术发展日新月异,特别是随着现代计算机技术的发展,自动化及自动化控制技术有了更广阔的前景。例如,在交通方面,现在汽车的普及速度之快,已经接近了平民化,它不再是一种奢侈的享受,但是由此而引发的

通用运动控制技术现状、发展及其应用

作者:蒋仕龙吴宏吕恕龚小云(固高科技(深圳)有限公司深圳518057 )摘要:运动控制技术的发展是制造自动化前进的旋律,是推动新的产业革命的关键技术。运动控制器已经从以单片机或微处理器作为核心的运动控制器和以专用芯片(ASIC)作为核心处理器的运动控制器,发展到了基于PC 总线的以DSP 和FPGA 作为核心处理器的开放式运动控制器。运动控制技术也由面向传统的数控加工行业专用运动控制技术而发展为具有开放结构、能结合具体应用要求而快速重组的先进运动控制技术。基于网络的开放式结构和嵌入式结构的通用运动控制器逐步成为自动化控制领域里的主导产品之一。高速、高精度始终是运动控制技术追求的目标。充分利用DSP 的计算能力,进行复杂的运动规划、高速实时多轴插补、误差补偿和更复杂的运动学、动力学计算,使得运动控制精度更高、速度更快、运动更加平稳;充分利用DSP 和FPGA 技术,使系统的结构更加开放,根据用户的应用要求进行客制化的重组,设计出个性化的运动控制器将成为市场应用的两大方向。关键词:运动控制技术,运动控制器,点位控制,连续轨迹控制,同步控制 1 通用运动控制技术的发展现状运动控制起源于早期的伺服控制(Servomechanism)。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控(CNC)技术、机器人技术(Robotics)和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行(Stand-alone)的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC 方式传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。通用运动控制器的发展成为市场的必然需求。由国家组织的开放式运动控制系统的研究始于1987 年,美国空军在美国政府资助下发表了著名的“NGC(下一代控制器)研究计划”,该计划首先提出了开放体系结构控制器的概念,这个计划的重要内容之一便是提出了“开放系统体系结构标准规格(OSACA)”。自1996年开始,美国几个大的科研机构对NGC 计划分别发表了相应的研究内容[3],如在美国海军支持下,美国国际标准研究院提出了“EMC(增强型机床控制器)”;由美国通用、福特和克莱斯勒三大汽车公司提出和研制了“O MAC(开放式、模块化体系结构控制器)”,其目的是用更开放、更加模块化的控制结构使制造系统更加具有柔性、更加敏捷。该计划启动后不久便公布了一个名为“OMAC APT”的规范,并促成了一系列相关研究项目的运行。通用运动控制技术作为自动化技术的一个重要分支,在20 世纪90 年代,国际上发达国家,例如美国进入快速发展的阶段。由于有强劲市场需求的推动,通用运动控制技术发展迅速,应用广泛。近年来,随着通用运动控制技术的不断进步和完善,通用运动控制器作为一个独立的工业自动化控制类产品,已经被越来越多的产业领域接受,并且它已经达到一个引人瞩目的市场规模。根据ARC 近期的一份研究,世界通用运动控制(General MotionControl GMC)市场已超过40 亿美元,并且有望在未来5 年内综合增长率达到6.3%。目前,通用运动控制器从结构上主要分为如下三大类:⑴基于计算机标准总线的运动控制器,它是把具有开放体系结构,独立于计算机的运动控制器与计算机相结合构成。这种运动控制器大都采用DSP 或微机芯片作为CPU,可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部I/O 之间的标准化通用接口功能,它开放的函数库可供用户根据不同的需求,在DOS 或WINDOWS 等平台下自行开发应用软件,组成各种控制系统。如美国Deltatau 公司的PMAC 多轴运动控制器和固高科技(深圳)有限公司的GT 系列运动控制器产品等。目前这种运动控制器是市场上的主流产品。⑵Soft 型开放式运动控制器,它提供给用户最大的灵活性,它的运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部I/O 之间的标准化通用接口。就像计算机中可以安装各种品牌的声

