§7-9 实际晶体中的位错

合集下载

7第七节课-扩展位错和面缺陷

7第七节课-扩展位错和面缺陷
f = Gb 1 b 2 2π r
21:08:43
10
西安石油大学材料科学与工程学院
பைடு நூலகம்
材料科学基础
6、位错的增殖:多种机制,弗兰克-理德(Frank-Read)位错增值机制具有代表性。 位错的增殖:多种机制,弗兰克-理德(Frank-Read)位错增值机制具有代表性。 滑移面上有一段刃位错AB, 滑移面上有一段刃位错AB,它的两端被 AB 钉住不能运动。 钉住不能运动。 沿位错柏氏矢量方向加切应力, 沿位错柏氏矢量方向加切应力,使位错 沿滑移面向前滑移运动, 沿滑移面向前滑移运动,形成一闭合的 位错环和一小段弯曲位错线。 位错环和一小段弯曲位错线。 外加应力继续作用, 外加应力继续作用,位错环继续向外扩 张,环内的弯曲位错在线张力作用下又 被拉直,并重复以前的运动, 被拉直,并重复以前的运动,络绎不绝 弗兰克弗兰克-瑞德源的位错增殖机制 地产生新的位错环,位错增殖。 地产生新的位错环,位错增殖。
fcc中全位错滑移时原子的滑移路径 fcc中全位错滑移时原子的滑移路径
21:08:43 7 西安石油大学材料科学与工程学院
材料科学基础
b2 b3
b1
汤普逊记号可写出具体的位错反应, 面上的单位位错BC可分解为两个肖克莱 汤普逊记号可写出具体的位错反应,(111)面上的单位位错 可分解为两个肖克莱 面上的单位位错 不全位错Bδ 不全位错 δ、δC,其反应式为:BC→Bδ+δC ,其反应式为: → δ δ 即: a 1 10 → a 1 2 1 + a 2 11 2 6 6 反应前后的能量计算表明反应可以进行。 反应前后的能量计算表明反应可以进行。
曲率半径越小,切应力越大。 AB弯曲成半圆时,曲率半径最小, 曲率半径越小,切应力越大。当AB弯曲成半圆时,曲率半径最小,所需的切应力最 弯曲成半圆时 大。此时,r=L/2,L为A和B之间的距离。故使弗兰克-里德源发生作用的临界切应力 此时,r=L/2, 之间的距离。故使弗兰克为:

材料微观结构第四章晶体中的位错与层错2

材料微观结构第四章晶体中的位错与层错2
因相斥而分开扩展位错通常把一个全位错分解为两个不全位错中间夹着一个堆垛层错的整个位错组态称为扩展位错?两个不全位错之间的宽度d扩展位错宽度扩展位错宽度照片61nimonic高温合金基体中的扩展位错abfb220660wbdf照片9ni基67超合金中的扩展位错位错从位于abc处的源出发沿110方向扩展层错能层错能?层错给予两个不全位错一个吸力?不全位错又存在一个斥力bbgbgb平衡后决定了扩展位错宽度?为了降低两个不全位错间的层错能力求把两个不全位错的间距缩小这相当于给予两个不全位错一个吸力数值等于层错的表面张力即层错能kdf?821?g为材料切变模量
以a/2[-110]→a/6[-12-1]+a/6[-211]为例
(1) 几何条件 反应前:a/2[-110] 反应后:a/6[-12-1]+a/6[-211]=a/6[-330]=a/2[-110] Σb前=Σb后 (2) 能量条件 反应前: Σb2前=[a/2SQRT((-1)2+12+02)]2=a2/2 反应后: Σb2后=[a/6SQRT((-1)2+22+(-1)2)]2 + [a/6SQRT((-2)2+12+12)]2 =a2/3 Σb2前>Σb2后
该位错反应能够进行
1.FCC中的层错与扩展位错
(1)FCC层错的基本类型,如Al, Cu, Ag, Au

FCC金属密排面{111} 正常堆垛顺序是 ABCABCABC… 如果不按正常顺序出现 ABCABABC…或 ABCABACABC…,即少 了C或多了A,出现错排, 就会有层错。

1.抽出型层错(内禀型) 2.插入型层错(外禀型)
上节课内容回顾



根据原子的滑移方向和位错线取向的几何 特征不同,位错可以分为哪几种类型?都 是什么样的? 什么是柏氏矢量b?能量最稳定的b是怎样 的? 位错按照b是否为点阵周期的整数倍可以分 为哪几种位错,哪一个能量上最稳定?

材料微观结构第四章晶体中的位错与层错2PPT课件

材料微观结构第四章晶体中的位错与层错2PPT课件
概况2
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。
2
4.3.3 全位错分解、层错、扩展位错
面缺陷,与材料的力学性能很相关
层错与全位错的分解密切相关
不全位错(层错和完整晶体的边界) 扩展位错
3
位错反应
位错具有很高的能量,因此它是不稳定的.在
实际晶体中,组态不稳定的位错可以转化为组 态稳定的位错,这种位错之间的相互转化称为 位错反应.位错反应的结果是降低体系自由能.
16
从面心立方金属中的位 错―汤普森作图法可知
对应着: AC->δC+A δ
17
扩展位错----
通常把一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位 错组态称为扩展位错
由图可知,a/6[-211]和a/6[1-12]两个不全位错之间的 夹角为60度,它们之间有一 斥力,因相斥而分开,中间 夹着一片层错,两不全位错
为节点,称为束集,如图C点。此处原来分解了的两个不全
位错重新合并成为全位错。
23
形成束集所需之能量
1.不全位错间距缩小 2.束集附近位错形成弧线增加了应变能 3.因为位错线增长而增加的能量
上节课内容回顾
根据原子的滑移方向和位错线取向的几何 特征不同,位错可以分为哪几种类型?都 是什么样的?
什么是柏氏矢量b?能量最稳定的b是怎样 的?
位错按照b是否为点阵周期的整数倍可以分 为哪几种位错,哪一个能量上最稳定?
什么是柏氏矢量的守恒性?
1
整体概况
+ 概况1
您的内容打在这里,或者通过复制您的文本后。
该位错反应能够进行
6

位错的基本类型

位错的基本类型

5)位错线的移动方向与晶块滑移方向、应力矢量互相垂直
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2.2.3 混合位错
位错线与滑移矢量两者方向夹角呈任意角度 位错线上任一点的滑移矢量相同
晶体右上角在外力F作用下发生切变 滑移面ABC范围内原子发生了位移,其滑移矢量用 b表示 弧线AC即是位错线,为已滑移区和未滑移区的边 界,与滑移矢量成任意角度 是晶体中较常见的一种位错 混合位错的形成
2014年3月10日11时1分 刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
螺型位错分类
按照螺旋面前进的方向与螺旋面旋转方向的关系分
• 左螺型位错 • 右螺型位错
• 符合右手定则(右手拇指代表螺旋面前进方向,其它四指代表螺旋面旋 转方向)的称为右螺型位错,符合左手定则的称为左螺型位错
正刃型位错:晶面上部原子拥挤,受压应力,晶面下部原子受拉应力 • 点阵畸变是对称的,位错中心受到畸变度最大,离开位错中心畸变 程度减小 • 一般把点阵畸变程度大于正常原子间距1/4的区域宽度定义为位错宽 度,约为2~5个原子间距
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
螺型位错(Screw dislocation)

位错总结

位错总结

位错总结一. 位错概念1.晶体的滑移与位错2. 位错模型● 刃型位错: 正负刃型位错, ※位错是已滑移区与未滑移区的边界※位错线必须是连续的-位错线不能中止在晶体内部。