先进控制技术在DCS系统中的应用

先进控制技术在DCS系统中的应用 发表时间:2018-05-28T10:09:34.313Z 来源:《电力设备》2018年第1期作者:邵才俊 [导读] 摘要:DCS在其性质上属于一种分布式控制系统,在具体的使用过程中可以发挥出一定的集散控制作用,在系统当中主要是集合了计算机技术、控制技术、通讯技术以及网络技术等。 (江苏国信协联能源有限公司江苏无锡 214203) 摘要:DCS在其性质上属于一种分布式控制系统,在具体的使用过程中可以发挥出一定的集散控制作用,在系统当中主要是集合了计算机技术、控制技术、通讯技术以及网络技术等。技术人员在对层面进行控制的过程中需要采取分散控制的方式来进行,另外,在对生产装置进行管理的过程中需要进行集中管理。在DCS系统中,要想使系统可以实现一定的数字控制功能,技术人员需要对系统的规模进行不断扩大,同时在使用功能方面也需要不断增加,这样才能使DCS系统在实际的使用过程中可以发挥出更有意义的使用价值。 关键词:先进控制技术;DCS系统;应用 1先进控制技术的意义 目前,我国加强了对DCS系统的管理工作,并为DCS系统在未来的发展提供了良好的发展前景。通过对先进控制技术的不断优化和完善,可以使企业在生产的过程中获得更多的经济效益,从而使企业在激烈的市场竞争中实现更加长远的发展。随着现代控制理论的发展以及人工智能的广泛应用,为先进控制技术的发展起到了良好的促进作用。先进控制技术在使用的过程中,主要是应用了数学原理,然后在计算机技术运行的基础上实现相应的控制工作。先进控制技术与一般的PID技术相比存在着一定的差异,先进控制技术在使用的过程中可以获得比较大的经济效益,同时具备非常完善的控制措施,可以为最终参数的准确性提供良的保障。而其他技术在应用的过程中可能会面临一些突发性的事件,因为工业系统在整体上不具备稳定性,很多问题没有办法进行准确的预测。因此,一般的控制技术在使用的过程中还无法实现对工业系统问题的有效处理,而采用先进控制技术就可以对整个工业系统实现合理有效的控制。 2先进控制技术的发展现状 当一个施工单位或者是生产企业采用PID控制技术对系统进行处理的过程中,主要是融合了经典理论的前提条件下来进行的。PID控制技术目前在很多行业中有着非常广泛的使用和推广,而在现代化的工业生产过程中DCS系统有着非常广泛的使用,大部分工业系统的稳定运行以及合理性的操作可以采用PID技术进行控制和维护,这种方式在操作的过程中比较简单,并且也很容易被行业认可和接收。随着我国科学技术的不断发展,控制技术在其机构以及作用上有了很大的改进和完善,并在应用规模上也在逐渐的扩大。在我国的工业系统进行生产的过程中,一般情况下会出现很多化学以及生物反应,在反应的过程中可以对物质以及能量进行有效的传递和转换,工业生产在整体上呈现了一定的复杂性,其中会涉及到很多方面的内容和知识,并且其中还存在着很多不确定性因素,信息的不完善以及非线性特征等,正是因为存在这些问题导致先进控制技术在工业化发展中受到了非常严重的阻碍,同时这也是目前工业生产所面临的核心问题,这会对产品的质量以及生产效率造成非常严重的影响。面对这种现象,工业生产应该逐渐面向大型或者是连续性的方向不断发展,通过对技术方面的有效完善,可以对生产过程中存在的整体性问题以及实时性问题进行合理有效的解决。