∴ 起止与晶体表面(或晶界)或在晶体内形成封闭回路或三维网络● 螺型位错: 左螺旋位错,右螺旋位错 ● 混合位错3.位错密度 单位元体积位错线总长度,3/m m或单位面积位位错露头数,2m4. 位错的柏氏矢量 (Burgers Vector )● 确定方法: 柏氏回路 ●意义:1) 柏氏矢量代表晶体滑移方向(平行或反平行)和大小 2) 位错引起的晶格畸变的大小3)决定位错的性质(类型)刃型位错 b ┴位错线 螺型位错 b//位错线混合位错 位错线与b斜交s e b b b+→,sin θb b e= θcos b b s=4)柏氏矢量的表示 ]110[2a b =或 ]110[21=b●柏氏矢量的性质1)柏氏矢量的守恒性-流入节点的柏氏矢量之和等于流出节点的柏氏矢量之和2)一条为错只有一个柏氏矢量二.位错的运动1.位错的运动方式●刃型位错滑移―――滑移面: l⨯,唯一确定的滑移面滑移方向:l v b v⊥,//滑移应力: 滑移面上的切应力-沿b 或b-攀移――攀移面: 附加半原子面攀移方向:)(b l v⨯⊥攀移应力:攀移面上的正应力; 拉应力-负攀移 压应力-正攀移 攀移伴随原子扩散,是非守恒运动,在高温下才能发生 ● 螺型位错滑移―――滑移面:包含位错线的任何平面滑移方向:l v b v⊥⊥,滑移应力 滑移面上的切应力-沿b 或b-交滑移―――同上●混合位错滑移(守恒运动)――同刃型位错非守恒运动 ――在非滑移面上运动-刃型分量的攀移和螺型分量的滑移的合成运动2.位错运动与晶体变形的关系1)滑移面两边晶体运动方向 V右手定则――以位错运动面为界, )(b l⨯所指的那部分晶体向b方向运动位错运动相关量: v b l j i,,,,σb l⇔ : 确定位错的性质V j i⇒σ: 确定晶体相对运动V v l⇔⇔b ⇒确定位错运动方向或晶体运动方向上述规则对位错的任何运动方式均使用2)位错运动与晶体变形的定量关系vb ρε=, v b ρε=3) 位错增殖Frank-Read 源 LGb LGb ≈=ατ2L 型增殖 双交滑移4)位错的交割刃-刃交割――21//b b 21b b ⊥ 刃-螺交割 螺-螺交割三.实际晶体的位错 (FCC ) 1.全位错的分解2. 堆垛层错内禀层错―――滑移型, 抽出型 A B C A B C A B C A B C↓↓↓↓↓↓ B C A B C A A B C A B C ∣B C A B C A外禀层错―――插入型C A B C A C B C A B C A3.分位错――完整晶体和层错的边界● Shockley 分位错 :特点: 1)><=11261b 滑移型层错的边界 2) 只能滑移,刃型不能攀移,螺型不能交滑移● Frank 分位错特点: 1) ><=11131b插入型或抽出型层错与完整晶体的边界2)只能攀移不能滑移4.扩展位错特点: 扩展宽度 πγπγ2422210Gab b G d =⋅=只能滑移,不能交滑移;但束集后可交滑移5.位错反应● 位错反应的条件1) 几何条件:∑∑='iibb2) 能量条件:∑∑≤'22)()(i i b b● Thompson 记号 ●形成扩展位错的反应 ●形成压杆位错的反应。

材料科学 晶体缺陷

材料科学  晶体缺陷

热振动产生的点缺陷属于热力学平衡缺陷,即
在一定的温度下,晶体中一定存在一定数量的点缺 陷。平衡浓度的点缺陷对材料的力学性能的影响并
不大,但在高温下空位的浓度很高,空位在材料变
形时的作用就不能忽略了。
14
(4)原子或分子的扩散就是依靠点缺陷的运动实现的。
晶体中的点缺陷处于不断的运动状态。当空位周围
原子的热运动动能超过激活能时,就可能脱离原来的结
Sm: 空位迁移熵
17
例:
1、Nb的晶体结构为bcc,其晶格常数为0.3294nm, 密度为8.57g/cm3,试求每106中所含的空位数目?
ρ= 2(1-x)Ar/a3NA x = (2Ar-ρa3NA)/2Ar 1-{8.57×(3.294×10-8)3×6.023×1023}/2×92.91 = 7.1766×10-3 106× 7.1766×10-3 = 7176.6
47
柏氏矢量的表示法
• 柏氏矢量的大小和方向可用它在晶轴上的分量------点阵矢量, 来表示 • 在立方晶体中, 可用于相同的晶向指数来表示:
位错强度
a b u 2 v 2 w2 n
位错合并
48
第三部分 位错力学
49
位错的应力场:应力张量
• 应力张量:二阶张量 xx xy xz or yx yy yz zx zy zz
• 空位形成能:Ev
原子-〉晶体表面 =电子能+畸变能
平衡浓度:
C A exp( Q f / RT )
热力学稳定的缺陷: 产生与消亡达致平衡
• 空位迁移频率:
0
Zexp (Em / kT)exp (Sm / k)