也就是说,为了使DCS系统的协调性可以实现有效的提升,同时对工业生产过程中进行不断的优化,这就需要采用先进控制技术,从而才能对生产过程中出现的复杂性问题进行有效的解决。 3先进控制技术在DCS控制系统中的应用 3.1自适应控制 就自适应控制技术而言,它在DCS控制系统中的应用主要包含以下几种形式。第一,自校正调节器控制系统。该系统的组成要素主要包含可调控制器、对象参数估计器、控制器参数计算系统以及控制对象。在实际控制过程中,该系统可以借助对象参数估计器,将处于运行状态的控制对象当前参数估计出来,并将其传输至控制器参数计算模块中。该模块得出计算结果之后,会根据结果调整控制对象的参数。当控制对象运行一段时间后,如果调整参数并不适用,整个参数计算流程将再次循环,从而得出新的参数计算结果,然后由可调控制器记录并用于控制对象中。该系统的自动校正功能有效保证了最终控制决策的有效性。第二,模型参考自适应控制系统。该系统由反馈控制器、参考模型以及调整控制器等部分组成。其中,参考模型是影响该系统控制质量的主要因素。 3.2智能控制 典型的智能控制主要包含神经网络和专家系统等。就神经网络而言,它的应用优势主要包含鲁棒性强、可以自动学习、可实现大规模并行处理等。为了优化DCS控制系统的性能,可以将CMAC神经网络应用在DCS控制系统中,以优化DCS控制系统的主蒸汽温度控制功能。具体原理:协调器利用预先设定值及企业中控制对象(主蒸汽温度)的实际输出参数,计算符合企业生产需求的控制对象最佳期望输出参数;得出具体计算结果后,由CMAC网络响应进行检测,若产生响应反应,则表明该数值合理,此时可以利用这一参数对控制对象的当前参数进行调节。事实上,CMAC神经网络在DCS控制系统中的应用也有可能产生错误的控制决策。但是,这种先进控制技术可以利用自身的自主学习功能检测控制决策的合理性。当发现参数不符合要求后,会再次将参数带入循环重新计算,最终获得符合企业生产需求的参数处理结果。 就专家系统而言,它的推理控制决策功能是通过各个领域的专家经验产生的。专家系统的控制决策原理:数据库负责储存事实和相应的推理结果;而知识库通过知识获取操作从相关领域的专家身上获得相应的知识和经验(获取环节具有实时性,因此知识库与领域专家在知识维度上的一致性相对较好)。用户提出问题后,专家系统中的推理机会从知识库、数据库中调取相应信息,判断该问题是否已经存在。如果知识库和数据库中都不存在该问题,则推理机会借助相关经验和推理结果,对该问题的可能结果进行推理,并将最终推理结果反馈给用户。对于DCS控制系统而言,专家系统的应用可以显著改善问题解决能力。运行状态下,DCS控制系统识别出企业的某个部分或生产环节出现异常问题时,专家系统能够快速发挥作用,为DCS控制系统提供相应的推断结果,以此保证DCS控制系统的正常运行。 3.3预测控制 预测控制对DCS控制系统性能的优化可以通过多变量系统的动态矩阵控制来实现。作用原理:根据企业中的控制对象,构建出相应的动态矩阵;当控制对象出现变化时,具体的变动信息会被反应在动态矩阵中,由动态矩阵进行校正。除了检测功能之外,动态矩阵还可以结合预测模型对控制对象可能出现的变化作出预测,进而保证控制决策与控制对象之间的契合性。对于DCS控制系统而言,预测控制的应

先进制造工艺技术

先进制造工艺技术 摘要:随着市场竞争的日趋激烈化,生产规模、生产成本、产品质量和市场响应速度相继成为企业的经营目标,先进制造工艺应运而生。先进制造工艺是在不断变化和发展的传统机械制造工艺基础上逐渐形成的一种制造工艺技术。 With the increasingly fierce market competition, production scale, production costs, product quality and market responsiveness have become the business objectives, advanced manufacturing technology came into being. Advanced manufacturing technology is a manufacturing technology in the traditional mechanical manufacturing process based on a constantly changing and evolving development. 先进制造工艺技术旨在粗加工时获得高生产率,精加工时获得高精确度和高表面质量。它是实现优质、高校、低耗、清洁生产的基础,是保证产品参与市场竞争的基础。随着科技的不断发展,制造工艺亦日新月异。(1)先进制造工艺技术的代表性技术有材料受迫成形工艺技术、超精密加工技术、高速加工技术、快速原型制造技术、现代特种加工技术等。 (1)精密和超精密加工已经成为全球市场竞争取胜的关键技术。超精密加工是一个十分广泛的领域,它包含了所有能使零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法。超精密加工方法主要有传统的切削、磨削,还有利用声、光、电等能源对材料进行加工和处理的方法,以及综合了多种加工方法的复合加工方法。(2)超精密加工机床是实现超精密加工的重要机械设备。 目前,国外超精密机床的发展在国际上处于领先地位的国家有美国、英国和日本,这3 个国家的超精密加工装备不仅总体成套水平高,而且商品化的程度也非高。(3)1962年美国UnionCarbide公司研制成功半球车床,它是最早使用金刚石刀具实现超精密镜面切削的机床,可用于加工球形和半球形零件,机床为立式布局,电动机通过带轮带动主轴旋转,主轴采 用高精度空气轴承,加工件尺寸精度为0.6μm,表面粗糙度Ra为0.025μm以内(4)。美国LLNL 实验室于20世纪80年代研制成功两台大型超精金刚石车床。一台是卧式DTM-3超精密金刚石车床(5),该机床为T形结构,采用多路激光干涉测量系统,可对各轴进行直线和偏移误差补偿。其系统分辨率为2.5nm,最大加工直径为Φ2100mm,加工精度方面:形状误差可达28nm, 圆度和平面度可达12.5nm,表面粗糙度Ra可达4.2nm。另一台是立式大型光学金刚石车床LODTM[5],机床主轴系采用液体静压轴承,位置测量系统采用分辨率为0.625nm的7路双频激 光测量系统,50r/min时的主轴回转精度小于51nm,加工精度可达28nm,可加工直径1.65m、高0.5m、质量1360kg的工件。[6]现在仍被公认为世界上精度最高的超精密机床。 (2)高速加工技术产生于近代动态多变的全球化市场经济环境。自二十世纪八十年代,高速加工技术基于金属(非金属)传统切削加工技术、自动控制技术、信息技术和现代管理技术,逐步发展成为综合性系统工程技术。现已广泛实用于生产工艺流程型制造企业。 高速磨削加工是高速加工技术中具有代表性的一种,高速磨削是通过提高砂轮线速度来达到提高磨削效率和磨削质量的工艺方法。它与普通磨削的区别在于很高的磨削速度和进给速度,而高速磨削的定义随时间的不同在不断推进。20世纪60年代以前,磨削速度在50 m/ s 时即被称为高速磨削;而20世纪90年代磨削速度最高已达500 m/s。在实际应用中,磨削速度在100 m/ s以上即被称为高速磨削。[7] 以砂轮高速、高进给速度和大切深为主要特点的高效深磨技术是高速磨削在高效加工方面的应用之一。[8]高效深磨技术起源于德国,1979年德国P.G.Werner博士预言了高效深磨区的存在合理性,开创了高效深磨的概念,并在1983年由德国Guhring Automation公司创造了当时世界上最具威力的60 kW强力磨床,转速为10000 r/min砂轮直径为400 mm,砂轮 圆周速度达到100~180 m/s,标志着磨削技术进入了一个新纪元。1996年由德国Schaudt

先进控制技术及应用

先进控制技术及应用 1.前言 工业生产的过程是复杂的,建立起来的模型也是不完善的。即使是理论非常复杂的现代控制理论,其效果也往往不尽人意,甚至在一些方面还不及传统的PID控制。20世纪70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。在这样的背景下,预测控制的一种,也就是动态矩阵控制(DMC)首先在法国的工业控制中得到应用。因此预测控制不是某种统一理论的产物,而是在工业实践中逐渐发展起来的。预测控制中比较常见的三种算法是模型算法控制(MAC),动态矩阵控制(DMC)以及广义预测控制。本篇分别采用动态矩阵控制(DMC)、模型算法控制(MAC)进行仿真,算法稳定在消除稳态余差方面非常有效。 2、控制系统设计方案 2.1 动态矩阵控制(DMC)方案设计图 动态矩阵控制是基于系统阶跃响应模型的算法,隶属于预测控制的范畴。它的原理结构图如下图2-1所示: 图2-1 动态矩阵控制原理结构图 2.2 模型算法控制(MAC)方案设计图 模型算法控制(MAC)由称模型预测启发控制(MPHC),与MAC相同也适用于渐进