位错的运动PPT课件


(1)滑移力(外力为切应力) 单位长度位错上的力:f=τ× b
与位错的运动方向平行,并垂直于位错线,指向 未滑移区。任何位错均可发生滑移运动。
位错受力处处相等,位错只在滑移面上运动,也 称滑移力。位错的滑移不改变晶体体积,称保守 运动。
(2)攀移力(外力为与b同向的正应力)
单位长度刃位错受力:f=-σ× b
一、位错间的交互作用
1. 两平行螺位错的相互作 用: 螺应位力错分( 量:bτθ1z) 只有纯切
位错b2受力为:
F = b2 τθz
= (Gb1b2 / 2πr)
可见,合力F是一种径 向力.当位错同向时, 两位错在F的作用下表
现为互相排斥。当位 错反向时,两位错在F
的作用下表现为互相 吸引。
9
a
第三节 位错受力及其运动 一、作用在位错上的力 1. 虚功原理:外力对晶体滑移 所做的功等于位错线受“力” 移动所做的功。 2. 关于“力”的说明: 这是一个虚构的力,但源于 晶体的内外应力场。 只要存在内外应力场,位错 即使静止也受力。 这是一种组态的作用力,并 非原子所受的作用力。
1
a
3.位错受力的两种形式:
4
a
3. 混合位错的滑移
5
沿柏氏矢量方向对晶 体施加应力,则A、B 处为符号相反的刃位 错,C、D处为符号相 反的螺位错,在相同 的外力作用下,各自 运动方向相反,故位 错环只能收缩或扩展。 同样是晶体产生一个b 大小的宏观变形。
a
4. 位错滑移的方向
6
a
三、位错的攀移
刃型位错在垂直于滑移面方向的运动称为攀移。这 相当于多余半原子面的伸长或缩短,因而需要原 子的迁移。
力场也是球对称的正应力场。

晶体缺陷位错的基本类型与特征

晶体缺陷位错的基本类型与特征
(a)变形前
(b)变形后
图 单晶试棒在拉伸应力作用下 的变化(宏观)
晶体缺陷位错的基本类型与特征
2、理想晶体的滑移模型
τ τ
图 外力作用下晶体滑移示意图(微观)
晶体缺陷位错的基本类型与特征
(1)理论抗剪屈服强度
滑移面上各个原子在切应力作用下,同时克服相邻滑 移面上原子的作用力前进一个原子间距,完成这一过程所 需的切应力就相当于晶体的理论抗剪屈服强度τm。
螺型位错的情况与刃型位错一样具有易 动性。
位错的运动
混合位错 的运动
晶体缺陷位错的基本类型与特征
三、位错的柏氏矢量
1、柏氏矢量的概念与性质
柏氏矢量:晶体中有位错存在时,滑移面一侧质点相 对于另一侧质点的相对位移或畸变。
性质:大小表征了位错的单位滑移距离,方向与滑移 方向一致(滑移矢量)。 柏氏(Burgers)矢量是一个矢量,具有方向和 大小;这个物理参量能把位错区原子的畸变特征 表示出来,包括畸变发生在什么晶向以及畸变有 多大(畸变矢量) 。
晶体缺陷位错的基本类型与特征
位错的特征归纳:
(1)可以把位错定义为晶体中以滑移区与未滑移 区的边界。
(2)刃型位错不仅仅指刀刃处的一条原子,而是 刀刃处这列原子及其周围区域。
(3)刃型位错中,晶体发生局部滑移的方向(或 滑移矢量)是与位错线垂直的。
(4)螺型位错中,晶体发生局部滑移的方向(或 滑移矢量)是与位错线平行的。
(2)理论抗剪屈服强度与晶体的切变模量的关系
原子的结合键能与弹性模量有很好的对应关系,因此 理论抗剪屈服强度τm应与晶体的切变模量G的大小有一定 的关系,根据推算两者之间大致的为:
m
G 30

(7.12)--第7章部分习题解答

第7章 习题解答7-1估计fcc 结构以{111}、{100}和{110}作表面(T =0 K )的表面能。

设升华热为L S (J/mol),点阵常数为a 。

解:升华热相当于把晶体所有结合键断开的能量,现忽略次近邻键,认为升华热只由最近邻键所贡献。

设U b 为平均键能,每摩尔有N 0(亚佛加德罗常数)个原子,fcc 结构的配位数为12,最近邻键对数是12N 0/2,所以2120b S U N L = 即06N L U Sb =晶体表面能的式子是∑∑⋅===j q j j q q j j j n q )(A)()(S S 2121ϕϕργV E fcc 结构中每个晶胞含4个原子,所以原子体积43a V a =。