稳定的线性对象,但其设计前提不是对象的阶跃响应而是其脉冲响应。它的原理结构图如下图2-2所示: 图2-2 模型算法控制原理结构图 3、模型建立 3.1被控对象模型及其稳定性分析 被控对象模型为 (1) 化成s 域,g (s )=0.2713/(s+0.9),很显然,这个系统是渐进稳定的系统。因此该对象 适用于DMC 算法和MAC 算法。 3.2 MAC 算法仿真 3.2.1 预测模型 该被控对象是一个渐近稳定的对象,预测模型表示为: )()1()(?)(?1j k j k u z g j k y m ++-+=+-ε, j=1, 2, 3,……,P . (2) 这一模型可用来预测对象在未来时刻的输出值,其中y 的下标m 表示模型,也称为内 部模型。(2)式也可写成矩阵形式为: )1()()1(?-+=+k FU k GU k Y m 4 1 11 8351.012713.0)(-----=z z z z G

访问控制模型综述

访问控制模型研究综述 沈海波1,2,洪帆1 (1.华中科技大学计算机学院,湖北武汉430074; 2.湖北教育学院计算机科学系,湖北武汉430205) 摘要:访问控制是一种重要的信息安全技术。为了提高效益和增强竞争力,许多现代企业采用了此技术来保障其信息管理系统的安全。对传统的访问控制模型、基于角色的访问控制模型、基于任务和工作流的访问控制模型、基于任务和角色的访问控制模型等几种主流模型进行了比较详尽地论述和比较,并简介了有望成为下一代访问控制模型的UCON模型。 关键词:角色;任务;访问控制;工作流 中图法分类号:TP309 文献标识码: A 文章编号:1001-3695(2005)06-0009-03 Su rvey of Resea rch on Access Con tr ol M odel S HE N Hai-bo1,2,HONG Fa n1 (1.C ollege of Computer,H uazhong Univer sity of Science&Technology,W uhan H ubei430074,China;2.Dept.of C omputer Science,H ubei College of Education,Wuhan H ubei430205,China) Abst ract:Access control is an im port ant inform a tion s ecurity t echnolog y.T o enha nce benefit s and increa se com petitive pow er,m a ny m odern enterprises hav e used this t echnology t o secure their inform ation m ana ge s yst em s.In t his paper,s ev eral m a in acces s cont rol m odels,such as tra dit iona l access control m odels,role-bas ed acces s cont rol m odels,ta sk-ba sed acces s control m odels,t as k-role-based access cont rol m odels,a nd s o on,are discus sed a nd com pa red in deta il.In addit ion,we introduce a new m odel called U CON,w hich m ay be a prom ising m odel for the nex t generation of a ccess control. Key words:Role;Ta sk;Access Cont rol;Workflow 访问控制是通过某种途径显式地准许或限制主体对客体访问能力及范围的一种方法。它是针对越权使用系统资源的防御措施,通过限制对关键资源的访问,防止非法用户的侵入或因为合法用户的不慎操作而造成的破坏,从而保证系统资源受控地、合法地使用。访问控制的目的在于限制系统内用户的行为和操作,包括用户能做什么和系统程序根据用户的行为应该做什么两个方面。 访问控制的核心是授权策略。授权策略是用于确定一个主体是否能对客体拥有访问能力的一套规则。在统一的授权策略下,得到授权的用户就是合法用户,否则就是非法用户。访问控制模型定义了主体、客体、访问是如何表示和操作的,它决定了授权策略的表达能力和灵活性。 若以授权策略来划分,访问控制模型可分为:传统的访问控制模型、基于角色的访问控制(RBAC)模型、基于任务和工作流的访问控制(TBAC)模型、基于任务和角色的访问控制(T-RBAC)模型等。 1 传统的访问控制模型 传统的访问控制一般被分为两类[1]:自主访问控制DAC (Discret iona ry Acces s Control)和强制访问控制MAC(Mandat ory Acces s C ontrol)。 