(1)对于{111}为表面,单位法线矢量3]111[=n ,它割断最近邻的键矢量为2]101[a 、2]110[a 和2]011[a 。

故表面能为2)(A S 3332]}011[]110[]101{[]111[233421N a L U a a a 2U V Sb 23b==++⋅=⋅=∑j q j j n q ϕγ(2)对于{110}为表面,单位法线矢量]110[=n /2,它割断最近邻的键矢量为2]101[a 、2]011[a 、]110[a 、2]101[a 和]110[a ,因为(110)面的面间距为4]110[a ,2]110[a 穿过两个(110)面,所以对于[110]方向的键矢量为4]110[a 。

表面能为2)(A S 1225225]}110[21]110[]101[]011[]101{[]110[2224221N a L U a a a U V S b 23b ==+-+-++⋅=⋅=∑j q j j n q ϕγ(3)对于{100}为表面,单位法线矢量]100[=n ,它割断最近邻的键矢量为2]101[a 、2]011[a 、]110[a 和]101[a 。

故表面能为02)(A S 324]}101[]101[]110[]101{[]100[2421N a L U a a a 2U V S b 23b ==-+-++⋅=⋅=∑j q j j n q ϕγ另外,我们可以用简单的比较直观的方法计算。

位错的生成与增殖

❖ 蜷线每转一周就扫过滑移面一次、晶体便产生一个b的滑 移量。图中(a)、(b)、(c)、(d)表示转动过程的几个阶段。
§7.5 位错的生成与增殖
2、位错的增殖
❖ 塑性变形时,有大量位错滑出晶体,所以变形以后晶体中的位错数目 应当减少。
❖ 但实际上,位错密度随着变形量的增加而加大,在经过剧烈变形以后 甚至可增加4~5个数量级。
❖ 此现象表明:变形过程中位错肯定是以某种方式不断增殖,而能增值 位错的地方称为位错源。
❖ 位错增殖机制有多种,其中最重要的是: ❖ 弗兰克和瑞德于1950年提出并已为实验所证实的位错增殖机构称为
双交滑移位错增殖机制
§7.5 位错的生成与增殖
❖ 一个螺位错开始在(111)面滑移,因遇到障碍或局部应 力状态变化,位错的一段交滑移到(111)面,且在绕过 障碍之后又回到与(111)面相平行的另一个(111)面, 这时留在(111)面上的两端位错是刃型的,不能随 (111)面上的位错一起前进,结果(111)面上的位错 就会以图7.50所描述的方式增殖位错。
图7-50 双交滑移位错增殖机制
§7.5 位错的生成与增殖 双交滑移增殖机制:
❖ 通常把螺位错由原始滑移面转至相交的滑移面,然后又转 移到与原始滑移面平行的滑移面上的滑移运动,称为双交 滑移运动。此位错增殖机制称为位错的双交滑移增殖机制。
❖ 若(111)面上位错环再交滑移到另一个平行的(111) 平面上,成为新位错源,则位错将迅速增殖。
§7.5 位错的生成与增殖
❖ 因p、q两点处一对左、 右旋螺位错,遇到时, 便互相抵消。
❖ 则原位错线被分成两 部分,如图(e)。
❖ 此后,外面位错环在 Ft作用下不断扩大, 直至到达晶体表面,
❖ 而内部另一段位错将 在线张力和Ft的共同 作用下回到原始状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Flash动画
(2)扩展位错
定义: 将两个Shockley
分位错、中间夹着 一片层错的整个缺 陷组态称为扩展位 错。
扩展位错的柏氏矢量: b=b1+b2=1/2<110>
(3) Frank分位错
Shockley分位错是有层错区和无层错区的边界,而层错区是通 过局部滑移1/6<112>形成的。
但是除了通过局部滑移来形成层错 区,也可以通过插入和抽出部分密排 面的方式来形成局部层错区。这个有 层错区与无层错区的边界即为Frank 分位错,其柏氏矢量为b=1/3<111>, 该矢量小于FCC晶体中〈111〉方向 上的原子间距, 所以也是不全位错。 对应于插入半层密排面所形成的不全 位错称为正弗兰克分位错;而抽出型 层错的不全位错称为负弗兰克分位 错。
能通过插入半原子面得到,因为插入半原子面不可能导致形 成大片层错区。
1
(e) 即使是刃型Shockley不全位错也只能滑移,不能攀移,因为 滑移面上部(或下部)原子的扩散不会导致层错消失,因而有 层错区和无层错区之间总是存在着边界线,即肖克莱不全位错 线。
(f ) 即使是螺型肖克莱不全 位错也不能交滑移,因为螺型 肖克莱不全位错是沿〈112〉 方向,而不是沿两个{111}面 (主滑移面和交滑移面)的交 线〈110〉方向,故它不可能 从一个滑移面转到另一个滑移 面上交滑移。