自主访问控制DAC是在确认主体身份以及它们所属组的基础上对访问进行限制的一种方法。自主访问的含义是指访问许可的主体能够向其他主体转让访问权。在基于DAC的系统中,主体的拥有者负责设置访问权限。而作为许多操作系统的副作用,一个或多个特权用户也可以改变主体的控制权限。自主访问控制的一个最大问题是主体的权限太大,无意间就可能泄露信息,而且不能防备特洛伊木马的攻击。访问控制表(ACL)是DAC中常用的一种安全机制,系统安全管理员通过维护AC L来控制用户访问有关数据。ACL的优点在于它的表述直观、易于理解,而且比较容易查出对某一特定资源拥有访问权限的所有用户,有效地实施授权管理。但当用户数量多、管理数据量大时,AC L就会很庞大。当组织内的人员发生变化、工作职能发生变化时,AC L的维护就变得非常困难。另外,对分布式网络系统,DAC不利于实现统一的全局访问控制。 强制访问控制MAC是一种强加给访问主体(即系统强制主体服从访问控制策略)的一种访问方式,它利用上读/下写来保证数据的完整性,利用下读/上写来保证数据的保密性。MAC主要用于多层次安全级别的军事系统中,它通过梯度安全标签实现信息的单向流通,可以有效地阻止特洛伊木马的泄露;其缺陷主要在于实现工作量较大,管理不便,不够灵活,而且它过重强调保密性,对系统连续工作能力、授权的可管理性方面考虑不足。 2基于角色的访问控制模型RBAC 为了克服标准矩阵模型中将访问权直接分配给主体,引起管理困难的缺陷,在访问控制中引进了聚合体(Agg rega tion)概念,如组、角色等。在RBAC(Role-Ba sed Access C ontrol)模型[2]中,就引进了“角色”概念。所谓角色,就是一个或一群用户在组织内可执行的操作的集合。角色意味着用户在组织内的责 ? 9 ? 第6期沈海波等:访问控制模型研究综述 收稿日期:2004-04-17;修返日期:2004-06-28

我国的先进制造技术研究现状及发展趋势

中国先进制造技术的发展趋势 随着科学技术的进步以及新的管理思想、管理模式和生产模式的引进,近年来,先进制造技术在机械加工领域中的应用越来越广泛,越来越深入。机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。改革开放以来,随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中,我国制造科学技术有日新月异的变化和发展,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一先进制造技术概述 (1)先进制造技术的体系结构及分类 先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。 三个层次:一是优质、高效、低耗、清洁的基础制造技术。这一层次的技术是先进制造技术的核心,主要由生产中大量采用的铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺优化而成。二是新型的制造单元技术。这是制造技术与高技术结合而成的崭新制造技术。如制造业自动化单元技术、极限加工技术、质量与可靠性技术、新材料成型与加工技术、激光与高密度能源加工技术、清洁生产技术等。三是先进制造的集成技术。这是运用信息技术和系统管理技术,对上述两个层次进行技术集成的结果,系统驾驭生产过程中的物质流、能量流和信息流。如成组技术(CT)、系统集成技术(SIT)、独立制造岛(AMI)、计算机集成制造系统(CIMS)等。 四个大类:一是现代设计技术,是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术等;二是先进制造工艺技术,主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表而改性、制模和涂层技术;三是制造自动化技术,其中包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等;四是系统管理技术,包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。 (2)先进制造技术的特点 先进性:作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。 通用性:先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。 系统性:随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。 集成性:先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至

相关文档
最新文档