=
1 [1 21],

= 1 [1 12]
6
6
6
不对应的罗-希向量就是FCC中Shockley分位错的柏氏矢量
3、对应的罗-希向量
根据矢量合成规则可以求出对应的罗-希向量:
Aα = AB + Bα = 1 [1 10] + 1 [1 1 2] = 1 [1 1 1]
2
6
3
Bβ = BC + Cβ = 1 [10 1] + 1 [1 21] = 1 [1 1 1]
2
6
3
Cγ = CD + Dγ = 1 [1 1 0] + 1 [112] = 1 [1 1 1]
2
6
3
Dδ = DA + Aδ = 1 [101] + 1 [1 2 1] = 1 [1Frank分位错的柏氏矢量。
4、希-希向量
所有希-希向量也都可以根据向量合成规则求得:
Frank分位错的特点: (a) 位于{111}晶面上,可以是直线、曲线和封闭环,但是无论
是什么形状,它总是刃型的。因为b=1/3<111>和{111}晶面 垂直。 (b) 由于b不是FCC的滑移方向,所以Frank分位错不能滑移, 只能攀移(只能通过扩散扩大或缩小)。不再是已滑移区和 未滑移区的边界,而且是有层错区和无层错区的边界。 注意与Shockley分位错的特点进行比较。
n
m
1、几何条件: ∑b' j = ∑bi
j =1
i =1
即,新位错的柏氏矢量 之和应等于反应前位错 的柏氏矢量之和。
∑ ∑ 2、能量条件:
n
m
b'2j < bi2
j =1
i =1
即,新位错的总能量应 小于反应前位错的总能 量。
前面讲过位错的弹性能Eel=αGb2
例如,FCC的全位错分解为Shockley分位错:b→b1+b2
⎤2 ⎥⎦
=
1 2
∑n
反应后:
j =1
b'2j
=
b12
+
b22
=
⎜⎜⎝⎛
6 6
⎟⎟⎠⎞2
+
⎜⎜⎝⎛
6 6
⎟⎟⎠⎞2
=
1 3
n
m
∑ ∑ 符合能量条件: b'2j < bi2
j =1
i =1
所以此位错反应可以自发进行。
2
二、Thompson四面体
用于表示FCC晶体中的位错反应
Thompson四面体在FCC晶胞中的位置:D点在坐标原点,其余 顶点的坐标分别为,A(1/2,0,1/2),B(0,1/2,1/2),C(1/2,1/2,0)。四 面体4个外表面(等边三角形)的中心分别用α、β、γ、δ表 示,并分别对应A、B、C、D四个顶点所对的面。这样A、B、 C、D、 α、β、γ、δ等8个点中的每2个点连成的向量就表示 了FCC晶体中所有重要位错的柏氏矢量。
二维点阵中晶界位置可用两个晶粒的位向差θ和晶界相对于 一个点阵某一平面的夹角φ来确定。根据相邻晶粒之间位向差 θ角的大小不同可将晶界分为两类:
小角度晶界和大角度晶界。两相邻晶粒的位向差小于15° 时,称为小角度晶界;位向差大于15°时,称为大角度晶界
一般说来,位向差越大,晶界厚度也就越大,界面能也越 高。实验证明,小角度晶界是由一系列位错排列而成的。
不同晶面的表面能大小不同。这是由于表面能的本质是表面 原子的不饱和键,而不同晶面上的原子密度不同。密排面的原 子密度最大,则该面上任一原子与相邻晶面原子的作用键数最 少,故以密排面作为表面时不饱和键数最少,表面能量低。晶 体总是力图处于最低的自由能状态,所以晶体的平衡几何外形 应满足表面能总和为最小的原理。自然界的有些矿物或人工结 晶的盐类等常具有规则的几何外形,它们的表面常由最密排面 及次密排面组成,这是一种低表面能的几何形态。
罗-罗向量就是FCC中全位错的柏氏矢量
2、不对应的罗-希向量
由四面体顶点(罗马字母)和通过该顶点的外表面中心(不 对应的希腊字母)连成的向量:
这些向量可以由三角形重心性质求得,例如:
Dα = 2 ⎜⎛ DC + 1 CB ⎟⎞ = 2 ⎜⎛ 1 [110] + 1 [1 01]⎟⎞ = 1 [121]
在FCC晶体中位于{111}晶面上柏氏矢量为
b
=
1 6
112
的位错。
Shockley分位错的特点: (a) 位于孪生面上,柏氏矢量沿孪生方向,且小于孪生方向上的
原子间距: b = 1 112
6
(b) 不仅是已滑移区和未滑移区的边界,而且是有层错区和无层
错区的边界。 (c) 可以是刃型、螺型或混合型。 (d) 只能通过局部滑移形成。即使是刃型Shockley不全位错也不
Flash-对称倾侧晶界
对称倾侧小角度晶界的界面能:
E = E0θ (A − lnθ )
E0
= α Gb
=
Gb 4π (1−ν )
式中A为积分常数,E0与b成正比,见上右式。
(2) 不对称倾侧晶界
Flash-不对称倾侧晶界
界面能:E = E0θ (A − lnθ )
1、罗-罗向量
由四面体顶点A、B、C、D(罗马字母)连成的向量:
DA = 1 [101], DB = 1 [011],
2
2
AB = AD = DB = 1 [1 10] 2
AC = AD + DC = 1 [01 1] 2
BC = BD + DC = 1 [10 1] 2
DC = 1 [110] 2
βδ = 1 [011] = 1 DB
6
3
以用Thompson四面体中 的向量来表示。
γδ = 1 [110] = 1 DC
6
3
§7-11 面缺陷
晶体材料中存在着许多界面,如外表面(surface)与内界面 (interface)等。界面通常包含几个原子层厚的区域,该区域内 的原子排列甚至化学成分往往不同于晶体内部,又因其在三维 空间表现为一个方向上尺寸很小,另外两个方向上尺寸较大, 故称为面缺陷(interfacial defects)。
1、小角度晶界的结构
按照相邻亚晶粒间位向差的型式不同,小角度晶界可分为对 称倾侧晶界、对称倾侧晶界、扭转晶界等。它们的结构可用相 应的模型来描述。
(1) 对称倾侧晶界
对称倾侧晶界(Symmetrical tilt boundary)可看作是把晶界两侧晶体互相 倾斜的结果。由于相邻两晶粒的位向差θ 角很小,其晶界可看成是由一列平行的刃 型位错所构成。
2、不全位错
柏氏矢量小于滑移方向上的原子间距的位错称为分位错; 大于原子间距,但不是整数倍的位错称为不全位错。实际研 究中没有必要将它们细分,可以统称为不全位错。
(1) Shockley分位错
右图所示为FCC晶体的(111) 晶面(纸面),注意ABC三层 原子的位置,b1为全位错柏氏 矢量。当B层及以上原子由B位 置滑移到B位置时,分两步进 行需要的能量更小:B→C, C→B。
反应式: 1 [1 10] → 1 [211] + 1 [1 2 1]
2
6
6
∑ ∑ 几何条件:
n
b' j
j =1
=
b1
+ b2
=
1 [330] = 6
1 [1 10] = b 2
=
m i =1
bi
符合
计算能量:
∑m
反应前:
i =1
bi2
=
b2
=
⎢⎣⎡⎜⎝⎛
1 2
⎟⎞ ⎠
(− 1)2
+ (1)2
+
(0)2
b=1/2<110>。全位错的滑移面是{111},刃型位错的攀移面(垂 直于滑移面和滑移方向的平面)是{110}。
图中FCC晶体的滑移 面为(-111)晶面,柏氏 矢量方向为[110]晶向, b=1/2[110];半原子面 (攀移面)为(110)晶 面,其堆垛次序为 ababab…
将滑移面(-111)水平放置,攀移面(110)则为垂直位置,FCC 中刃型全位错如下图所示。由于形成位错时不能改变FCC的晶 体结构,故在a层和b层之间必须插入b、a两层半原子面才能形 成全位错。
相关文档
最新文档